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MATHEMATICS-I 
 

Course Objectives: 
 This course will illuminate the students in the concepts of calculus. 
 To enlighten the learners in the concept of differential equations and multivariable 

calculus. 
 To equip the students with standard concepts and tools at an intermediate to advanced level 

mathematics to develop the confidence and ability among the students to handle various real 
world problems and their applications. 

 
Course Outcomes: 

At the end of the course, the student will be able to 
 Utilize mean value theorems to real life problems (L3) 
 Solve the differential equations related to various engineering fields (L3) 
 Familiarize with functions of several variables which is useful in optimization (L3) 
 Apply double integration techniques in evaluating areas bounded by region (L3) 
 Students will also learn important tools of calculus in higher dimensions. Students will 

become familiar with 2- dimensional and 3-dimensional coordinate systems (L5 ) 
 

UNIT I: Sequences, Series and Mean value theorems: (10 hrs) 
Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral 
test – Cauchy’s root test – Alternate series – Leibnitz’s rule. 
Mean Value Theorems (without proofs): Rolle’s Theorem – Lagrange’s mean value theorem – 
Cauchy’s mean value theorem – Taylor’s and Maclaurin’s theorems with remainders. 

 
UNIT II: Differential equations of first order and first degree: (10 hrs) 
Linear differential equations – Bernoulli’s equations – Exact equations and equations reducible to 
exact form. 
Applications: Newton’s Law of cooling – Law of natural growth and decay – Orthogonal 
trajectories – Electrical circuits. 

 
UNIT III: Linear differential equations of higher order: (10 hrs) 
Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of 
the type eax, sin ax, cos ax, polynomials in xn, eax V(x) and xnV(x) – Method of Variation of parameters. 
Applications: LCR circuit, Simple Harmonic motion. 

 
UNIT IV: Partial differentiation: (10 hrs) 
Introduction – Homogeneous function – Euler’s theorem – Total derivative – Chain rule – 
Jacobian – Functional dependence – Taylor’s and Mc Laurent’s series expansion of functions of 
two variables. 
Applications: Maxima and Minima of functions of two variables without constraints and 
Lagrange’s method (with constraints). 
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UNIT V: Multiple integrals: (8 hrs) 
Double and Triple integrals – Change of order of integration – Change of variables. 
Applications: Finding Areas and Volumes. 

 
Text Books: 

1) B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers. 
2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw 

Hill Education. 
 

Reference Books: 
1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India. 
2) Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson. 
3) Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013. 
4) Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press. 



. 

VSM COLLEGE OF ENGINEERING  
RAMACHANDRAPRUM-533255 

                                      DEPARTMENT OF HUMANITIES AND BASIC SCIENCES 

 
                 

                     
 

 

Course Title Year-Sem Branch 
Contact 
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Mathematics-I 1-1 ALL 
BRANCHES(CIVIL,CSE,
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MECH & EEE) 
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          Course Objectives: 

 This course will illuminate the students in the concepts of calculus. 

 To enlighten the learners in the concept of differential equations and multivariable calculus. 

 To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the  

      confidence and ability among the students to handle various real world problems and their applications. 

           Course Outcomes: At the end of the course, the student will be able to 

 Utilize mean value theorems to real life problems (L3)  

 Solve the differential equations related to various engineering fields (L3) 
 Familiarize with functions of several variables which is useful in optimization (L3) 

 Apply double integration techniques in evaluating areas bounded by region (L3) 

 Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 

        2- dimensional and 3-dimensional coordinate systems (L5     
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CO1:Sequences, Series 

and Mean value 

theorems 

                         UNIT-1  

 

 

 

15 

 

 

 

 
T1,T3

, R2 

 
Chalk & 

Talk,  

  & Tutorial 

1.1 Convergences and divergence – Ratio 

test 
3 

1.2 Comparison tests – Integral test – 
Cauchy’s root test 

 

2 

1.3 Alternate series – Leibnitz’s rule. 
2 

1.4 Rolle’s Theorem – Lagrange’s mean 

value theorem 3 

1.5 Cauchy’s mean value theorem 
2 

1.6 Taylor’s and Maclaurin’s theorems 
with remainders 3 
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CO2: Differential 

equations of first order 

and first degree 
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Talk, & 

Tutorial 

2.1 Linear differential equations 
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2.2 Bernoulli’s equations 
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2.3 Exact equations and equations 
reducible to exact form 
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2.4 Applications: Newton’s Law of 

cooling 
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2.5  Law of natural growth and decay – 

Orthogonal trajectories – Electrical 

2 



. 

 

 

 

 

3 

 

 
 

 

 

 
CO3: Linear differential 
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order with constant coefficients  
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3.2 with non-homogeneous term of the 

type eax, sin ax, cos ax 
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3.3 polynomials in xn , eax V(x) and xn 

V(x) 
 

2 

3.4 Method of Variation of parameters 2 

3.5 Applications: LCR circuit, Simple 

Harmonic motion 
2 
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Euler’s theorem 
 

 

2 

 

 

 

4.2 

 

 
 Total derivative – Chain rule – Jacobian 

 

4 

4.3 
Central differences – Relations between 

operators- Functional dependence 
2 

4.4 Taylor’s and Mc Laurent’s series 

expansion of functions of two variables 
3 

4.5 Applications: Maxima and Minima of 

functions of two variables without 

constraints 

3 

4.6 Lagrange’s method (with constraints) 1 
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Change of order of integration 3 

5.3 Change of variables. 2 

5.4 Applications: Finding Areas and 

Volumes 
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Multiple Integrals and their 

Applications 
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INYRODUCYION YO DETINIYE INYEGRA1S AND DOUB1E INYEGRA1S 

DeGtnt1e In1egıa1s 

The concept of definite integral 


b 
f xdx 

Y 

 

…(1) 

is physically the area under a curve y = f(x), (say), the x-

axis and the two ordinates x = a and x = b. It is defined as 

the limit of the sum 

f(x1)x1 + f(x2)x2 + … + f(xn)xn 

when n   and each of the lengths x , x , …, x 
X

 

tends to zero. 
1 2 n 

Fig. 5.1 

Here x1, x2, …, xn are n subdivisions into which the range of integration has been divided and 

x1, x2, …, xn are the values of x lying respectively in the Ist, 2nd, …, n th subintervals. 

Doub1e In1egıa1s 
Y

 

A d o u ble integral is the co u nter p art of the above 

definition in two dimensions. 

Let f(x, y) be a single valued and bounded function of two 

independent variables x and y defined in a closed region A in 

xy plane. Let A be divided into n elementary areas A1, A2, 

…, An. 

Let (xr, yr) be any point inside the rth elementary area 

Ar. 
Consider the sum 

 
 
 
 
 
 

 
 
 

X 
 

Fig. 5.2 

f x1, y1A1  f x 2,y 2 A 2    f x n ,y n A n  f 
r 1 

x r ,y r A r 
 

…(2) 

Then the limit of the sum (2), if exists, as n   and each sub-elementary area approaches 

to zero, is termed as ‘double integral’ of f(x, y) over the region A and expressed as  f x, y d A . 
A 

5 



 2   

n 

,  
x b 

y x    
, 
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Thus  f x, y dA  Lt 
n 

 f x r ,y r A r 
 

…(3) 
A 

Ar  0 
r 1 

Observations: Double integrals are of limited use if they are evaluated as the limit of the sum. However, they are very 

useful for physical problems when they are evaluated by treating as successive single integrals. 

Further just as the definite integral (1) can be interpreted as an area, similarly the double integrals (3) can be 

interpreted as a volume (see Figs. 5.1 and 5.2). 

 

 EVA1UAYION OT DOUB1E INYEGRA1 
 

Evaluation of double integral   ƒ x, ydx dy 
R 

 
 

y-axis 

is discussed under following three possible cases: 

Case I: When the region R is bounded by two continuous 

curves y =  (x) and y =  (x) and the two lines (ordinates) 

x = a and x = b. 

In such a case, integration is first performed with respect 

to y keeping x as a constant an d then the resulting integral 

is integrated within the limits x = a 

and  x = b. O 

 
C 

 
 
 
 

A 

 

x = a 

Q 
D

 

 
R 

 

 

P 
B 

x = b 

y = (x) 

 
 
 
 
 

y = (x) 

 
x = axis 

Mathematically expressed as: Fig. 5.3 

  f x  y dx dy  y  x   f x  y dy dx 

R x a 

Geometrically the process is shown in Fig. 5.3, where 

integration is carried out from inner rectangle 

 

y = axis 
 

 
x = (y) 

 

x = (y) 

(i.e., along the one edge of the ‘vertical strip PQ’ from 

P to Q) to the outer rectangle. 

Case 2: When the region R is bounded by two continuous 

curves x =  (y) and x =  (y) and the two lines (abscissa) 

y = b
  B D  

 
P Q 

R 

y = a and y = b. 

In such a case, integration is first performed with 

respect to x. keeping y as a constant and then the 

resulting integral is integrated between the two limits  

y = a and y = b. 

Mathematically expressed as: 

y = a 
A 

 
O 

 
 

 
y-axis 

 
 
 

Fig. 5.4 

C 

 
x = axis 

y b  x(y) 

   f x, y dx dy    f x, y dx  dy 
 

y = a D  Q C 

R ya  x(y) 

Geometrically the process is show n in Fig. 5.4, 

where integration is carried out from inner rectangle 

(i.e., along the one edge of the horizontal strip PQ 

from P to Q) to the outer rectangle. 

Case 3: When both pairs of limits are constants, the region 

 
 

 
y = b 

 
 

O 

R 

 
 

A 

 
x = a 

S 

 
 

P B 

 
x = b 

 
 
 
 
 
 

x-axis 

of integration is the rectangle ABCD (say). Fig. 5.5 
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1 x2 

1  x2 

1  x2 

1  x2 

1  x2 

B 
(0, 1) 

Q x = 1 

x = 0 

(1, 0) 

O 
(0, 0) 

P y = 0 
A 

 







0 

 

Multiple Integrals and their Applications  

In this case, it is immaterial whether f(x, y) is integrated first with  respect to  x or  y, the 

result is unaltered in both the cases (Fig. 5.5). 

Observations: While calculating double integral, in either case, we proceed outwards from the innermost integration 

and this concept can be generalized to repeated integrals with three or more variable also. 

1 1 x2
  1  

Example  1:  Evaluate   0    0
 dydx 

1 + x2 + y2 
[Madras 2000; Rajasthan 2005]. 

Solution: Clearly, here y = f(x) varies from 0 to 

and finally x (as  an independent variable) goes  between 0  

to 1. 
1  1 x2

  1  
I  0 

 0 

1  x2   y2 
dy dx 

 

1  1 x2

  1    
2 2 

dy dx , a2 = (1 + x2) 
 

    0  0 a   y 

 
1 
 

1 tan1 
y  

dx 


Fig. 5.6 
0     a a 0 

   
1
  1  

tan1  1 


  tan 0  dx 

0  
   

1   1    
 0

 
dx  

 log x    1  x 2 
1

 0  4 

 
 

log  1   2 
4 

4  0 

 

Example 2:  Evaluate    e
2x+3y dxdy  over the triangle  bounded  by the lines x = 0, y = 0 and 

x + y = 1. 

Solution: Here the region of integration is the triangle OABO  as the line  x +  y  = 1 intersects 

the axes at points (1, 0) and (0, 1). Thus, precisely the region R (say) can be expressed as: 

0  x  1, 0   y  1 –  x  (Fig 5.7). 
Y

 

 I     e2x  3ydxdy 
R 

1  1 x 
  

   e2x 3 ydy 
dx 

0 0 
 
 

 
1 
 1 

 
 

1 x X 2x 3y 

  3 
e
  dx 

0 

 

Fig. 5.7 

1  x2 



 
 
 
 
 
 

A 

(0, 1) 

 

O 

 
D (2, 2. 36) 

(0, 2) 

 

(1. 732, 2) 
C 

B 
(1, 1. 414) 

 
 

(2, 0) 

(0, 0) (10) (1. 732, 0) 
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6  6 

R 
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1 

 
1 
 e3  x  e2x  dx 

3 0 

 
1  e3 x e2x 

1 
 

 
3  1 




2  0 

 
1  

e2  
e2  

  e3  
1  

3  


2 
  2  

 

  
1 
2e3  3e2  1   

1 2e  1e  12  . 

 

Example 3: Evaluate the integral 

and y = x. 

  xy x + y dxdy over the area between the curves y = x2
 

R 

Solution: We have y = x2 and y = x which implies 

x2 – x = 0 i.e. either x = 0 or x = 1 

Further, if x = 0 then y = 0; if x = 1 then y = 1. Means the two 

curves intersect at points (0, 0), (1, 1). 
 The region R of integration is d ote d an d can be 

Y 

 
 

y = x2 

 
 

 
y = x 

expressed as: 0  x  1, x2  y  x. A(1, 1) 
Q 

   xy x  y dxdy  
 

xy x      




 0  
 x2 

y  dy 
dx P 

X
 

O (0, 0) 
1  y2 y3  

x  
   x2      x   dx 

 

 Fig. 5.8 
0  
 2 3  

x2 


 
1  x4  

  
x4  

 
 x6  

 
x7   

dx
 

0 
   2 3 

         2 3 
   

 

 
1  5 

x4  
1 

x6  
1 

x7 dx 

0 
    6 2 3 



 
 5 

 
x5 

 6 5 
  

1 x7 

2  7 

1 x8 1 
 

   
3  8 

 
1 


 1 


 1 


 3  

6 14 24 56 

 
 

Example 4: Evaluate   x + y 
2 
dxdy 

 
over the area bounded by the ellipse 

x2 

+ 
y 2 

= 1. 
  

a2 b2 

 

 
x2 

 
y2 

 1 
 

  

[UP Tech. 2004, 05; KUK, 2009] 

Solution:  For  the  given ellipse   
a2 b2 , the region of integration can be considered as 

x 

0 

1 
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1 x2 / a2 

 n  1 
|

 

2 

 n  2 

 
| 



2 

 2 

   
5 1 

b2 
2

 
2 

3 2 3



Q 

O 

x = – a 
P 

x = a 



 x2    2 




a 

 2 2  


 3 



a 


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bounded by the curves y  b 

 
1  

x 2 

, 
a 2 

 
2 

 
 

y  b 

 
a  b 

 

 
and finally x goes from – a to a 

 


 I  x  y  dxdy –a 
 –b 

x 2  y 2  2xy dy dx 




I   
  b 

 y dy dx 


 a   b 

[Here  2xydy  0 

 

as it has the same integral value for both limits i.e., the term xy, which is 

an odd function of  y, on integration  gives a zero value. ] Y 

a 

I  4  0 
0 

 




x  y dy dx 


X 

y3 
b
 

I  4    x
2y   dx 

0 
 0 

a 1 3 Fig. 5.9 
 

2 
 x2  

2
 

 
 

b3 




x2  2 


 I  4 


x b 
1  

a2 
   

3  

1  

a2 

 dx 


On putting x = a sin, dx = a cos d; we get 

I  4b
 / 2 a2 sin2 cos   

b3 

cos 3 
 

acos  d
0 


3 




 4ab
 / 2  

a2 sin2 cos 2   
b3 

cos 4 
  

d
0 


3 









Now using formula 

 
 

 
 

 / 2 
and cosn x dx 

 / 2 

sinp x cosq xdx 
0 

0 , (in particular when p = 0 , q = n) 
 
 

         

 3 3 

 x  y 
2 
dxdy   4ab 


a2  2 2     


 2 3

 

1 x2 / a2 

1  
x 2

 

a 2 

1 x2 / a2 

1 x2 / a2 

1 x2 / a2 

1 x2 / a2 

0 



b 

1 

2 

 p  1 
|

 

                 2   

 q  1 

|

 

                 2   


 
| 


 

p  q  2 



 2 
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  3  
 




  

a y  (x)   

 


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
 4 

 
2     2 2  

 
b2   

2  2 






  1
ab a 2.2.1  3 2.2.1 Q 

 2  


 
 

 4ab 
 a2

 
16 

b2 
16 



aba2  b2 

4 
 




ASSIGNMENY 1 
 1   1 

 
 dx dy 

1. Evaluate 

 

2. Evaluate 

0  0 

 xy dxdy , 
R 

 
 

 
where A is the domain bounded by the x-axis, ordinate x = 2a and 

the curve  x2 = 4ay. [M.D.U., 2000] 

3. Evaluate  eaxbydydx , where R is the area of the triangle x = 0, y = 0, ax + by = 1 (a > 0, 

b > 0). [Hint: See example 2] 
21  12   

4. Prove that  xy  ey dy dx  xy e y dx dy . 
13  31   

 
1 1 1 1 dx

 x  y 
dy  dy

 x  y 
dx 

5. Show that 
  x  y

3   x  y
3 .

 
0 0 0 0 

 

 
6. Evaluate    ex

2 1 y2 x dx dy 
 

[Hint: Put x2(1 + y2) = t, taking y as const.] 
  0 0  

 

 CHANGE OT ORDER OT INYEGRAYION IN DOUB1E INYEGRA1S 

The concept of change of order of integration evolved to help in handling typical integrals occurring 

in evaluation of double integrals. 

When the limits of given integral 
b
 

y x  
f x, y dydx are clearly drawn and the region 

of integration is demarcated, then we can well change the order of integration be performing 

integration first with respect to x as a function of y (along the horizontal strip PQ from P to 

Q) and then with respect to y from c to d. 

Mathematically expressed as: 
d x y   

I 
c x y    

f x, y dxdy. 

Sometimes the demarcated region may have to be split into two-to-three parts (as the case may be) 

for defining new limits for each region in the changed order. 



1  x2 1  y2 


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1  x2 

1  y2 

1 y2 

Q 

P´ Q´ 

y = 0 

P 

x = 1 

 
.
 x = 0 

1 1 





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1 

Example 5: Evaluate the integral  
0 0 

 

 
y2dydx 

 

 
by changing the order of integration. 

[KUK, 2000; NIT Kurukshetra, 2010] 

Solution: In the above integral, y on vertical strip (say PQ) varies as a function of x and then 

the strip slides between x = 0 to x = 1. 

Here  y  = 0 is the  x-axis and y  i.e., x2 + y2 = 1 is the circle. 

In the changed order, the strip becomes P’Q’, P’ resting on the curve x = 0, Q’ on the circle 

x  and finally the strip P’Q’ sliding between y = 0 to y = 1. 
Y 

1  

 I   y
2 
  dx dy 

0    0 
1 

I   y2 x  
1 y2 

dy 

0 
0 

X
 

I   y2 1  y2 2 dx 
0 

Substitute y = sin , so that dy = cos  d  and  varies from 0 to 2 



2 

I   sin2 cos2  d
0 

I  
2  1  2  1  

 
  

4  2 2 16 

 

 
 

 
Fig. 5.10 

 


Q 

2 

sinp cos  d  
(p  1)(p  3)(q  1)(q  3) 

 
 

,
 only if both p and q are + ve even integers] 

 

 
0 (p  q)(p  q  2) 2 

Example 6: Evaluate 

4a 2 ax 

  dydx 
0    x2

 
4a 

 

by changing the order of integration. 
Y (4a, 4a) 

[M.D.U. 2000; PTU, 2009] 

Solution: In the given integral, over the vertical 

strip  PQ (say), if  y  changes as  a  function  of  x such 
y  

x2

 

that  P  lies  on the curve 
4a 

and Q lies on the 

curve y  2 and finally the strip slides between 

x = 0 to x = 4a. 

Here the curve 

with 

y   
x2

 

4a 

 

i.e. x2
 

 
 

= 4ay is a parabola 

y = 0 implying x = 0 


y = 4a implying x = ± 4a  


Fig. 5.11 

1  x2 

ax 

y2 = 4ax 

 
Q A 

P´ Q´ 
x2 = 4ay 

P 

O 
X 

x = 4a 
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a 
y2 

3 

x 

a 

x / a Y 
y  x / a 

y = 1 

O y = 0 

(0, 0) 

x = a 

P 

Q´ Q 
P´ 



 



a 
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i.e., it passes through (0, 0) (4a, 4a), (– 4a, 4a). 

Likewise, the curve y  2 or y2 = 4ax is also a parabola with 

x = 0  y = 0 and x = 4a    y = ± 4a 

i.e., it passes through (0, 0), (4a, 4a), (4a, – 4a). 

Clearly the two curves are bounded at (0, 0) and (4 a, 4a). 

 On changing the order of integration over  the strip  P’Q’,  x  changes as  a  function  of  y 

such that P’ lies on the curve y2 = 4ax and Q’ lies on the curve x2 = 4ay and finally P’Q’ slides 

between y = 0 to y = 4a. 

 

whence I  
4a 




x  2 

y2 
 

 


dx dy 

0 x 
4a 

4a 2  ay 

 0 
x y2 dy 

 

4a 

 
4a 

2
 ay  

y2  
dy 

 0   
 4a

4a 

 3  y3 




 3 1 3 
 

 2 




 
12a  




2 

0 

4a2   4a
3 12a 

 
32a2 

 
16a2 

 
16a2 

.
 

3 3 3 
 

 
Example 7: Evaluate  x2 + y2 dxdy 

0 x 

a 

 
by changing the order of integration. 

Solution: In the given integral 
a 
 

x / a x2  a2 dx dy , y varies along vertical strip PQ as a 
0 x / a 

function of x and finally x as an independent variable varies from x = 0 to x = a. 

Here y = x / a i.e. x = ay is a straight line and 

x = ay2 is a parabola. 

For x = ay; x = 0  y = 0 and x = a  y = 1. 

y  , i.e. 

Means the straight line passes through (0, 0), ( a, 1). 

For  x = ay2;   x = 0  y  = 0 and  x = a    y = ± 1. 

Means the parabola passes through (0, 0), ( a, 1), (a, – 1),. 

Further, the two curves x = ay and x = ay2 intersect at common X 

points (0, 0) and (a, 1). 

On changing the order of integration, 

a x / a 
x2  y2 dxdy 

y1 
x ay 

x2  y2 dxdy 



    2 
0     x / a y 0    x ay 

(at P’) Fig. 5.12 

ax 

ay 

4 a 


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ax 

y4  a2 x2 

a  y2  
2
 


 a 



 x 2 

a a 


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I  
1  x3 
  

ay 

 xy2  dy 
0  3 

1  ay
3
 

 ay2 

 
 1 3  




 
 

 ay.y2

 
     

ay 2    ay 2  y 2 
dy 

0  3  3 
 

 
1  a3  

 a
 

y3  
a3  

y6  4 

0  
 3 


3 

ay dy 

 


 a3  y
4
 a3 y7 ay5 1 

  3
  a

   4 3  7 5 
 0 

 

 
   a3 

 
a3  

 
 a 


 a


  
3  4 3  7 


     4 5 

 

 

  
a3   

 
  a  

 
   a   5a2  7

28 20 140 
.
 

Example  8:  Evaluate   0   ax
 

y 2 

y 4 – a2x2 
dy dx. 

 
[SVTU, 2006] 

 

Solution: In the above integral, y on the vertical strip (say PQ) varies as a function of x  and  

then the strip slides between x = 0 to x = a. 

Here the curve  y  i.e., y2 = ax is the parabola and the curve y = a is the straight line. 

On the parabola,  x = 0    y = 0;  x = a    y = ±  a  i.e., the parabola passes through points  

(0, 0), (a, a) and (a, – a). 

On changing the order of integration, 

I  
a 


0 



x  
y2

 

a 

x  0 


y2 

dx dy 









y-axis 

at P´


a   y2  

y2 1 
   

a

 
dx dy 

0   0 
 
 


y2 

 
 

x-axis 

 
a y2  

sin1 
    x      a   

dy 
0 a 




 y2  
 a  





Fig. 5.13 

Q (a, a) 
y = a 

P´ Q´ 

P 

y = 0 

O 
(0, 0) 

(a, –a) 

x
 =

 0
 x
 =

 a
 



0 
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y 

y 




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a y2 

 sin11  sin10  dy 0    a   

a y2 




a a2 
 

 0 
dy 

a 2 
 . 

0 
1 2- x 

Example 9: Change the order of integration of 
0 x2 

xy dy dx and hence evaluate the same. 

[KUK, 2002; Cochin, 2005; PTU, 2005; UP Tech, 2005; SVTU, 2007] 
 

 Solution: In the given integral 1  2 x 
 

, on the vertical strip PQ(say), y varies as a 
   xydy dx 

0   x2 

function of x and finally x as an independent variable, 

varies from 0 to 1. 

Here the curve y = x2 is a parabola with 
y = 0 implying x = 0 

Y 

 

B(0, 2) y = 2 






i.e., it passes through (0, 0), (1, 1), (– 1, 1). 

 
 

P´´ 

Q 

Q´´ 

 
y = x2 

Likewise, the curve y = 2 – x is straight line with C A 

P´ Q  ́

y = 1 
(1, 1) 

y  0  x  2  P y = 0 (2, 0) 

y  1  x  1 
 

O 
X 

y  2  x  0
x = 0 

x = 1 

i.e. it passes though (1, 1), (2, 0) and (0, 2) Fig. 5.14 

On changing the order integration, the area OABO is divided into two parts OACO and 

ABCA. In the area OACO, on the strip P’Q’, x changes as a function of y from x = 0 to x   . 

Finally y goes from y = 0 to y = 1. 

Likewise in the area ABCA, over the strip p”Q”, x changes as a function of y from x = 0 to 

x = 2 – y and finally the strip P”Q” slides between y = 1 to y = 2. 

1  

 
2  2 y 

    xy dx  dy  
   xy dx 

dy 

0  0  1 0 

2 





2 y




1 y2 

dy   y 
1 

2  y 2  y 
2
 

 dy 
0 

 0   2  
dy 1 2 

dy 

1 1  4y3 y4  2 
    

2y2   


6 2 3 4 1 

I  
1 


 5 
 

3 
. 

6 24 8 

  y3 

2a  3 


1 

0  0 
y 

x2 y 

2 


x2 

2 

y = 1 implying x = ±1 


6 
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2  x2 

2 

2 

a2 – y2 

a2 – y2 

1 2– x2

  x  

1 

 

0 
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Example  10:  Evaluate   0  x dydx by changing order of integration. 

[KUK, 2000; MDU, 2003; JNTU, 2005; NIT Kurukshetra, 2008] 

Soluton: Clearly over the strip PQ, y varies as a 

function of x such that P lies on the curve y = x and Q 

Y 

y = x 

M Q y = 
lies on the curve y  and PQ slides between P´´ Q´́  N (1, 1) 

ordinates x = 0 and x = 1. 

The curves are  y = x, a straight line and  y  , 

i.e. x2 + y2 = 2, a circle. 

L 

P´ Q´ 

O P 

 
 
 

y = 0 

y = 1 

 
 

X 

The common points of intersection of the two are 

(0, 0) and (1, 1). 

On changing the order of integration, the same region 

ONMO is divided into two parts ONLO and LNML with 

horizontal strips P’Q’ and P”Q” sliding 

 
 
 

 
x = 1 

 
x2 + y2 = 2 

between y = 0 to y = 1 and y = 1 to 

vely. 

y  respecti- 
x = 0 

Fig. 5.15 

1 y 2 
 

whence I  0 0 dx dy  1     0 
dx dy 

 

 
Now the exp.   x 


 d  x2  y2 2 

x2  y2 dx 

 1  1  y 2  1 
 I  0  

x    y    2 2 2 
dy  

1
 

x 2  y 2 2  dy 

 
1  1 y 2  1 

I  0  
x    y      dy   x    y    dy 2 2  2 2 2  2 

1 

 

   1  
 

2 y 


y2   
2 

1 

2  
 

2  1
0 0 

Example 11:  Evaluate 
a   a+ 

dy dx 
0 a– 

by changing the order of integration. 

y a   x a  

Solution: Given yo  

 x a 

dx 
 

dy 

Clearly in the region under consideration, strip PQ is horizontal with point P lying on the 

curve x  a  and point Q lying on the curve x  a  and finally this strip 

slides between two abscissa y = 0 and y = a as shown in Fig 5.16. 

x2 + y2 

2  x2 

   x  

x2  y2 

x 

x2  y2 

2 y2 

2 y2 

2 y2 

y2 

2 
2 

a 2  y2 

a 2 y2 

a2  y2 a2  y2 

2 

0 



0 

0 

1 
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2ax  x2 

4 y 
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Now, for changing the order of integration, the 

region of integration under consideration is same but 

this time the strip is P’Q’ (vertical) which is a function 

of x with extremities P’ and Q’ at y = 0 an d 

y 

and x = 2a. 

respectively and slides between x = 0 

X 
2a   2a 

Thus I      dy dx     y dx 

0  0 

2a 

 0 0 

2a 

  2ax  x2 dx   x 2a  x dx 

 

Take 

0 0 

 2a sin  so that dx = 4a sin cos  d, 
 

Fig. 5.16 

Also, For x = 0,  = 0 and for x = 2a,   



2 

2    

Therefore, I   2a sin  
0 



 4 asin  cos  d

2 
 2 2 2  8a2  

2  12  1  
 
a2 

 
 

8a  sin 
0 

 

cos  d
4 4  2 2 2 

 2 p q (p  1)(p  3)(q  1)(q  3) 

 
using  sin cos  d  , 

(p  q)(p  q  2) 2 
 

0 

p  and  q both  positive even integers 






Example 12: Changing the order of integration, evaluate 

 

 

  x + y dx dy. 
0 1 

[MDU, 2001; Delhi, 2002; Anna, 2003; VTU, 2005] 

Solution:  Clearly in  the given   form  of integral,  x Y 

changes as a function of y (viz. x = f(y) and y as an 

independent variable changes from 0 to 3. 

Thus, the two curves are the straight line x = 1 and 

the parabola, x  and the common area under 

consideration is ABQCA. 

For changing the order of integration, we need to convert 

the horizontal strip PQ to a vertical strip P’Q’ over which y 

changes as a function of x and it slides for values of x = 1 to 

x = 2 as shown in Fig. 5.17. 

 
 
 

X 

 
 

Fig. 5.17 
2  4 x2  2  y2  

4 x2 

 I  1  

 0 

x  y dy
 

dx   1  
xy    

2  
dx 

 0 

3 

2ax  x2 

2ax  x2 

x 

2a  2 asin 2 

4  y 

C (1, 3) 
y = 3 

Q' 

 
Q 

 
B y = 0 

O A P´ (2, 0) 

P 

Y 

C 

P 

Q' x = 2a 

Q 

A 
(0, 0) 

O P' B (2a, 0) 
(a, 0) 

x2 + y2 = 2ax 

x
 =

 0
 


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a2  y2 

a2  y2 

2 

2 2 

2 

a2  y2 

2 

2 2 
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2  4  x2 
2 

  x 4  x2    dx 
1  
 

2 



 
2 

x 4  x2   
 
8   

x4  

 4x2 
 

dx 
1  
  2 

  

 

 x4 x5 4  2 
  2x2   8x   x3 

 4 10 3  1 

 222  12   
1 24  14   8 2  1  1 25  15   

4 23  13 
4 10 3 

 6  
15 

 8  
31 

 
28 

 
241

.
 

4 10 3 60 
 

a 
2 

Example 13: Evaluate  
0 0 

log x2 + y 2 dx dy a > 0



changing the order of integration. 

[MDU, 2001] 
 

Solution: Over the strip PQ (say), x changes as a function of y such that P lies on the curve 

x = y and Q lies on the  curve  x  and 

the strip PQ slides between y = 0 to y  
a . 

Here the curves, x = y is a straight line 

 

and 

x  0 

x  
  a  

 y  0 



 y   
  a 

 a a 

i.e. it passes through (0, 0) and 
, 





Also   x  , i.e. x2 + y2 = a2 is a circle 

with centre (0, 0) and radius a. 

 Thus, the two curves intersect at 

 
 a 

,
 a  

.
 

 

 
Fig. 5.18 

 2 


On changing the order of integration, the same region OABO is divided into two parts 
 

with vertical strips P’Q’ and P”Q” sliding between x = 0 to 

respectively. 

x 
 a  

 

and x 
 a  

 

to x = a 

a / 2  x 
 

 a  


Whence, I     log x2  y2   dy     
dx     log x2  y2  1 dy  dx 

 

 

…(1) 

0 0 a /   2   0 

a2  x2 

2 

x2 + y2 = a2 

B ¡y 
  a a  , ¡ 

2, 2 J 
Q´ 

P 

Q´́  

Q 

y 
 a  

2 

y = 0 

O 
(0, 0) 

P´ P´´ A 
X 

x = a 

a 

x = 0 
x  

2 

Y 
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a2  x2 a2  x2 
a2  x2 



 


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Now, 
log x2  y2 1 dy  

 
 2  y2   y 

   1 
2y  y dy 




 log x  x2  y2 

 

Ist IIn d 
Function Function 

 

y log x2  y2   2   

y2  x2  x2 

dy 



   x2  y2 
 

  y log x2  y2   2y  2x 2 





1 

x2  y2 




dy 



 

y log x2  y2   2y  2x 2 

 1 
tan 1 y  







On using (2), 

    x x 
   

…(2) 

a / 2 
 y  

x

 

 

I1   0
 

y log x2  y2   2y  2x  tan 1
 


  dx 
0 

a / 2 

 x log 2x2  2x  2x tan 11 dx 
0 

 

 
a /   2  

x log 2x2  2x  2x 
 

dx 

0  4 


 
a /   2   

x log 2 x2dx  2 
  

 1
 


a /  2

 
 
xdx 

0  4  0 

For first part, let 2 x2 = t so that 4x dx = dt and limits are t = 0 and t = a2. 
a2 

dt   


a / 2 

 I1  0 log t 
4 
 2 

 4 
 1






 
1 

t log t  1 
a2 

 
  

 1
 a2

 

4 0  4 
 2 

, (By parts with log t = log t · 1) 

 

 

 
Agian, using (2), 

 
a2  

log a2  1  
a2   

 
a2

 

4 8 2 

 
…(3) 

a   y  
 I2    y log x2  y2   2y  2x   

tan 1  
    

dx 
 

 

…(4) 

a / 2  x    0 

   
a  log a2  2  2x tan 1 

 
dx 

   a /  2   x 

x2 

2 

a2  x2 




x 



0 
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a2  a2 sin 2 



 

2 


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
Let x = a sin so that dx = a cos  d and limits, 

4
 


to  

2
 

I  
 / 2 

log a2  2  2 asin tan 1 a2  a2 sin2   
acos  d



 2  / 4  
 a sin  




 


 / 2 

 a2 log a2  2cos2  d  a2




 /2 

2 sin cos tan 1 cot d
 / 4  / 4 

 

 a2 log a2  2 
 / 2 1  cos 2 

d  a2
 / 2 

sin 2 tan 1 

tan   

  
  

 
d



 / 4 

 
 

a2 




2 

 
sin 2 

 / 2
 

 

 / 4 

 
  / 2   

  2  

 log a2  2   4  / 4 

 a2 
 / 4 2  

 
sin 2 d

Ist IInd 

Fun. Fun. 

a2    1   




   cos 2 
 / 2

 
 / 2   cos 2 

 log a2   2   
 
   a2 

 
     1

  
d

2   2 4 2            2 2  / 4  / 4 2 


I  
a2 

log a2  2  
 

1  
 

a2

 

 
  

 / 2 
cos 2 d

  
   

 cos 2

2 
2
 

the limits) 

 4 2  2   / 4 
,  2

   2  is zero for both 

 
 a2 

log a2  
a2 

 
a2 

 
a2 

log a2  
a2  

sin 2
 

2
 

            8 4 2 4  4 
 

4
 

 
 a2 

log a2  
a2 

 
a2 

 
a2 

log a2 
 
 

a2

 

            8 4 2 4  4 

…(5) 

On using results (3) and (5), we get 

I = I1 + I2 

 
 a2 

log a2  
a2 

 
a2 

 
a2  

 
 a2 

log a2  
 a2 




     


a2 

 
a2 

log a2 


 




a2 




       4 4 8 2 
            8 4 2 4 4 



 
a2  

log a2   
a2  

 
a2 

log a2  1 
8 8 8 

 
a 

2log a  1  
a2 

log a  
1 

. 

8 4   2 



Example 14: Evaluate by changing the order of integration. 

 x 

   xe–x2/ y dx dy 
0 0  

[VTU, 2004; UP Tech., 2005; SVTU, 2006; KUK, 2007; NIT Kurukshetra, 2007] 




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Q 

P' Q' 

O P 


2 

 





  0 

 

 
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Solution: We write 

x x  b
xex / ydxdy 

y  f2x  x 
 
xe x2 / ydxdy 

0     0 x  0a y  f1x  0 

Here first integration is performed along the vertical strip with y as a  function of  x  and  

then x is bounded betw een x = 0 to x = . 

We need to change, x as a function of y and finally the limits of y. Thus the desired geometry is as 

follows: 

In this case, the strip PQ changes to P’Q’ with x as function of y, x1 = y  and  x2  =   and  
finally y varies from 0 to . 

Therefore Integtral 
  

I    xe x2 / ydxdy 
0 y 

 

Put x2 = t so that 2 x dx = dt Further, for 

 

 

x  y, 

x  , 

 

 

t  y2 ,

t   
 Y

 

 
 


 

e t / y 
dt 

dy, 

0 y2 2 
  

  
1 

 

 et / y 
 dy 

2 0  1 / y 
y2 

 
 


 y 
0  e y  dy 

X 

Fig. 5.19 

0 2  

 
 ye  y 

dy 
0 2 

(By parts) 

1   ey  







    ey  




 
2  

y 
 1 

 
 0   

1 
1 

dy 








  
1 
yey  ey  




2 0 

 

 
1 
0  0  1  

1 
. 

2 2 

     
e– y  

dy dx. 
 

Example  15:  Evaluate  the  integral   0    x    –y 
x = 

[NIT Jalandhar, 2004, 2005; VTU, 2007] 

Soluton: In the given integral, integration is performed first with 

respect to y (as a function of x along the vertical strip say PQ, from 

P to Q) and then with respect to x from 0 to . 

On changing the or d er, of integration integration is 

performed first along the horizontal strip P'Q' (x  as a function 

of y) from P' to Q' and finally  this strip  P'Q'  slides  between 

the limits y = 0 to y = . 

 
 
 
 

 
 

   
X 

 

Fig. 5.20 

0 

Y 
Q 

P´ Q´ 

P 

y = 0 

O (0, 0) 

x
 =

 0
 

I 
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e y 

1 

a2  y2 

y = 2a 

y2 = 2ax 

P´´´ 

Q 

Q´́  ́




P´ Q´ P 


y = a 

P´́  Q´́  

(a, 0) y = 0 

O 
(0, 0) 

(x – a)2 + y2 = a2 



  1  
 , 

Q 
 4 2 

y = sinx 

P 



2 

 3

2 

2

y = cosx 

2ax 

   

0 

2a 
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I  
 ey 




 y dx
 

dy 

 0 y   

 0 




  
 e y 

ydy   
 

e ydy 

0 y 0 

  1  1 
  1 e   

 
e0 



= – 1(0 – 1) = 1 

 

Example 16: Change the order of integration in the double integral 

 

0  2ax -x2 
f x, y dx dy . 

[Rajasthan,  2006; KUK, 2004-05] Y 

Solution: Clearly from the expressions given above, 

the region of integration is described by a line which 

starts from x = 0 and moving parallel to itself goes 

over to x = 2a,  and the extremities of  the  moving line 

lie on the parts of the circle x2 + y2 – 2ax = 0 the parabola 

y2 = 2ax in the first quadrant. 

For change and of order of integration, we need to 

consider the same region as describe by a line moving 

parallel to  x-axis instead  of  Y-axis. 
X

 

In this way, the domain of integration is divided 
into three su b-regions I, II, III to each of w hich 

corresponds a double integral. 

Thus, we get 
 2a 2ax a a 

  2 ƒ (x, y) dydx    2 ƒ ( x, y) dydx 
0 x 2ax 0 y / 2a 

Part I 

a   2a   2a 2a  ƒ x y dydx   ƒ x y dydx Fig. 5.21 
 

0 a 
( ,  ) ( , ) 

a y2 / 2a 

Part II Part III 
Y

 

Example 17: Find the area bounded by the lines y 

= sin x, y = cos x and x = 0. 

Solution: See Fig 5.22. 

Clearly the desired area is the doted portion O 

w here along the strip PQ ,  P  lies  on  the cu rve 

y = sin x and Q lies on the curve y = cos x and finally 

the strip slides between the ordinates x = 0 and 

x  
 

. 
4 

 
 
 
 

 
 
 

X 

 
 
 
 
 
 

Fig. 5.22 

a 2  y2 

x
 =

 0
 

x
 =

 0
 

x
 =

 2
a

 


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  1  

2 

2 

a2  y2 

a2 x2 

4 

0 

r   
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

4  cos x    dx dy  dy dx 
             

 


R 0 sin x 



  cos x  sin xdx 
0 

 

 sin x  cos x 
 / 4

 

 
 

  
 
 1 

 


 
0 

   1

1 . 

 
 

 

ASSIGNMENY 2  a  a  x 
dxdy 

1. Change the  order  of  integration    2 2 

0 y x  y 
a 

2. Change the order integration  in  the integral   f x, y dxdy 

3. Change the order of integration in 

 

a cos


0 

 a    lx 

a 
 

x tan 

0 
 

ƒ x, ydy dx 

4. Change the order of integration in 0  m x  
f (x, y)dxdy [PTU, 2008] 

 
 

 

 EVA1UAYION OT DOUB1E INYEGRA1 IN PO1AR COORDINAYES 
 

 r ()   

To evaluate  
 r ()   

f r,  dr d, we first integrate with respect to r between the limits 

r = () to r = () keeping  as a constant and then the resulting 

expression is integrated with respect to  from  = 

 to  = . 

Geometrical Illustration: Let AB and CD be the two 

continuous curves r = () and r = () bounded between 

the lines  =  and  =  so that ABDC is the required 

region of integration. 

Let PQ be a radial strip of angular thickness  when OP 

makes an angle  with the initial line. 

Here 
r 

f r, dr refers to the integration with 
 
 

Fig. 5.23 
respect to r along the radial strip PQ and then integration 

with respect to  means rotation of this strip PQ from AC to CD. 

2 

  


2 

r = () 

D 

r = () 

B 
Q 


C 

P 
A 

  = 0 

O 





 19   





2 




3 
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Example 18: Evaluate  r sin dr d over the cardiod r = a (1 – cos) above the initial line. 

Solution: The region of integration  under consideration is the cardiod  r = a(1 – cos ) above 

the initial line. 

In the cardiod r = a(1 – cos ); for   0, 

   
 

, 
2 

  , 

r  0,  

r  a, 
 

r  2a



As clear from  the geometry along the radial strip   OP,  r (as a  function of  )  varies from   

r = 0 to r = a(1 – cos ) and then this strip slides from  = 0 to  =  for covering the area above 

the initial line. 

Hence 

 
  r a(1cos ) 

 
sin  

 = /2 

I   
 r dr 

d 
0 0 

 

  r2 a1 cos
    sin  d




 = 




 = 0 

0  2 0 


 
a2  

1  cos 
2 
sin  d

0 

 

Fig. 5.24 

a2 1  cos 3 



   , 

  

Q f n x f ´x dx 
f n1 x 




2 
3 0  n  1  

 
a2 

1  cos 
3 
 1  cos 0   

a2 

8  0   
4a2 

. 

6   6 3 
 

3 

Example 19: Show that  r2sin  dr d = 
2a 

, where R is the semi circle r = 2a cos above 

the initial line. R  = /2 

Solution: The region R of integration is the semi-circle 

r = 2a cos  above the initial line. 
For the circle r = 2a cos,  = 0  r = 2a 

 


r = 2a cos



 = 0 

  



2 



   r  0   


(0, 0) O 
(a, 0) 

(2a, 0) 

Otherwise also, r = 2a cos  r2 = 2ar cos

x2 + y2 = 2ax 

(x2 – 2ax + a2) + y2 = a2 

(x – a)2 + (y – 0)2 =  a2 

 

 
 

Fig. 5.25 

B 

A(a, /2) 

P 



O 
(0, 0) 

(2a, ) 
C 
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i.e., it is the circle with centre (a, 0) and radius r = a 



2 2acos 

Hence  the  desired  area    r2 sin dr d
0 0    

 


 

2  2acos  

r2dr
 

sin d

  
 


0 0 

 

 / 2 


2acos  

 0 


 sin d


  
1 

 / 2 

2a3 
cos3 sin  d

3 0 

/2  

 

 
n 1 

 
8a3  cos4 


 

n f (x) 
 

3 

 
2a3 

. 
3 

4 
0 

, using 
 f (x) 

f '(x)dx 
n  1 

 

Example 20: Evaluate  over one loop of the lemniscate r2 = a2 cos2. 

[KUK, 2000; MDU, 2006] 
 

Solution: The lemniscate is bounded for r = 0 implying    



4 
and maximum value of r is a. 

See Fig. 5.26, in one complete loop, r varies from 0 to r  a and the radial strip 

slides between    
 

to  
 

. 

4 4 
Hence the desired area 

 
 / 4 a  cos2 r 

 

A    / 4 0 
dr d

 
 / 4 

a  cos 2 1 
d  a2   r2   

2 
 / 4 

 0 

 / 4 

 

a cos2

dr 
d  = 0 

   / 4 

/4  

a2  r2  d
0 

 
1 

 

 
 

Fig. 5.26 

  
a2  a 2 cos 2 2 

 a d
/4  

 a
 / 4 




/ 4 2 cos   1d
  

r3 

3 

  r dr d  

a2 + r 2 

cos 2

a2  r2 
1 

2

 
P(r, ) 

O 

0 


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2 


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 2a
 / 4 




2 cos   1d
0 

 2a   2 sin   
 / 4 

 0 

 2a 
 

2 
1 
 
  

 2a 
 

1  
  . 


 2 4 

  4 


Example 21:  Evaluate    r3dr d , over the area included between the circles   r = 2a cos and 

r = 2b cos (b < a). [KUK, 2004] 

Solution: Given r = 2a cos or r2 = 2ar cos

x2 + y2 = 2ax 

(x + a)2 + (y – 0)2 = a2 

i.e this curve represents the circle with centre ( a, 0) and radius a. 

Likewise, r = 2b cos represents the circle with centre ( b, 0) and radius b. 

We need to calculate the area bounded between the two circles, where over the radial 

strip PQ, r varies from circle r = 2b cos to r = 2a cos and finally  varies from  
 

to 
 

. 
 



2 3    

2 2 
 

2acos  
Thus, the given integral  r dr d     r3dr d 

 

 
 / 2 

R 

 

 r4 
2acos 




  2bcos 
2 

   / 2 
 4 

d
2b cos

1    / 2   
 4 4 



 
4 



 / 2 
2acos 

2 

 2bcos   d

 4a4  b4   cos4  d

 


2 

 
 

Fig 5. 27 


 8 a4  b4   cos4  d
0 

 8 a4  b4   3  1 


4   2 2 

 
3 
a4  b4 . 

2 

Particular Case: When r = 2 cos and r = 4 cos i.e., a = 2 and b = 1, then 

I  
3 
a4  b4   

3 
24  14   

45 
units . 

2 2 2 

  



2 
r = 2b cos

Q 

P 


O 

(0, 0) 
2b 2a 

r = 2a cos
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 r   

 r   r a  f r   

0 0 

 

 a 
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ASSIGNMENY 3 

1. Evaluate  r sin  dr d over the area of the caridod r = a(1 + cos) above the initial line. 

Hint : I   a1cos  

r sin  dr d



 0  0 





2. Evaluate  r3dr d , over the area included between the circles r = 2a cos and r = 2b cos

(b > a). [Madras, 2006] 

  2  v  2b cos Hint :   F     v 3dv d
 (See Fig. 5.27 with a and b interchanged) 

 
 
  v 2a cos  
2 

3. Find by double integration, the area lying inside the cardiod r =  a(1  + cos) and outside 

the parabola  r(1  + cos) = a. [NIT Kurukshetra, 2008] 

  / 2   a(1cos )  
Hint : 2 rdr d 





 0  1cos   









 CHANGE OT ORDER OT INYERGRAYION IN DOUB1E INYEGRA1 IN PO1AR 

COORDINAYES 

In the integral  r f r, dr d , interation is first performed with respect to r along a 

‘radial strip’ and then this trip slides between two values of  =  to  = . 

In the changed order, integration is first performed with respect to  (as a  function  of  r 

along a ‘circular arc’) keeping  r constant and then integrate the resulting integral with respect 

to r between two values r = a to r = b (say) 

Mathematically expressed as 


 


r 

f r, dr d  I  r
b 

r 

f r, d dr 

Example 22: Change the order of integration in the integral 

Solution: Here, integration is first performed with 

respect to r (as a function of ) along a radial strip 

OP (say) from r = 0 to r = 2a cos  and finally this 


/2 

2acos 

f r , dr d



radial strip slides between  = 0 to   
 

. 
2 

Curve r = 2a cos  r2 = 2arcos

 x2 + y2 = 2ax  (x – a)2 + y2 = a2 

i.e., it is circle with centre (a, 0) and radius a. 

On changing the order of integration, we have to 

first integrate with respect to  (as a function of r) along 

 

 

 

 

 

 
Fig. 5.28 

 
 = 0 

  


2 r = 2a cos or   cos 1 r  
2a 

R 
P 

O 

(0, 0) 

 (2a, 0) 

Q (a, 0) 

x = 2a 
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the ‘circular strip’ QR (say) with pt. Q on the curve  = 0 and pt. R on the curve   cos1 r 
 

2a 
and finally r varies from 0 to 2a. 

  cos1 r 
2 2acos 

 
,    

2a 
  ,  

I   f r dr d 
  f  r d  

dr 
0 0 0 0 




ae 4 

 
/2 

Example 23:   Sketch the region  of integration     r f r, r dr d and change the order 

of integration. 

a 2log 
a

 

 

ae / 4  / 2 r   f2(r)   

Solution:  Double integral   0 2 log 
r  

f r, r dr d is identical to     f (r, )rdrd, whence 
a r   f1(r)   

integration is first performed with respect to  as a function of r i.e.,  = f(r) along the 

‘circular strip’ PQ (say) with point P on the curve   2log 
r
 
a 

and point Q on the curve 

  



2 
and finally this strip slides between between r = a to r = ae / 4. (See Fig. 5.29). 

The curve   2 log 
r
 

a 
implies 

  
log 

r
 

2 a 

e / 2  
r 
a 

or r = ae / 2 

Now on changing the order, the integration is first performed with respect to r as a 

function of  viz. r = f() along the ‘radial strip’ PQ (say) and finally this strip slides between 

 = 0 to   
 

. 
2 

(Fig. 5.30). 

 = /2 

 
M 

Q 

 
 
 
 

 = 2log r/a  

L 

r = ae/4 

 
r = a 

or 
r = ae 

 

 
P 

 

 

  = 0  

O 

Fig. 5.29 Fig. 5.30 
 / 2   r ae / 2 

 I  0  
 r a 

f r, r dr 
d

C(ae/4, /2) 

r = ae/2 

(a, /2) B 


Q 

P 



O 

(a, 0) 

A 

 = 0 

r = a 

/2 

2a 
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y = b  C D 
 

y x = (y) 

P 

x = (y) 

A 

Q 
x 

y = a 
B 

O 
  dxdy 


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 AREA ENC1OSED BY P1ANE CURVES 

1. Cartesian Coordinates: Consider the area bounded 

by        the        t w o         contin u o us     cu rves  

y = (x) and y = (x) and the two ordinates x = a, x =  

b (Fig. 5.31). 

Now divide this area into vertical strips each of 

width x. 

Let R(x, y) and S (x + x, y + y) be the t w o 

neigbouring points, then the area of the elementary 

shaded portion (i.e., small rectangle) = xy 
But all the such small rectangles on this strip PQ  

are of the same width x and y changes as a function 

of x from y = (x) to y = (x) 

Y 

 
Fig. 5.31 

  The area of the strip  PQ 
Lt xy  x Lt 

x    x 
 x

dy 

y0 
 

Now on adding such strips from x = a, we 

get the desired area ABCD, 

 dy 
y0 x   

Y 

x   

(x) b (x)   

Lt  x
(x) 

dy  
b
dx

( x) 
dy    dxdy 

y0 (x)   
(x)   a ( x)   

a (x)   

Likewise taking horizontal strip  P’Q’ (say) 

as shown, the area ABCD is given by 

y b  x y   
y a x y   

2 Polar Coordinates: Let  R  be  the  region 

enclosed by a polar curve with P(r, ) and Q(r + 

r,  + ) as two neighbouring points in it. 

Let PP’QQ’ be the circular area with radii OP 

and OQ equal to r and r + r respectively. 

Here the area of the curvilinear rectangle is 

approximately 

= PP’ · PQ’ = r · r sin  = r  r  = r r . 

If the whole region R is divided into such small 

curvilinear  rectangles then the limit  of  the sum 

rr taken over R is the area A enclosed by the 

 
 
 

 
X 

Fig. 5.32 

 
 

Q 

Q´ 

P´ 

P   
r 

curve. 

i.e., 

 
A  Lt 

r0 
0 

 

 rr    rdr d
R 

O 
   = 0 

X
 

Fig. 5.33 

 

Example 24:  Find  by  double  integration, the area lying  between the curves y = 2 – x2 and 

y = x. 

Solution: The given curve y = 2 – x2 is a parabola. 

C 
Q 

D 

S y 

x 
R

 

A B 

O 

(0, 0) 

P 

x = a x = b 
X 
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Q 
B(0, 2) y = 2 – x2 

A(1, 1) 

C 

O (0, 0) 

P 
x =1 

y = – 2 

D(– 2, –2) 








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where in 

 
x  0    

x  1   

x  2   

x  1   

x  2    


y  0 

Y
 

y  1

y  2



y  1

y  2

i.e., it passes through points (0, 2), (1, 1), (2, – 2), 

(– 1, 1), (– 2, – 2). 

Likewise, the curve  y =  x is  a  straight line 
X

 

 
where 

y  0 
y  1 

  x  0   

  x  1   



y  2  x  2

i.e., it passes through (0, 0), (1, 1), (– 2, – 2) 

Now for the two curves y = x and y = 2 – x2 to 

intersect,  x  =  2  –  x2   or   x2 + x  –  2  =  0  i.e., 

x = 1, –2 w hich in t u rn implies y = 1, –2 

respectively. 

Thus, the two curves intersect at (1, 1) and (–2, –

2), 

Clearly, the area need to be required is ABCDA. 

 

 

 

 

 

 

Fig. 5.34 

1   2 x2  1 

 A       


2 x 

dy
 

dx   2  x2  x dx 
2 

 

2x  

x3

 

 3 

x2 1 9 

2   2 2 
units. 

Example  25:  Find  by  double  integration, the area  lying  between the parabola y  =  4x – x2
 

and the  line   y = x. [KUK, 2001] 

Y 

Solution: For the given curve y = 4x – x2; 

x  0  y  0
x  1  y  2  B(2, 4) 

x  2  

x  3  

x  4 

y  4
 

y  3 

y  0

(1, 2) 

A 
C(3, 3) 

i.e. it passes through the points (0, 0), (1, 2), (3, 3) and 
(4, 0). 

Likewise, the curve y = x passes through (0,  0) and 

(3, 3), and hence, (0, 0) and (3, 3) are the common points. 

Otherwise also  putting  y =  x into  y  = 4x –  x2, we get 

x = 4x – x2  x = 0, 3. 

 
 
 

(0, 0) 

O 

x = 0 

 
 
 

 
x = 3 

 

Fig. 5.35 

 
 

 
(4, 0) 

X 





 26   

 y x 





3 




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See Fig. 5.35, OABCO is the area bounded by the two curves y = x and y = 4x – x2
 

3 4x  x2 

 Area OABCO    dydx 
0 x 

 
3 

 
4x  x2 

0 

  4x  x2  x dx  

3 

x2

 
x3 3 9 

  

units 

0  2 3 0 2 

 
Example 26: Calculate the area of the region bounded by the curves y =

 3x  

x2 + 2 

 
and 4 y = x2

 

[JNTU, 2005] 

Solution: The curve 4y = x2 is a parabola 

where y = 0  x = 0,  i.e., it passes through (–2, 1), (0, 0), (2, 1). 
y = 1      x = ±2





Likewise, for the curve y 
 3x  

x2  2 

y = 0        x = 0       
 

y = 1       x = 1, 2     

x = –1        y = –1   



Hence it passes through points (0, 0), (1, 1), (2, 1), (–1, –1). 

Also for the curve ( x2 + 2) y = 3x, y = 0 (i.e. X-axis) is an asymptote. 
 

For the points of intersection of the two curves y 
 3x  

x2  2 
and 4y = x2 

 
we write 

   3x 
  

x2 

x2  2 4 

 
or x2 

 
(x2 

 
+ 2) = 12x 

Then x = 0  y = 0 

x = 2  y = 1 

i.e. (0, 0) and (2, 1) are the two points of intersection. 
 

Fig. 5.36 

dx 

Y 

2 

y  
x
 
4 

Q 

(2, 1) 

A 

P 

O X 

x = 2 



 27   

A r = a sin

                Q 

P 

 
O 

(0, 0) 

 = 

r = a(1 – cos) 





a
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The area under consideration, 

2    y 
 3x  2 2 

A  x
2 2 dy   dx   3x 


 x  

dx
 

0  
y 

x2 




0  

 x2  2 4 

 4 

  3 x3  2 
 

    log x2  2  
 2 12  0 

 3 2 3 2 

 log 6  log 2    log 3 2   . 
2 3 3 

 

Example 27:  Find by the double integration, the area lying inside the circle r = a sin  and 

outside the  cardiod   r =  a(1 – cos). [KUK 2005; NIT Kurukshetra 2007] 

Soluton: The area enclosed inside the circle r = a sin and the cardiod  r = a(1 – cos) is shown 

as doted one. 

For the radial strip PQ, r varies from r = a(1 – cos) to r = a sin  and finally  varies in 


between 0 to 
2 

.  =  /2 

For the circle r = a sin 

  0  r  0

  

2  r  




    r  0



Likewise for the cardiod r = a(1 – cos); 

 
 =  0 

  0  r  0 

  

2  r  a 




    r 


2a
Fig. 5.37 

Thus, the two curves intersect at  = 0 and 



  
 

. 
2 

2 asin 

 A    rdrd
0 

 
 

 0 

a(1cos)  
 

d
os 

 
 / 2 1 

sin2   1  cos2   2 cos  d

0 2  

  
a2  


 / 2 

cos 2  1  2 cos d,   since  (sin 2  cos 2 )   cos 2 

2 0 

 / 2 r2  asin 

2 a1c 



 28   

Q r = a(sec + 

P 


r = a sec

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 
a2   sin 2 

   
 / 2  


  



2  2 
2 sin 

0 a 

1 

4  
. 

Example  28:  Calculate  the  area  included between the curve r = a(sec + cos) and its 

asymptote  r =  a sec.  [NIT Kurukshetra, 2007] 

r  a
 1 

 cos



Solution: As the given crave r = a(sec + cos) i.e., 

only and hence it is symmetrical about the initial axis. 

 cos   contains cosine terms 

Further, for  = 0, r = 2a and, r goes on decreasing above and below the initial axis as 


approaches to and at   

 
, r = . 

2 2 
Clearly, the required area is the doted region in which r varies along the radial strip from 

r = a sec to r = a(sec + cos) and finally strip slides between    

 to   

 
. 

2 2 
 Y 
2 a(sec cos ) 

 A  2  r dr d
0 a sec

 / 2  r2  
asec cos 





cos)   

 20 

 2 

d
asec 

 / 2  1  cos2 
2 

    1    2  X 
  a2 

0 

  / 2 




cos   
  cos  



 d


 a2 
0 
cos2   2d

 a2


 / 2 5  cos 2 

d


0 2 

a2  sin 2  / 2 5a2 
 

 

 
Fig. 5.38 

  
2  

5 
 . 

2 0 4 

 
 

ASSIGNMENY 4 

1. Show by double integration, the area bounded between the parabola y2 = 4ax and x2 = 

 
4ay is 

16 
a2.

 

3 

 
[MDU, 2003; NIT Kurukshetra, 2010] 

2. Using double integration, find the area enclosed by the curves, y2 = x3 and y = x. 

[PTU, 2005] 

Example  29:  Find  by  double  integration, the  area of laminiscate r2 = a2 cos2. 

[Madras, 2000] 

Solution: As the given curve r2 = a2 cos2 contains cosine terms only an d hence it is symmetrical 

about the initial axis. 

2 







 29   



   

   

 

0 
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Further the curve lies wholly inside the circle r = a, 

since the maximum value of | cos  | is 1. 
Also, no p ortion of the cu rve lies bet w een 

 = /2 

  
 

to   
3 

and the extended axis. 
4 4 

See the geometry, for one loop, the curve is 

bounded between    
 

to 




 = 0 

4 4 

   

4 r 

 Area  2   rdr d

   r  0 
4 

Fig. 5.39 

 

 / 4 r2 a cos2

 40 2 
d



 / 4 
 2 

 sin 2  / 4 
  2a cos 2 d  2a 

0  2 
 a 

0 

 

 CHANGE OT VARIAB1E IN DOUB1E INYEGRA1 

The concept of change of variable had evolved to facilitate the evaluation of some typical integrals. 

Case 1: General change from one set of variable ( x, y) to another set of variables ( u, v). 

If it is desirable to change the variables in double integral    f x, y d A 
R 

by making 

x = (u, v) and y = (u, v), the expression dA (the elementary area xy in Rxy) in terms of u 
and v is given by 

dA  J 
 x, y  

dudv, 
 u, v 

J 
 x, y  

 0
 

 u, v 

J is the Jacobian (transformation coefficient) or functional determinant. 

    f x, y dxdy 
R R 

F u ,v J 
 x, y  

dudv 
 u, v 

Case 2: From Cartesian to Polar Coordinates: In transforming to  polar coordinates by  means 

of x = r cos and y = r sin, 

 

J 
 x, y  




 r,  

cos 
 
r sin 

sin 

r cos 


 dA = r dr d and  f x, y dx dy 
R R  ́

Fr , r dr d 

2 2 

a2 cos 2

x 

r 
y 

r 

x 


y 



B 

   A 


O 



 30   

x 

u 
y 

u 

x 

v 
y 

v 

u3 

3 

  1 

3 

3 


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Example 30: Evaluate     x + y 

2
dx dy 

R 

 
where R is the parallelogram in the xy plane with 

vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y, v = x – 2y. 

[KUK, 2000] 
 

Solution: Rxy is the region bounded by the parallelogram ABCD in the xy plane which on 

transformation  becomes  Rúv  i.e., the region  bounded  by the rectangle  PQRS,  as shown in  the 

Figs. 5.40 and 5.41 respectively. 

V 
 

Y 

 
 
 
 
 
 

 

X 

 
 

Fig. 5.40 

 

 
S (1, – 2) 

Fig. 5.41 

 

 
R (4, – 2) 

 

With 
u  x  y 

v  x  2y  , A  (1, 0) transforms  to 
u  1  0  1 

v  1  0  1 

 
i.e., P(1, 1) 

B(3, 1) transforms to Q(4, 1) 

C(2, 2) transforms to R(4, – 2) 

D(0, 1) transforms to S(1, – 2) 

 
 x, y  J   

and u, v  3 

Hence the given integral  u2 
1 

dudv 
R 

 
4 1 1 

u2dudv  
1 4 

v 
1
 u2du 

1  2 3 3 1 
2

 

 
1 
 1  2 

4 
u2du 

3 1 

 4  63 

I  


   21 units 
1 

C (2, 2) 

D 

(0, 1) 

B (3, 1) 

O A (1, 0) 

P (1, 1) Q (4, 1) 

U 
(0, 0) 

u
 =

 1
 

u
 =

 4
 





 31   

2 

4a 

1 1 x 


e 

y 
1 1  x, y   


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Example 31: Using transformation x + y = u, y = uv, show that 

1 1  x  y 




0     0 
e
 x  y  dxdy    

1 
e   1 . [PTU, 2003] 

 

Solution: Clearly y = f(x) represents curves y = 0 and y = 1 – x, and x which is an independent 

variable changes from x = 0 to x = 1. Thus, the area OABO bounded 

between the two curves y  = 0 and  x +  y  = 1 and the two ordinates 

x = 0 and x = 1 is shown in Fig. 5.42. 

On using transformation, 

x + y = u           x =  u(1 –  v) 

y = uv  y = uv 

Now point O(0, 0)  implies   0 =  u(1 – v) …(1) 

and 0 = uv …(2) 

From (2), either u = 0 or v = 0 or both zero. From (1), we get 

u = 0, v = 1 

Hence (x, y) = (0, 0) transforms to ( u, v) = (0, 0), (0, 1) 

Y 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5.42 

Point  A(1, 0),  implies 1 =  u(1 – v) …(3) 

and 0 =  uv …(4) 

From (4) either  u  = 0 or  v  = 0, If v  = 0 then from (3)  we have  u  = 1, again if  u = 0, equation 

(3) is inconsistent. 

Hence, A(1, 0) transforms to (1, 0), i.e. itself. 

From  Point B(0,  1),  we get 0 =  u(1 – v) …(5) 

and 1 = vu …(6) 

From (5), either u = 0 or v = 1 

If u = 0, equation (6) becomes inconsistent. 

If v = 1, the equation (6) gives u = 1. 

Hence (0, 1) transform to (1, 1). See Fig. 5.43. 

Hence 

O´  ́

(0, 1) 

 
 
 
 

O 
(0, 0) 

Q´ 

 
 
 
 
 

P´ 

 
Fig. 5.43 

B´ (1, 1) 

 
 
 
 

 
A (1, 0) 

   

     x y    dxdy     uevdudv w here J   

   
 u 

0   0 0 0 u, v 


1      1  1 
u2 

1 
1

 
  u   e

vdv 
du   u  e  1du  e  1  e  1

0 0 0 2 0 

 
4a y x2  y2 

Example 32:  Evaluate the integral dxdy 

2 

 
 
by transforming to polar coordinates. 

0 y2 x2  y2 

B (0, 1) 

x + y = 1 

 
Q 

O 
(0, 0) 

P A 
(1, 0) 

x
 =

 0
 

x
 =

 1
 



 32   

 

8a d
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Solution: Here the cu rves x   

y2

 

4a 

Y 

or y2 = 4ax is 

parabola passing through (0, 0), (4 a, 4a). 

Likewise the curve x = y is a straight line passing through 

points (0, 0) (4a, 4a). 

Hence the two curves intersect at (0, 0), (4 a, 4a). 
X 

In the given form of the integral, x changes (as a 

x  
y2

 

function  of y) from 
4a 

to x = y and finally y as an 

independent variable varies from y = 0 to y = 4a. 

For transformation to polar coordinates, we take 

x, y 



Fig. 5.44 

x = r cos, y = r sin and J   r 
  r, 

The parabola y2 = 4ax implies r2 sin2 = 4ar cos so that r(as a function of ) varies from 
 

r = 0 to r  
4acos  and  varies from   


 to   




sin2  4 2 

Therefore, on transformation the integral becomes 

 / 2    r  
4acos   

r2 cos2   sin 2 
I   / 4  0 

sin2   r dr d
r2 

4acos0  
 / 2 

cos 2  
 r2  sin2  

d
  / 4  2 0

 

 

 
 / 2 

1  2 sin2  16a2 cos2  
d

  / 4 

 8a2

2 sin4 

 / 2 1  2 sin2 1  sin 2 
4 

d


 / 4 sin 


 2
 / 2  1  3 sin2   2 sin 4 4 

 

 / 4 sin 


 8a2
 / 2 


cosec21  cot 2   3cosec 2  2  d



 8a2
 / 2 

cot2  cosec2  2 cosec 2  2  d

P 

y2 = 4a 

A (4a, 4a) 

  = 0 

O B 
(0, 0) (4a, 0) 


 =

 
/2

 

 / 4 

 / 4 



 33   

t3 

3 

 x 

a 

Y 
y   

x 

a 

P A (a, 1) 

y  
x
 
a 



O 
(0, 0) 

 = 0 

B (a, 0) 

2 




 

0 x / a 


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
 8a 





 / 2 

 

cot2 cosec 2 d  2 cot 





 / 2 

 / 4 

 

 


 2  2  



   / 4 
4 



Let cot   =  t  so  that – cosec2  d = dt. Limits for   
 

, t  1
4 

  
 

, t  0





   0  

2 


 0 

 
 8a2  t2dt  2 0  1 

  
 8a    2  

2 


 1 

 8a2 
 
 

5 . 
2 3 

2   1 





Example 33: Evaluate the integral  a
x / a x2  y2  dxdy by changing to polar coordinates. 

 

Solution: The above integral has already been discussed under change of order of integration 

in cartesian co-ordinate system, Example 7. 

For transforming any point P(x, y) of cartesian coordinate to polar coordinates P(r, ), we 

 
take x = r cos, y = r sin and J  

x, y 
 r.

 

r, 

 The parabola y2 
 x  implies r2 sin2   

r cos 
 i.e., r 

 
r sin2   

cos  
 0 

a 

 

 either  r = 0 or 

a 


r 
 cos   

a sin2 

a 



Limits, for the curve y 

 x 
, 

a 
 

 
 

 
and for the curve 

  tan1 
y 
 tan 1 

BA 
 tan 1 

1
 

x OB a 

 
y  X 

 

  tan1 
0 
 



a 2 
  cos   

Here r (as a function of ) varies from 0 to a sin2 

and  changes from 
tan 1 

1  
to 

 
. 

a 2 

Fig. 5.45 


 =

 
/2

 



 34   

x / a 

  


2 

Circle r = 2 

P 

  = 0 

O 

4a4 



I  

 

 
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Therefore, the integral, 
a 

      x2   y2 
0 x / a 

  / 2      cos   I  
 a sin2  

 
r3 dr d

transforms to. tan 1  1   0 



 / 2 

 a
  

r  cos 

I  cot 1(a) 

0 

 asin2  
 

dr d

 / 2 


cos4  
d




4 cot 1 a a4(sin4 )2 


 I 
 1  

2 

cot4 1  cot2 cosec 2 d

4a4 cot1 a 

Let cot  = t so that cosec2 d = dt (– 1) and 

 
  cot1 a  t  a





I 

 1 
0 

t4 1  t2  dt 
a 

  



2 
 t  0 





  1 a   1  t5 t7 a 
 

I  
4a 

4  0
 t

4  t6  dt  
4
 

4  5 
 

7 

 
  a   

  
a3  . 

 20 28





Example 34: Evaluate 
n 

 xy(x2  y 2)2 dxdy 

 
over the positive quadrant of x2 + y2 = 4, 

supposing   n + 3 > 0. [SVTU, 2007] 

Solution: The double integral is to be evaluated over the area enclosed by the positive quadrant of 

the circle x2 + y2 = 4, whose centre is (0, 0) and radius 2. 

Let  x = r cos, y = r sin, so that  x2 +  y2 = r2 . Y 

Therefore on transformation to polar co-ordinates, 
 

 / 2 

I 



r 2  
r cos  r sin  rn J dr d, 

0 r 0 

 
 / 2 2 

 x, y   
X

 

 rn3drsin cos  d, 
0 0 


 

J   
 r,  

 r


 / 2  rn 4 
2 

 

 0  n  4 


sin cos  d Fig. 5.46 

a 0 

1 



0 
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Circle r = a 

or x 2 + y 2 = a 2 

P 

 =    = 0 

O 

n  4 







2 
 = 0. 

 
a a 

2 

a 

  
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

 
2n  4 2 

sin cos  d
0 

    
2n 4    




n  4
sin 2   / 2 

2 0 

 
using  f ́ x f xdx 

f 2 x


2 
 

n3 

 
n  4

, n  3  0. 

 

 
Example 35: Transform to cartesian coordinates and hence evaluate the 

 a 

  r 3sin  cos  drd . 
0 0  

[NIT  Kurukshetra, 2007] 

Solution:  Clearly  the region  of integration is  the area  enclosed  by  the circle   r  =  0,  r  = a 

between  = 0 to  = . 
 

Here 
I    r3 sin cos  dr d

0    0 
 

  
Y 

r sin   r cos  r dr d
0 0 

On using transformation x = r cos, y = r sin , 
a y 

I    xy dx dy 
a  0 X 

a  
  x  y dy  dx 

 a     0 


 
 y2 




x dx Fig. 5.47 

 a  2 

 
1 

a 

 2  2 
 x  a x dx 
a 

As x and x3  both  are odd functions, therefore  net  value on integration  of  the above integral 

is zero. 

 
i.e. I  

1 
a 

a2x  x3 dx 
a 

 
 

 

ASSIGNMENYS 5 

Evaluate the following integrals by changing to polar coordinates: 
 

a 

(1) 
0 0 

 
(x2  y2)dxdy 

 
(2) 0  y 

 
dxdy 

a2  x2 

a2  x2 

a2  x2 

0 

a2  y2 x2 

x2  y2 

2 

, 

a 

a 
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Z = f2(x, y) 

Z = f1(x, y) 

O 

R 

Ar 

  

n 
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(3) 

a 

 
a 



dxdy 
 

(4)   e
x2  y2 dx dy 

0 0   

 
[MDU, 2001] 

 
 

 

 YRIP1E INYEGRA1 (PHYSICA1 SIGNITICANCE) 

The triple integral is defined in a manner entirely analogous to the definition of the double integral. 

Let  F(x, y, z) be  a function of three independent variables  x,  y, z  defined  at  every point in  

a region of space  V  bounded by the surface S. Divided  V into n elementary  volumes  V1, V2, 

…, Vn and let (xr, yr, zr) be any point inside the rth sub division Vr. Then, the limit of the 
sum 

Z 

 Fxr , yr , zr vr , …(1) 
r 1 

if exists, as n   and Vr  0 is called the 

‘triple integral’ of R(x, y, z) over  the region  V, and 
is denoted by 

    Fx, y, z dV …(2) 

In or d er to exp ress triple integral in the 

‘integrated’ form, V is considered to be sub-  

divided by planes parallel to the three coordinate 

planes. The volume V may then be considered as 

the sum of a number of vertical columns extending 

from the lower surface say, z = f1(x, y) to the upper 

surface say, z = f2(x, y) with base as the elementary 

areas Ar over a region R in the xy-plance when all the 
columns in V are taken. 

On summing up the elementary cuboids in the 
X

 

same vertical columns first and then taking the sum 
for all the columns in V, it becomes 

 
 
 

 
Y 

 
 
 
 
 

 
Fig. 5.48 

 
,   , 


 F xr yr zr z Ar …(3) 
r   r 

with the pt. (xr, yr, zr) in the rth cuboid over the element Ar. When 

Ar and z tend to zero, we can write (3) as 


z  f2 x,y  
Fx, y, zdz  dA 

      z  f1x,y  
R 

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions. 

 
5.9. EVA1UAYION OT YRIP1E INYEGRA1S 

 
For evaluation purpose,     F x, y, z d V 

V 

 
…(1) 

is expressed as the repeated integral 

a2  x2 

a2  x2 
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0    0   0 

0  0  

 

0 0  
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
x2  


y2  


z2 F x, y, z dzdy dx …(2) 
x1 y1 z1 

where in the order of integration depends upon the limits. 

If the limits z1 and z2 be the functions of (x, y); y1 and y2 be the functions of x and x1, x2 be constant, 
then 

x b  y  2x  z  f2 x,y   

I     
 

   Fx, y, zdz dy
 

dx …(3) 

x a  y1 x  z f1x ,y   

which shows that the first F(x, y, z) is integrated with respect to z keeping x and y constant 

between the limits z = f1(x, y) to z = f2(x, y). The resultant which is a function of x, y is 

integrated with respect to y keeping x constant between the limits y = f1(x) to y =  f2(x).  

Finally, the integrand is evaluated with respect to x between the limits x = a to x = b. 

Note: This order can accordingly be changed depending upon the comfort of integration. 

a x x  y 

Example 36: Evaluate  
00 0 

e x  y  sds dy dx. [KUK, 2000, 2009] 

Solution: On integrating first with respect to z, keeping x and y constants, we get 

I  
a 


x 
ex  y z 

x  y 
dy dx, 

 

[Here (x + y) = a, (say), like some constant] 

 
a 


x 
ex  y  x  y   ex y  0  dydx 

 

 
a 


x 
e2x  y  ex  y  dydx 

a  e2x  2y ex y 
x 

  0   2 
 

1 

dx, (Integrating with respect to y, keeping x constant) 

 
a  e4x 

 
e2x  

 
 e2x 

 
ex   

dx
 

 0  
 2 1 




         2 1 
 

 

On integrating with respect to x, 

 
 e4x 

 8 

 
e2x 

2  
e2x 

4 
ex a  
1 

0 

 

 
 e4a  

 
e2a  

 
e2a  

 ea    
1 
 

1 
 

1 
 1

         8 2 4  
   8 2 4 



 I  
 e4a 

 
3 

e2a  ea  
3  

. 

         8 4 8 



/2 

Example 37: Evaluate 

 
a sin


a2 v 2 

 

a 

 
v dv d ds 

 

.[VTU, 2007; NIT Kurukshetra, 2007, 2010] 
0 0 0 

0 




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 

4 
  


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Solution: On integrating with respect to z first keeping r and  constants, we get 
 

 / 2 

I 


asin 


a2 r2 

 

z0 
a

 

 
r dr d

0 0 

 

  
1 

 / 2 


asin  

a2   r2 r dr d

a  0 0 

1    / 2  r2 
 

r4  
a sin 

  
a 0  

a2 

2 
 

4 


d, (On integrating with respect to r) 

 
1 

 / 2  a2  a2 sin2  

 
a4 sin4  

d


a  0 
 2 4 





 
a3 2 

2 sin2   sin 4  d
0 

 

 
a3 

2  
1 
 
 


 3  1 
 
  

,
 

4  2   2 4  2 2 



 / 2 

sin p x dx   
(p  1)  (p  3) 

  
  

;onl y i f  p is e ve n 



0 (p)  (p  2)  2 


I  
a3    1  

3    
5a3 

 
4   2 

 8 
   64 

 
e log y e x 

Example 38: Evaluate 1    0 log s ds dy dx. 
1 

[MDU, 2005; KUK, 2004, 05] 

 
e    log y   ex 

Solution: 1  0  1   
log z dz 

dxdy 

[Here  z =  f(x, y) with  z1  = 1 and  z2  = ex + 0y
 

e    log y   ex 

 1  0  1   
log z 1dzdx dy 

Ist IIn d 
fun. fun. 

e log y 
1  e

x

 

   log z  z   z dz  dxdy 
1    0  z 1 

 
   

e    lo g y 
ex log ex   1  log 1   z

ex  
 dx dy 

1  0  1  

0 



 39   

z4 

4 

  

e 





1 

e 




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 
e  log y 

xex  ex  1 dx dy 
1  
 0   

 
e log y 

x  1ex  1 dxdy 

1  0 
 

 
e 

xex  2ex  xlog y dy 
1 0 
e 

 1  
y  1  log y  2 1  y  dy 

I II 
function function 

On integrating by parts, 
 

 y2  e 1  y2  




2y2  
e 




I  


log y   2
  y


1 

 1   

y 

 

2 
 y  

dy   
2y  

2
    

 
1 




  e2 




 1  e  y  2 


 (log e)  2  
 e

 
 log 1  

 2 
1

 
 1  

 2 
1 

dy  2 e  e    2 1 
 

 
 2 

 e  
 y2

 


e 
 y

   
 2e  e2   1


     
2 4 

1 




 
 e2   

 e  
e2   

 e  
1 
 1  2e  e2   1





     2 4 4 



 
 1 1  8e  3e2 . 
  4 


1 z x z 

Example 39: Evaluate    x  y  z dx dy dz. [JNTU, 2000; Cochin, 2005] 
1 0 x z    

Solution: Integrating first with respect to y, keeping x and z constant, 

1 z   y2 
x  z 

I  1 0  
 xy   

2  
 yz   dx dz 

  x  z 

 
1  


2 

4zx  2z2 dx 
 

dz 

1 
         0 


1   x2 z 

 
 1 



4z  

2
  2  z2  x dz 

0 
 

1 
4z  

z2 

 2z2  z 

dz 

 

1 


 41
 

2 


1 

z3dz  4  0 
1 





 40   

 f   ,    x   y

0 0 1 a b 
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ASSIGNMENY 6 

Evaluate the following integrals: 
1 2 2 

 

 

 

 a b c 

(1)   x2yzdxdydz (2)    x
2  y2  z2 dxdydz [VTU, 2000] 

 4 2 z 
  

 log 2 x x log y 

(3) 0  0

 
0 

dydx dz (4) 0 0  

0 

ex y zdzdydx [NIT Kurukshetra, 2008] 

 
 

 

 VO1UME AS A DOUB1E INYEGRA1 

(Geometrical Interpretation  of the  Double  Integral) 

One of the most obvious use of double integral is the determination of volume of solids 

viz. ‘volume between two surfaces’. 

If f(x, y) is a continuous and single valued function 

defined over the region R in the xy-plane with z = f(x, y) 

as the equation of the surface. Let  be the closed curve 

which encloses R. Clearly, the surface R (viz. z =  f(x,  y)) 

is the orthogonal projection of S(viz z = F(x, y)) in the xy-

plane. 

Divided R into elementary rectangles of area  xy  

by drawing lines parallel to the axis of x and y. On each  

of these rectangles errect prisms having their lengths 

parallel to the z-axis. The volume of each such prism is 

zx y. 

(Division of R is performed with the lines x = xi (i = 1, 

2, …,  m) and  y  =  yj(j  =  1, 2, …,  n).  Through  each line 

x =  xi,  pass a  plane  parallel to   yz-plane, and through 
X 

each line y = yj, pass a plance parallel to xz-plane. The 

rectangle Rij whose area is Aij = xi yj will be the 

base  of  a  rectangle  prism  of  height  f(xij, hij), whose 

Z 

 
 
 
 
 
 
 
 
 
 

Y 

 
 
 
 
 
 

Fig. 5.49 

volume is approximately equal to the volume between the surface and the xy-plane x = xi – 1, 

x = xi ; y = yi – 1 y = yi. Then 
n 

ij ij i j 

 
gives an approximate value for volume V of 

i 1 

j 1 

the prism of the cylinder enclosed between z = f(x, y) and the xy-plane. 

The volume V is the limit of the sum of each elementary volume  z xy. 

 V  Lt  z x y    zdx dy    f x ,y d A 
x0 

y0 

Note: In cyllidrical co-ordinates, the equation of the surface becomes z = f(r, ), elementary area dA = r dr d

and volume    ƒ v,v dv d
R 

4z  x2 

S C 

O 

R x 

R, y 

c 

R R 
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R 
C 

0 
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Pıob1ems on Vo1ume oG a So1td wt1h 1he He1µ oG Doub1e In1egıa1 

Example 40: Find the volume of the tetrahedron bounded by the plane 
x 


 y 


 s 
 1 and 

a b c 
the co-ordinate planes. [Burdwan, 2003] 

Solution: Given, x 


 y 


 z 
 1 

 z  f x, y   c 

1  

x 


 y 
 …(1) 

a b c  a b 


If f(x, y) is  a continuous and single valued function over  the region R (see Fig. 5. 50) in  the 

xy plane, then z = f(x, y) is the equation of the surface. Let C be the closed curve that is the 

boundary of R. Using R as a base, construct a cylin der having elements parallel to the z-axis. 

This cylinder intersects z = f(x, y) in a curve , whose projection on the xy-plane is C. 

Z Z = C(1– x/a – y/b) = f(x, y) 

 
 
 
 
 
 

 
Y 

Y 

 
 

 
X 

Fig. 5.50 Fig. 5.51 

The equation of the surface under which the region whose volume is required, may be 

written in the form (1) i.e., z  c 

1 

 x 
 

y  
. 



 Hence  the volume of  the region 
a b 


 adA  c 


1 

 x 


 y  
dxdy 

 a b 


R R 

The equation of the inter-section of the given surface with xy-plane is 

x 


 y 
 1

 

a b 

 
 

…(2) 

If the prisms are summed first in the y-direction they will be summed from y = 0 to the line 
y  b 


1 

 x 


 a 
 


a b 1

 x 

Therefore, 
V    




a 
 

c 

1 

 x 


 y  
dy dx 

0    0 
 a b 



a  xy y2  
b1 x / a

 c0  
 

y 
a   

 
2b 
 

dx
 

(0, 0, c) 

c 

b 

(0, b, 0) 
P 

a 

(a, 0, 0) 

Q 

R 
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2ax 

2ax  x2 

2ax x2 

2ax 2ax  x2 

0 

2 




 2 
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 c
a

b 
 1 

 
 x 
  

x2   
dx 

0     
    2 a 2a2 


 x x2 x3 a 

 

 cb 
 2 

 
2a 

 
6a2 

 bc 
 a 

 
a 2 






a 3  
 

abc 
.
 

 
 


   2 2a 6a 2  6 

Example 41:  Prove  that the  volume  enclosed  between the cylinders x2 + y2 = 2ax and 

z2 = 2ax is 
128a2 . 

1S 

Solution: Let V be required volume which is enclosed by the cylinder x2 + y2 = 2ax and the paraboloid 

z2 = 2ax. 

Only  half of the volume is  shown in Fig 5.52. Z 

Now, it is evident from that z  is to be evaluated 

over the circle x2 + y2 = 2ax(with centre at (a, 0) and radius 

a. 

Here  y  varies from    to on the 

circle x2 + y2 = 2ax and finally x varies from x = 0 to x = 2a 

2a 

 V   20 zdx dy 
 2ax  x 

as z = f(x, y) 

2a  2ax  x2  

 20    

 

2  0 
2ax 

 
dy dx 

 
Fig. 5.52 

2a   


 40 
2ax  0 

dy 
dx 

 

2a 
 4 y 

2a 
dx  4 

2ax 2ax  x 2dx 

0 0 
 

2a    

 4   2a0    
x   2a  x dx 

Let x = 2a sin2, so that dx = 4a sin cos d. Further, for x = 0,  = 0 


 V  4 2a 





2 2asin2 



x  2a,   .




2 acos   4 asin cos  d
0 

 

 64 a3

2 sin3 cos2  d

2ax  x2 

2ax  x2 

Z 2 = 2ax 

(0, 0) 
(2a, 0) 

(a, 0) 
X 

x2 + y2 = 2ax 

0 

0 




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3 

x2  y2  1 


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p  1p  3q  1q  3

 64 a3 
p  qp  q  2

 1, p  3, q  2 

 64 a3 3  11 
 

128 a3 
. 

5  3 15 

 
Pıob1ems based on Vo1ume as a Doub1e In1egıa1 tn Cy1tndıtca1 Cooıdtna1es  

 

Example  42:  Find the  volume bounded by  the cylinder x2 + y2 = 4 and the hyperboloid 

x2 + y2 – z2 = 1 . 

Solution: In cartesian co-ordinates, the section of  the given  hyperboloid  x2 +  y2 –  z2 =  1 in  

the xy plane (z = 0) is the circle x2 + y2 = 1, where as at the top and at the bottom end (along 

the z-axis i.e., 

5.54). 

z   ) it shares common boundary with the circle x2 + y2 = 4 (Fig. 5.53 and 

Here we need to calculate the volume bounded by the two bodies ( i.e., the volume of shaded 

portion of the geometry). 

Z 

 
 

 
x2 + y2 = 4 

(r = 2) Q 

 

Y P 

 

 
 

X 

 

 
Fig. 5.53 

O 

 
 
 

 
Fig. 5.54 

 
 

 
x2 + y2 = 1 
(r = 1) 

 

(Best example of this geometry is a solid damroo in a concentric long hollow drum.) 

In cylindrical polar coordinates, we see that here r varies from r = 1 to r = 2 and   varies 

from 0 to 2. 

 V  2 zdxdy   2  f r , r dr d 

   


 2 
 2 2 r2  1 rdr d







2 2 2 

0    1 

2   2 1 2 
3 

(³   x + y – z – 1    z  ) 

 2  d r    12  d

0      1  3 

O 
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2 
3 

r  1 2 2 

3 

4  y2 

   

4  y2 

2 



2 


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2 

 20 
d

1 
 2

 2  30   
d  4  3 

. 
 

Example 43:  Find the  volume  bounded  by the cylinder x2 + y2 = 4 and the planes y + z 

= 4 and  z = 0. [KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007] 

Solution: From Fig. 5.55, it is very clear that z = 4 – y is to be integrated over the circle x2 + 

y2 = 4 in the xy-plane. 

To cover the shaded portion,  x  varies from   to 

Hence the desired volume, 
2 

and y varies from – 2 to 2. 

V    zdxdy  Z 

 

 22 0 

2 

4  ydxdy 

 

 22 
4  y

 0 
dx
 

dy 

2    O  Y 
  22 

4  y  4  y  dy 
2 

 

 2    
 22 

4  y   4  y  dy  X 
 2 


Fig. 5.55 

 
2    

 8 4  y2 dy  0 
2 

(The second term vanishes as the integrand is an odd function) 
2 

 y 
 8 



4  y2 

2 
 

4 
sin 

2 
1 y 

  2 

 16. 

 
 

 

ASSIGNMENY 7 

1. Find the volume enclosed by the coordinate planes and the portion of the plane 

lx + my + nz = 1 lying in the first quadrant. 
2. Obtain the volume bounded by the surface z  c 

 
1 

 x  
1  

y 





and the quadrant of 

x2 

 
y2 

 1 
 

  

 a
  b 



the  elliptic cylinder   
a2 b2 

[Hint: Use elliptic polar coordinates x = a r cos, y = brsin ] 

4  y2 

4 y2 

4 y2 

4 y2 

4 y2 

2 


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a2  x2 

a2  x2    

a2  x2 

0 0 

0 




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 VO1UME AS A YRIP1E INYEGRA1 

Divide the given solid by planes p arallel to the coor dinate plane into rectang ular parallelopiped of 

elementary volume xyz. 

Then the total volume V is the limit of the sum of all elementary volume i.e., 

 
V  Lt 

x0 
y0 

z0 

 x y z  dxdydx 

 

Pıob1ems based on Vo1ume as a Yıtµ1e In1egıa1 tn  caı1estan  Cooıdtna1e  Sys1em 

Example  44:  Find  the  volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2. 

Solution: The sections of the cylinders x2 + y2 = a2 and x2 + z2 = a2 are the circles x2 + y2 = a2 

and x2 + z2 = a2 in xy and xz plane respectively. 

Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is shown. 

Clearly, in the common region, z varies from 0 to 

y vary on the circle x2 + y2 = a2. 

The required volume 

i.e., , and x and 

a    y  z  
Z

 

 V   8  
2 

 
2

 dz dy dx 
0    y1 0 z1 0 

 8
a 

 
a2  x2 

z
 

a2  x2  dy dx 

 

a  
 8  dy dx 

0   0 
Y 

a    


 8   a2  x2   dy  dx 
0  0 

 

 8
a     

a2  x2 

a 


X 

 0dx 

 x3  
a 






Fig. 5.56 

 80
 
a2  x2 dx  8 a

2x 
 3 




0 


 8 
a3 

a3  



3 

16a3 
.
 

3 

a2  x2 

a2  x2 a2  1x2  0y2 

a2  x2  0y2 

a2  x2 

O´́  a 
D 

C 

B 

a 

O x = O  

P 

(a, 0, 0) 

Q 

x = a 

O´ 

A 

0 
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1 x2 

1 x2 

1  x2 

cos3 

3 

O 
P 

x = 0 

Q 

x 2 + y 2 = 1 

1  

 



 


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Example 45:  Find the  volume bounded   by the xy plane, the cylinder x2 + y2 = 1 and the 

plane x + y + z = 3. 

Solution: Let V(x, y,  z) be  the desired  volume enclosed laterally by  the cylinder  x2 +  y2 = 1  

(in the xy-plane) and on the top, by the plane x + y + z = 3 (= a say). 

Clearly, the limits  of   z  are  fro m  0  (on the Z 

xy-plane) to z = (3 – x – y) and x and y vary on the 

circle x2 + y2 = 1 
 

1 3 x y 

 V x , y ,z   1    1 x2 0 
dzdydx 

1 1 x2  

z 
3  x  y  dy dx

 1 1  1 x2  0
 

 

 1     1 x2  
3  x  y dy 

 
dx 

Y 

 

 
1 

3y  xy 
1 

y2 
2  

dx 

  

X 
1       

 
 Fig. 5.57 

 I  1
6   2x   1  x  dx 

2 

 

On taking x = sin , we get dx = d; For x  1,    
 


2 

 

 
Thus, 

For x  1,    
  



2   

V  
 / 2 

6
 

 / 2 

 

 2 sin  1  sin 2 cos  d



 / 2 

 6cos2   2 sin cos 2 d


 6  2
 / 2 

cos2  d  2
 / 2  

sin cos 2  d
0  / 2 

Ist IIn d 

 
 12 (2  1)  

 
 2 

 / 2 

 3  
2 
 0  3

2 2  / 2 3 

 
Using 

 / 2 cosp  d  
p  1p  3 

 
  

, only if p is even 



0 p p  2  2   and 

1 x2 

1 x2 

1  sin2 

 / 2 


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1 
x2

 
a2 

1 
 x 
 

y 2 2 

 

a2 b2 

a2  x2 





 

 
 f ́ x f n 

 

 
x dx 
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f n1 x

n  1 
for Ist and IIn d integral respectively 

x 2 

 
y 2 

 
s 2 

 1 Example 46: Find the volume bounded by the ellipsoid 

a2 b2 c 2 
. 

[MDU, 2000; KUK, 2001; Kottayam, 2005; PTU, 2006] 

Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid 

into  the positive octant. Z 

The ellipsoid cu ts the XOY plane in the ellipse 

x2 y2 


a2 b2 

 1 and z = 0. 

Therefore, the required volume lies between the ellipsoid 

Y 

z  c 

 
and the plane XOY (i.e., z = 0) and is bounded on the 

sides by the planes x = 0 and y = 0 

a    b c 

Hence, V   80  0

 

0 

a    b 

X 

dz dy dx 
 

Fig. 5.58 

 80  0 
c dy dx 

   
a 

 c 

taking  


8 
0 
 0 b 

dy 
dx 


 b 



V  8
 c

 
a  y 
 2  y2 

 
2 y 



sin1  dx 
b  0   2 2   0

 

 
Using formula  a2  x2 dx 

 x
 

 
a2 

tan1 x 






 8 
c a 

0  
2 

sin11
 

dx 
 

 

2 2 a 


b 0  

 2 



 
4c a 

 
2dx  

2c
 ab2 


1  

x2  
dx, 

 
 

  b 

b  0   2 b   0 


 1 x3 a 
 

 

a2 

 2bc 
 
x  

a2
 

 
4 
abc. 

3 

3 0 

1 
 x2 

 
y2 

a2 b2 

1 
x2 

 
y2

 
a2 b2 

1 
x2

 
a2 

2  y2 

1  

x2 

 a2 

1  
x2

 

b2 

C 

B 

O 

A 
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a2  x2  y2  s 
2 

a2  x2 

C Z  a2  x2  y2 

O 
B 

A 
Circle x 2 + y 2 = a 2 

a 

1 x  y 

  
 


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Example 47: Evaluate the integral   
  dxdyds  

 

taken throughout the volume 

of the sphere. [MDU, 2000] 

Solution: Here for the given sphere x2 + y2 + z2 = a2, any of the three variables x, y, z can be 

expressed in term of the other two, say z    a2  x2  y2 . 

In the xy-plane, the projection of the sphere is the circle x2 + y2 = a2. 
a 

Thus, I  80  0 

a 

0 

a2  x2 




a2  x2  y2

  dz  
 8    dy dx , 2 = (a2 – x2 – y2) 

 
0   0  0 

 
a  a2  x2 


 z  

    z   
Z 


 8    

sin1   
dy  dx 

0  0   
0   


a  

 8   sin 1 1  sin 10 dy dx 

0  0 

 
   a  

 Y 

a  a2  x2 

 8 
2   dy

 
dx  4  y 

0
 

 
dx 

0 0 0 
X Fig. 5.60 

a    x   a2  x2 a2 

 

x 
a

 

 40
 

a2  x2 dx  4 


 sin1 
2 2 0

 

 4 

0  

a2     
2 2 


 2 2  

I =  a . 

Example  48: Evaluate    x  y  s dx dy ds over the tetrahedron bounded by the planes 

x = 0, y = 0, z = 0 and x + y + z = 1. 

Solution: The integration is over the region R (shaded portion) bounded by the plane x = 0, 

y = 0, z = 0 and the plane x + y + z = 1. 

The area OAB, in xy plane is bounded by the lines x + y = 1, x = 0, y = 0 

Hence for any pt. (x, y) within this triangle, z goes from xy plane to plane ABC (viz. the  

surface of the tetrahedron) or in other words,  z changes from z  = 0 to  z  = 1 –  x –  y. Likewise 

in plane xy, y as a function x varies from y = 0 to y = 1 – x and finally x varies from 0 to 1. 

 

whence, 
I    x  y  z dxdy dz 

over R 

 
1  1 x  x y z dz dy dx 

0 
 0 

 0  

2 2 

dx dy dz 

a2  x2  y2  z2 

a2  x2  y2 a2  x2 

a2  x2 
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a 1 x  z2  
1 x  y 

 
 0  0  

x  y z 
2 


dydx 

a 1 x  1  x  y 
2 


 0  0 

x  y1  x  y  


 dy dx 
2 



 
1 


1 x  1 

1  x  y1  x  y dy dx 

0   0 2 

 
1 


1 x  1 1  x  y 

2  dy dx 

0   0 2   
Z 

x  y
3 

1 x

 

 

 
1 

 y   dx , 

2  0  
3 


0 

  
1 


1 
1  x  

 1 
  

x3   
dx 2  0 

    3 3 
   

 

1  2 x2 x4 1 Y
 

 
2  3 

x  
2 
 

12 
1  2 1  1  1 

 
2  3 

 
2 
 

12  
 

8 
 

X 

Fig. 5.61 
 

 

ASSIGNMENY 8 

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane 

x 
 

y 
 

z 
 1, 

a b c 

 

by  using triple integration [KUK, 2002] 

2. Find the volume bounded by the paraboloid x2 +  y2 =  az, the cylinder  x2 +  y2 = 2ay  and 

the plane z = 0. 

 

 VO1UMES OT SO1IDS OT REVO1UYION AS A DOUB1E INYEGRA1 

Let P(x, y) be any point in a region R enclosing an elementary 

area dx dy around it. This elementary area on revolution about 

x-axis form a ring of volume, 

V = [(y + y)2 – y2] x = 2yxy …(1) 

Hence the total volume of the solid formed by revolution of 

this region R about x-axis is, 

V   2ydxdy 
R 

 

…(2) 

Similarly, if the same region is revolved about y-axis, then the 

required volume becomes 

V   2xdx dy 
R 

 

…(3) 
 

Fig. 5.62 

Y 
R 

x 

y 

P (x, y) 

y 

O 
X 

0 

0 

1 
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Y 
y 2 = 4x 

y = 2 

P (1, 2) 

 
x = 1 

y = 0 

O 

2 – y 

2 

1 2 

  


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Expressions for above volume in polar coordinates about the initial line and about the 

pole are  2r2 sin  dr d
R 

and    2r2 cos  dr d
R 

respectively. 

Example  49:  Find  by  double  integration, the volume of the solid generated by revolving 

the ellipse 
x2 

 
y2 

 1 
 

  

a2 b2 about y-axis. 
 

 

Solution: As the ellipse 
x2 

 
y2 

 1 
a2 b2 

 

is symmetrical about the 

y-axis, the volume generated by the left and the right halves overlap. 

Hence we shall consider the revolution of the right-half ABD 

 

 

 
Fig. 5.63 

for which x-varies from 0 to a 

b a 

and y-varies from – b to b. 

 V      b
 2x dx dy 

b 

 
 2

0 

a               
b  x2 b 

 

 

dy 
a2 

 b 

b2  y2 dy 

b  2   b2  b 
 

 2 
a2 b 

b2  y2 dy 




2a2 

b y 
y3  

b
 


b2  0 

 
4 
a2b. 

3 

b2 

 3  0 

Example 50: The area bounded by the parabola y2 = 4x and the straight lines x = 1 and y 

= 0,  in  the  first  quadrant is revolved about the line y = 2. Find by double integration the 

volume of the solid generated. 

Solution: Draw the standard parabola y2 = 4x  to  which 

the straight line y = 2 meets in the point P(1, 2), Fig. 5.64. 

N o w the d otte d portion i.e., the area enclose d by 

parabola, the line x  = 1 and  y  = 0 is revolved about the line 

y = 2. 

 The required volume, 

V   0  0 
22  ydx dy 

X´ X

 

 2 
1 

2y 
0 

y2 2 
2 





dx  2  
1

4 
0 

 2x dx 

 0 

 8 3 
1 

10 Y´ 

 2  3
 x  2   x2 

0 3 Fig. 5.64 

x 

1  
y2

 

b2 

b2  y2 

b2  y2 

x 

B 

P 
C 

Q 
A 

D 

0 

x 



 51   

2a3 

3 

 = /2 

 =   = 0 


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
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Example 51: Calculate by double  integration, the  volume  generated  by  the revolution  of 

the  cardiod  r =  a(1 – cos) about its axis. [KUK, 2007, 2009] 

Soluton:   On  considering the  upper  half of  the cardiod, because  due to  symmetry the lower 

half  generates  the same volume. Y 

 V   
a(1cos ) 

2r2 sin  dr d
0    0 

 20 

a1cos 

0 

sin  d
X 

  
2a3  


 

1  cos 
3 

sin  d
3 0 

4  

 
1  cos  

4 
0 

 
8a3 . 

3 

 

 
Fig. 5.65 

Example 52: By using double integral, show that volume generated by revolution of 

cardiod r = a(1 + cos) about the initial line is 

Solution: The required volume 

8 
a3 . 

  a(1cos ) 

2r2 sin dr d
0 0 

Y 
  r3  

a1cos 
  2   sin  d

0  3  0 

 2 
 

a3 1  cos 3 
sin  d

0 X 

2a3  1  cos4 



  

3 


4 0
 

  
2a3 

0  
24  

 
8a3 .  

   

 
Fig. 5.66 

3    4  3 

 

ASSIGNMENY 9 

1. Fin d by double integration the volume of the solid generated by revolving the ellipse 
x2 

 
y2 

 1 

a2 b2 
about the X-axis. 

2. Find the volume generated by revolving a quadrant of the circle x2 + y2 = a2, about its 

diameter. 

3. Find the volume generated by the revolution of the curve y2(2a – x) = x3, about its 

asymptote through four right angles. 

4. Find the volume of the solid obtained by the revolution of the leminiscate r2 =  a2cos2 

about  the initial line. [Jammu Univ., 2002] 

r3 

3 

 = /2 

 =    = 0 


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 CHANGE OT VARIAB1E IN YRIP1E INYEGRA1 

For transforming elementary area or the volume from one sets of coordinate to another, the 

necessary role of ‘Jacobian’ or ‘functional determinant’ comes into picture. 

(a) Triple Integral Under General Transformation 
 

Here  f (x, y, z)dxdydz  F (u ,v ,w ) |J | dudvdw; where J  
(x, y, z) 0)  …(1) 
 

( 
R(x,y ,z ) R '(u,v ,w) (u, v, w) 

Since in the case of three variables u(x, y, z), v(x, y, z), w(x, y, z) be continuous together 

with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is 

defined by 

u v w 

x x x 

u v w 

y y y 

u v w 

z z z 

(b) Triple Integral in Cylindrical Coordinates 
 

Here   f x, y, z dx dy dz  F r , ,z J dr d dz , where | J | = r 

The  pos
R
ition  of  a  point  P in  s

R
p
´  

ace  in  cylindrical  coordinates  is  determined  by  the 

three numbers  r, , z  where r and  are polar co-ordinates of the projection of the point  

P on the xy-plane and z is the z coordinate of P i.e., distance of the point (P) from the xy-

plane with the plus sign if the point (P) lies above the xy-plane, and minus sign if below 

the xy-plane (Fig. 5.67). 
Z 

 

Z 

 
 
 
 
 
 

Y Y 

 

 
X 

X 

Fig. 5.67 Fig. 5.68 

In  this case,  divide the given  three  dimensional region  R'  (r, ,  z) into elementary 

volumes by coordinate surfaces r = ri,  = j, z = zk (viz. half plane adjoining z-axis, 
circular cylinder  axis  coincides  with   Z-zxis,  planes  perpenducular to  z-axis). The 

P(x, y, z) 

 

z 

O 

 r 

y Q 
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curvilinear ‘prism’ shown in Fig. 5. 68 is a volume element of which elementary base area is r 

r and height z, so that v = r r  z. 

Here  is the angle between OQ and the positive x-axis, r is the distance OQ and z is 

the distance QP. From the Fig. 5.62, it is evident that 

x = r cos, y = r sin, z = z and so that, 
 

J 
 x, y,z  




 u, v, w 

cos 

r sin 

sin 

r cos 

0 

0  r 

 
 

…(2) 
0 0 1 

Hence, the triple integral of the function F( r, , z) over R´ becomes 

V    Fr, , zr dr ddz  
…(3) 

R´r,, z

(c) Triple Integral in Spherical Polar Coordinates 
 

Here V    f x , y ,z dxdydz  F r , , J drd d  , where  | J |  = r2 sin
R R 

The position of a point P in space in spherical coordinates is  determined by the 

three variables  r, ,   where  r is  the  distance of  the  point (P) from  the origin  and  so 

called  radius vector,   is  the angle between  the radius vector  on  the  xy-plane and the 
x-axis to count from this axis in a positive sense viz. counter-clockwise. 

For any point in space in spherical coordinates, we have 

0  r  , 0    , 0    2. 

Divide the region ‘R’ into elementary volumes V by coordinate surfaces, r = constant 

(sphere),  = constant (conic surfaces with vertices at the origin),  = constant (half 

planes passing through the Z-axis ). 

To  within infinitesimal of  higher order, the volume element  v  may  be  considered 

a parallelopiped with edges of length r, r , r sin . Then the volume element 

becomes V = r2 sin r  . 
 

Z 

 
 
 
 
 
 

 

Y 

 
 
 

X 
X

 

Fig. 5.69 Fig. 5.70 

P (x, y,.z) 


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
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
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y L 
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        S 



S´ 

P´ 

r 

R 

R´ 

 
Q´ 

P 
r r


Q 

 z 
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(a, 0) O 
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r Y 
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For calculation purpose, it is evident from the Fig. 5.69 that in triangles, OAL and 

OPL, 

x = OL cos  = OP cos (90 – ) . cos  = r sin cos , 

y = OL sin  = OP sin  . sin  = r sin  sin , 

z = r cos . 
 

x, y, z  sin cos  sin sin  cos 
Thus, J   r cos cos  rcos sin  rsin   r2sin 

r, ,  r sin sin  rsin cos  0 

 
 

Pıob1ems Vo1ume as a Yıtµ1e In1egıa1 tn Cy1tndıtca1 Co-oıdtna1es 

Example  53:  Find the  volume  intercepted  between the paraboloid x2 + y2 = 2az and the 

cylinder x2 + y2 – 2ax = 0. 

Solution:  Let V be req uire d volume of the cylin d er 

x2 + y2 – 2ax = 0 intercepted by the paraboloid x2 + y2 = 2az. 

Transfor ming the given system of eq u ations to polar- cylindrical 

co-ordinates. 

x  r cos 



Let y  r sin  sothat V(x, y, z)  V (r , , z ) 

z  z 

By above substitution the equation of the paraboloid becomes 

r2 

r2  =  2az    z  
2a 

and the cylinder x2 + y2 = 2ax gives 

r2   –  2ar cos  = 0  r(r – 2a cos) = 0 with r = 0 an d 

r = 2a cos. 

r2 
 

 

 

Fig. 5.71 

Thus, it is clear from the Fig. 5.71 that z varies from 0 to 
2a 

and r as a function of  varies 

from 0 to 2a cos with  as limits 0 to 2. Geometry clearly shows the volume covered under 

the +ve octant only, i.e. 
1 

th 
4 

 

of the full volume. 

 / 2 r  2acos  zr2 /2 a 

V  V ' 
 4   r dzdrd, as | J|  r 

(x,y,z) (r ,,z ) 0 

 
 / 2 

r 0 

 
2acos 

z 0 

 
r2 / 2a 

 40 
 0 

r z
0 

rdr
 

d

 4 
 / 2 
 

2acos r3  



0 

 0 

2a 
dr 

d 

 1  / 2 r4 2acos 

 4 
2a 0 4 

d

X 
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 4 
 1  

 / 2 24 a4  

cos4  d

2a 0 4 

 23 a3 4  14  3 
4  2 2 

3a3 

2 
. 

Example 54:  Find the  volume  of the region  bounded  by  the paraboloid az = x2 + y2 and 

the cylinder x2 + y2 = b2. Also find the integral in case when a = 2 and b = 2. 

Solution: On using the cylindrical polar co-ordinates ( r, , z) with x = r cos, y = r sin , so 

that the equations of the cylin der and that of the paraboloid are r = b and See 

Fig. 5.72, only one-fourth of the common volume is shown. 

z  
r2

 

a 
respectively. 

Hence in the common region, z varies from z = 0 to 



z  
r2

 

a 
and r and  varies on the circle 

from 0 to b and 0 to 
2 

respectively. 

 The desired volume 

 / 2 

V  4 
0
 

b r2 / a 

0 0 
rdrddz 

 / 2   b    r2 / a 

 40 

 0  

rdr  0 
dz  

d

 4 
 / 2 

b 

r 
 r2   




0 
 0   a 

 
dr 

d 

4  / 2  r4 
b 

  
a 0 


  d

0 



Fig. 5.72 

4 b4  / 2 b2 
   

a 4 0 2a 

As a particular case, when a = 2, b = 2, then 

  2 4 
V   4 

2  2 
 

Pıob1mes on Vo1ume tn Po1aı Sµheıtca1 Co-oıdtna1es 

Example 55: Find the volume common to the sphere x2 + y2 + z2 = a2 and the cone x2 + y2 = z2
 

OR 

Find the volume cut by the cone x2 + y2 = z2 from the sphere x2 + y2 + z2 = a2. 

[NIT Kurukshetra, 2010] 

4 


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90° 

O 


Q x 2 + y 2 = z 2 

P 





0 0 

8 
0 0 

 0  
r  dr 

sin  d d


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Solution: For the given sphere, x2 + y2 + z2 = a2 and the cone x2 +  y2  =  z2,  the centre of the 

sphere is (0, 0, 0) and the vertex of the cone is origin. Therefore, the volume common to the 

two bodies is symmetrical about the plane z = 0, i.e. the required volume, 
 

x  r sin cos 

V  2dxdydz 

In spherical co-ordinates, we have y  r sin sin 


; J  r2 sin 

z  r cos  

Thus, x2 + y2 + z2 = a2 becomes r2 = a2 i.e., r = a 

and x2 + y2 = z2 becomes r2 sin2 (cos2 + sin2) = r2 cos2

i.e., sin2 = cos2 i.e.  =  / 4. 

Clearly, the volume shown in the figure (Fig. 5.73) is one-

fourth, i.e. in first quadrant only and, in the common region, 
 

r varies from 0 to a,       

 
 varies from 0 to 

4
,  Y 


 varies from 0 to 

2  


Hence  the required volume, 
X

 

 / 2 


 / 4 a 
2 

Fig. 5.73 

V 2 

40 0 0  

r
 sin dr d d




   
 / 2 


 / 4 


a   
2 

 / 2  / 4  r3 
a 

 
 80 0  3 


sin  d d

  
8 

a3


 / 2 

cos 
 / 4 

d

3 0 

  
8   3 

0 Y 

1   

 / 2 

 

3 
a  

1 

2 
             0 

d
X 

 
4a3 

1 
 1 




Fig. 5.74 

3   
 2 



Alternately: In polar-cylindrical co-ordinates, intersection of the two curves x2 + y2 + z2 = a2
 

and x2 + y2 = z2 results in z2 + z2 = a2 or z2  
a2

 

2 

Further, x2  y2  a2   z2   a2   
a2    

 
a2

 

2 2 
 r 

a 
, i.e. r varies from 0 to

 a 
 

 

Hence, V   2
2 


a /    2 




 rr dr da2  r2 



Z 

0 

. 
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
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| ³ P lies on the cone whereas Q lies on the sphere as a function of (r, ) 

 2
a /    2 

r
  r2  

2 

d
 

dr 

 0 

 

3     
a 








  0 


1 
 

1 


1  1 3 
 4 


 

1 a2  r2 
3 / 2  

 
r  

 since r a2  r2 2     3ra2  r2 2 
  da2  r2 2 


                  3 3 0  3   3 

 4 

 

1 a3

 
 

1 a3 
 

a3 




              3  2  2 3 2  2 3 

  
4a3 

1  
  1 

3    2 




Example 56: By changing to shperical polar co-ordinate system, prove that 
dx dy dz = 

 
abc 

 
 

where 

 x2 y2 z2 



V 

V = x, y, z  : + +  1
4  a2 b2 c2 





Solution: Taking 

x 
 u, , so that 

x2 

 
y2 

 
z2 

 1 
 

   

 
 u2 + v2 + w2  1 

a  a2 b2 c2 

 y  
 v,




b 
 z  
 w 



c 

Now transformation co-efficient, 
x x 
u v 

x 
w 

 
a 0 0 

J    
y y y 

 0
 b 0  abc 

u v 
z z 

u v 

w 
z  

w 

0   0 c 

 V  1  
x2 

 
y2 

 
z2 

dx dy dz 

 
V x ,y ,z 



    
V´u, v,w 

a2 b2 c2 

 

abcdudvdw 

 

To transform to polar spherical co-rodinate system, let u  r sin cos , 



v  r sin sin , 

w  r cos 

Then V(́ u, v, w) = {(u, v, w): u2 + v2 + w2  1, u  0, v  0, w  0} reduces to 

V(”r,   , ) = {r2  1 i.e., 0  r  1, 0    , 0    2} 

  
V´u, v,w 

1  u2  v2  w2abcdudvdw 

2 

a2  r2 

1 – 
x2 

– 
y2 

– 
z2

 

a2 b2 c2 

1  u2  v2  w2 


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1– x2 

1 x2 

1  x2  y2   z2
 

 z 

a 0 

1 x2  y2 



 

1 

1 
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   abc 
V"r,,

J dr d d where | J | = r2 sin 

 V ” 
 
 abc 2    1 

2  
sin d 

 
d 

r,, 0     r dr
   

0 0 

 

Now put r = sin t so that dr = cost dt and for 




r  0, t  0,




r  1,  t   
 
2 



 
2     / 2 2  

 V"r ,, abc  0   0    
 0 

cos t sin  tcos t dt 
sin d 

d



 abc 
2    2  1  2  1   

sin d 
 

d
 

0    
 0  

 
2  24  2 2 


   




 abc 




2 

  

  
 1 1   

sin  d
 

d

0 

 
abc 

 0   4  2 2  


2 

cos 
 

d

16   0 
0
 

  
abc 


2 

2 d   
abc 


2 

d   
2 abc. 

16 0 8 0 4 
 

Example 57: By change of variable in polar co-ordinate, prove that 

0  0 0 

dz dy dx = 
2 

. 
8 

 

OR 

Evaluate the integral being extended to octant of the sphere x2 + y2 + z2 = 1. 

OR 

Evaluate above integral by changing to polar spherical co-ordinate system. 

Solution: Simple Evaluation: 

 
 

 
Treating 

I  0  
dx0 

  1  

dy0 

as 

1 x2  y2

  dz  
 

 

1 

 

1 1 x2 

I   dx  sin1 dy 
0 0 

1  x2  y2  z2 

1  r2 

1  r2 

1 – x2 – y2 – z 2 

1– x2 – y 2 

a2  z2 
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1  x2 

  x 1  x2 1 x a2  x2 

r2 

1  r2 



 

1 









Multiple Integrals and their Applications 413 

  dx

  sin1  z 

 dy 
, as a 

0 0 


1 1 x2   

 0  
dx0  2 

 0
 

dy 

 
 1 y 

1 x2  
dx 

2 0   0 

  
 


1 

dx 

2  0 


1    

 
 a2  x 

 

 2 2 
sin1 x , 

 0 
using  a2   x2 dx  

2 2 
sin1 

a 

  
 

0  
1    

2 

2  2 2  8 

By change of variable to polar spherical co-ordinates, the region of integration 

V = {(x, y, z); x2 + y2 + z2  1; x  0, z  0, y  0.} 
 

2  



 

 1, i.e. 0  r  1, 0    


, 0    
2 2 

 
where 

x  r sin cos , 

y  r sin sin , 



z  r cos  

x, y, z 
Now J  = coefficient of transformation = r2 sin. 

 r   , , 


dx dydz 


   / 2 

 /2 1 r2 sin 
dr d d 

whence  

V 

 
 / 2 

I  d

0 0 0 

 / 2 
 

sin  
  1   



0 0 
 0  

dr 
d 

 

Let r = sin t so that dr = cos t dt. Further, when r  0, t  0,



r  1,  t   
 
2 

 I  
 / 2 

d
 / 2 

sin  d
 / 2 sin2 t 

 cos t dt 
0 0 0 cos t 

 
 / 2 

d
 /2  

dsin 
 1 

 
 

; 

0 0  2 2 

becomes I = (r, , ); r 

1  x2  y2 

1 x2  y2 



0 



1 x2 

1  x2  y2 

1  x2  y2  z2 
1  r2 

2 
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   







8 


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 
 

 / 2 

d
 /2  

sin  d

4  0 0 

  / 2 

 
 

 / 2 

  
4 0 

dcos 
0 

 
 


4 

 / 2 


0 

2 

. 
8 

 

 
Example 58: Find the volume of the ellipsoid 

x2 

+ 
y2 

+ 
z2 

= 1 by changing to polar co- 

a2 b2 c2 

ordinates. [PTU, 2007] 

Solution: We discuss this problem under change of variables. 

 
Take 

x 
 X, 

 y 
 Y, 

z 
 Z 

 
so that  x, y, z  J   abc 

a b c 

 The required volume, 

V      dx dydz      J dX d Y d Z 

 X , Y , Z 

 abc dX d YdZ , taken throughout the sphere X2 + Y2 + Z2 = 1. 

Change this new system ( X, Y, Z) to spherical polar co-ordinates ( r, , ) by taking 

X  r sin cos , 

Y  r sin sin , 

  so that J ́ 

X ,Y ,Z  
 r2 sin , 

Z   r cos   r, , 

V   abc   J dr d d  abc r2 sin  dr d d

taken  throughout the sphere  r2  1, i.e. 0  r  1, 0    , 0    2 

On considering the symmetry, 

V   abc  8
 / 2 

 / 2 


1   
2 






 d 
 

d


0 

 
 / 2 

  0 

 
 /2 

  0  
r  dr 

sin 

1 

 8 abc0  0
 sin  d d

0 
 

8 
abc 

 / 2 

cos 
 / 2

d

3 0 
0
 

  
8 

abc
 / 2 

1  d

3 0 

 / 2 

 abc 
8 

abc
 



 

4 
 abc 

3 0 3 2 3 



r3 

3 
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Miscellaneous Problem 

Example 59: Evaluate the surface integral I  x3dydz  x 2y dzdx  x 2zdxdy . 
S 

where S is the surface bounded by z = 0, z = b, x2 + y2 = a2. 

OR 

By transformation to a triple Integral, evaluate I   x3dy dz  x 2ydzdx  x 2zdxdy , 
S 

where 

S is the surface bounded by z = 0, z = b, x2 + y2 = a2. 

Solution: On making use of Green’s Theorem, 

I  
a  


b 




a2  y2 
3  

dzdy  
a  


b 

 a2  y2 
3 

dzdy 

  x2

 
a2  x2 dzdx  

a  


a  

x 2  a2  x 2 dzdx 

a a2  y2 a a2  y2   a2  y2 b dx dy   0 dx dy 

a 
Using Divergence Theorem, 

I    3x2  x2  x 2 dx dy dz 
V 

a 



a  a2  x2   b  
 4   dz 

dy  5x 2 dx 

0  0 0 


a  

 4  bdy  5x2 dx 
0  0 


a    

 20 b 0  
x a    x  dx 

2 2 

 

 
5 
a4b . 

4 
 

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be carried 

out by calculating the sum of the integrals evaluated over the projections of the surface S on the co- ordinate planes. 

Thus, which upon evaluation is seen to check with the result already obtained. It should be noted that the angles , ,  

are mode by the exterior normals in the +ve direction of the co-ordinate axes. 

a2  y2 a2  y2 

a2  x2 



 62   

a2  y2 

a2  x2 a 

y 



 
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6.   
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1.    
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  x2  y2 
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
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3 4 4 
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 
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1. 
3
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Asstgnmen1 5 
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a3 
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8 

2. 
12

 

2
3. 

9
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
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8 
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Asstgnmen1 8 

 
1.  abc / 6 2. 

 

 
3a3 

 

2 
 

Asstgnmen1 9 

4 ab2 
 

 

 
2 
a2 

 
 

1. 
3
 2. 

3
 

a3 



1 1 

3.  22 a3 4. 
4 
 log   1  

2 
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Code No: R201101 

I B. Tech I Semester Regular Examinations, July/August-2021 

MATHEMATICS-I 
(Com. to All Branches) 

Time: 3 hours  Max. Marks: 70 

Answer any five Questions one Question from Each Unit 

     All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 a) Examine the convergence of ∑
−

+

n

xn
n 12])!1[(

,( x > 0) 
(7M) 

b) Find Maclaurin’s series expansion of the f(x, y) = x
2sin  and hence find the 

approximate value of o16sin 2 . 

(7M) 

Or 

2. a) Prove using mean value theorem sin u – sin v vu −≤ . (7M) 

b) Examine the convergence of ).0....(
432

432

>+−+− x
xxx

x  
(7M) 

3. a) Solve .)2( 3 y
dx

dy
yx =+  

(7M) 

b) Solve (5x
4 

+ 3x
2
y

2
 – 2xy

3
)dx + (2x

3
y – 3x

2
y

2
 - 5y

4
)dy = 0 (7M) 

Or 

4. a) Find the orthogonal trajectories of .2sin2
θar =  (7M) 

b) Solve (xysinxy + cosxy) ydx + (xysinxy – cosxy) xdy = 0. (7M) 

5. a) �����	��	 − ��� = 2� + 1 + 4���� + 2�� (7M) 

b) In an L-C-R circuit, the charge q on a plate of a condenser is given by

�
���

���
+ �

��

��
+
�

�
= ������ 

The circuit is tuned to resonance so that q
2
=1/LC. If initially the current I and

the charge q be zero , show that, for small values of R/L, the current in the circuit 

at time t is given by (Et/2L)sin pt. 

(7M) 

Or 

6. a) Solve
2

2

dx

yd
+ y = cosec x by the method of variation of parameters.

(7M) 

b)
Solve

22

2
2

)1(

1
3

x
y

dx

dy
x

dx

yd
x

−
=++ . 

(7M) 

7. a) If u = sin 1−










+

+

yx

yx
22

 prove that x
x

u

∂

∂
+ y

y

u

∂

∂
 = tan u. 

(7M) 

b) Investigate the maxima and minima, if any, of the function f(x) = x 3 y 2 (1 – x – y). (7M) 

Or 
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8. a) 
Prove that u =

22

22

yx

yx

+

−
, v =

22

2

yx

xy

+
 are functionally dependent and find the 

relation between them. 

(7M) 

 b) Expand yx
eyxf

+
=),(  in the neighborhood of (1, 1). (7M) 

    

9. a) 
Evaluate ∫∫

R

xydxdywhere R is the region bounded by the x-axis, ordinate ax 2=  

and the curve ayx 4
2

= . 

(7M) 

 b) By changing the order of integration, evaluate ∫ ∫
−

+

3

0

4

1

.)(

y

dxdyyx  

(7M) 

  Or  

10 a) Evaluate the following integral  ∫ ∫ ∫

−

2

0

sin

0

)(

0

22
π

θ

θ

a a
ra

dzrdrd  

(7M) 

 

b) Evaluate dydxyx

a xa

∫ ∫
−

+

0 0

22

22

 by changing into polar coordinates. 

(7M) 
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