ON

MATHEMATICS-I

ACADEMIC YEAR 2022-23

I B.TECH -ISEMISTER(R20)

K.V.NARAYANA,Associate Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

VSM COLLEGE OF ENGINEERING

RAMACHANDRAPURAM
E.G DISTRICT-533255

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY:: KAKINADA DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester		L	T	P	C
	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	

MATHEMATICS-I

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes:

At the end of the course, the student will be able to

- Utilize mean value theorems to real life problems (L3)
- Solve the differential equations related to various engineering fields (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Apply double integration techniques in evaluating areas bounded by region (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2-dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Mean value theorems:
Sequences and Series: Convergences and divergence - Ratio test - Comparison tests - Integral test - Cauchy's root test - Alternate series - Leibnitz's rule.
Mean Value Theorems (without proofs): Rolle's Theorem - Lagrange's mean value theorem Cauchy's mean value theorem - Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree:
(10 hrs)
Linear differential equations - Bernoulli's equations - Exact equations and equations reducible to exact form.
Applications: Newton's Law of cooling - Law of natural growth and decay - Orthogonal trajectories - Electrical circuits.

UNIT III: Linear differential equations of higher order:
Non-homogeneous equations of higher order with constant coefficients - with non-homogeneous term of the type $e^{a x}$, $\sin a x, \cos a x$, polynomials in $x^{n}, e^{a x} V(x)$ and $x^{n} V(x)$ - Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT IV: Partial differentiation:
Introduction - Homogeneous function - Euler's theorem - Total derivative - Chain rule Jacobian - Functional dependence - Taylor's and Mc Laurent's series expansion of functions of two variables.
Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY:: KAKINADA DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT V: Multiple integrals:
Double and Triple integrals - Change of order of integration - Change of variables.
Applications: Finding Areas and Volumes.

Text Books:

1) B. S. Grewal, Higher Engineering Mathematics, $43^{\text {rd }}$ Edition, Khanna Publishers.
2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

1) Erwin Kreyszig, Advanced Engineering Mathematics, $10^{\text {th }}$ Edition, Wiley-India.
2) Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, $14^{\text {th }}$ Edition, Pearson.
3) Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
4) Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

VSM COLLEGE OF ENGINEERING
 RAMACHANDRAPRUM-533255
 DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title	Year-Sem	Branch	Contact Periods/Week	Sections
Mathematics-I	$1-1$	6	-	

Course Objectives:

$>$ This course will illuminate the students in the concepts of calculus.
$>$ To enlighten the learners in the concept of differential equations and multivariable calculus.
$>$ To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.
Course Outcomes: At the end of the course, the student will be able to
$>$ Utilize mean value theorems to real life problems (L3)
$>$ Solve the differential equations related to various engineering fields (L3)
$>$ Familiarize with functions of several variables which is useful in optimization (L3)
> Apply double integration techniques in evaluating areas bounded by region (L3)
$>$ Students will also learn important tools of calculus in higher dimensions. Students will become familiar with
2 - dimensional and 3-dimensional coordinate systems (L5

$\begin{aligned} & \hline \text { Uni } \\ & \text { t/ } \\ & \text { ite } \\ & \text { m } \\ & \text { No. } \end{aligned}$	Outcomes		Topic	Number of periods	$\begin{aligned} & \text { Total } \\ & \text { perio } \\ & \text { ds } \end{aligned}$	Book Refere nce	Delivery Method
1	CO1:Sequences, Series and Mean value theorems	UNIT-1			15	$\begin{aligned} & \mathrm{T} 1, \mathrm{~T} 3 \\ & , \mathrm{R} 2 \end{aligned}$	 Talk, \& Tutorial
		1.1	Convergences and divergence - Ratio test	3			
		1.2	Comparison tests - Integral test Cauchy's root test	2			
		1.3	Alternate series - Leibnitz's rule.	2			
		1.4	Rolle's Theorem - Lagrange's mean value theorem	3			
		1.5	Cauchy's mean value theorem	2			
		1.6	Taylor's and Maclaurin's theorems with remainders	3			
2	CO2: Differential equations of first order and first degree	UNIT-2			10	$\begin{gathered} \mathrm{T} 1, \mathrm{~T} 3, \\ \mathrm{R} 2 \end{gathered}$	 Tutorial
		2.1	Linear differential equations	2			
		2.2	Bernoulli's equations	2			
		2.3	Exact equations and equations reducible to exact form	2			
		2.4	Applications: Newton's Law of cooling	2			
		2.5	Law of natural growth and decay Orthogonal trajectories - Electrical	2			

LIST OF TEXT BOOKS AND AUTHORS

Text Books:

1) B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education Reference Books:
R1:Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
R2: Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
R3:Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
R4: Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

Sequence and Series and Mean
Value Theorem.
Mean Value Theo rem:
(1) Rofle's theorem
(2) Lagrange's theorem
(3) cauchy's theorem
(4) Taylol's theorem
(5) Muolunn's theorem
(1) Rolle's Theoreni:

* verify the Rolle's theorem for the following functions.
(1). $f(x)=\frac{\sin x}{e^{x}}$ in $[0, \pi]$
(2) $f(x)=\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$ in $[a, b]$
(3) $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$
(4) $f(x)=|x|$ in $[-1,1]$
(5) $f(x)=\frac{1}{x^{2}}$ in $[-1,1]$
(6) $f(x)=\sin x$ in $[-\pi, \pi]$
(7) $f(x)=\operatorname{Tan} x$ in $[0, \pi]$
(8) $f(x)=\sec x$ in $[0,2 \pi]$
(9) $f(x)=e^{x} \cdot \sin x \quad[0, \pi]$
(10) $f(x)=(x-a)^{m} \cdot(x-b)^{n}$ in $[a, b]$

Rolle's Theorem:
Let $f(x)$ be a function of x defined $i n(a, b)$
(i) $f(x)$ is continuous in $[a, b]$
(ii) $f(x)$ is derivable in (a, b)
(iii) $f(a)=f(b)$
then $\mathcal{F} a \cdot c \in(a, b) \cdot \ni f(c)=0$.
(1) $\quad f(x)=\frac{\sin x}{e^{x}} \quad[0, \pi]$
(i) $f(x)=\frac{\sin x}{e^{x}}$ is continuous for all x :
$f(x)$ is continuous in $[0, \pi]$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =\frac{e^{x} \cdot \cos x-\sin x \cdot e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x}(\cos x-\sin x)}{\left(e^{x}\right)^{4}} \\
f^{\prime}(x) & =\frac{\cos x-\sin x}{e^{x}} \text { is exist } \forall x .
\end{aligned}
$$

$\Rightarrow f^{\prime}(x)$ is exist in the interval $[0, \pi]$
$\therefore f(x)$ is derivable in $(0, \pi)$.
\Rightarrow We have to show that $f(0)=f(T)$

$$
\begin{aligned}
& f(0)=\frac{\cos \theta+\sin 0}{e^{0}}=\frac{x 0}{1}=0 . \\
& f(\pi)=\frac{\sin \pi}{e^{\pi}}=\frac{0}{e^{\pi}}=0
\end{aligned}
$$

Then \exists exist $c \in(a, b) \ni \cdot f^{\prime}(c)=0$.

$$
\begin{aligned}
& f(x)=\frac{\sin x}{e^{x}} \\
& f^{\prime}(x)=\frac{\cos x-\sin x}{e^{x}} \\
& f^{\prime}(c)=\frac{\cos c-\sin c}{e^{c}}=0 \\
& \cos c-\sin c=0 \\
& \sin c=\cos c \\
& \tan c=1 \\
& c=\tan ^{-1}(1) \\
& c=\pi / 4 \in[0, \pi]
\end{aligned}
$$

(2) $f(x)=\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$ in $[a, b] \quad a>0, b>0$.
$f(x)=\log \left(x^{2}+a b\right)-\log x(a+b)$ is continuous th x :"
except at $x=0 \notin[a, b]$.
(i) $f(x)$ es continuous in $[a, b]$
(ii)

$$
\begin{aligned}
f(x) & =\log \left(x^{2}+a b\right)-\log x-\log (a+b) \\
& =\frac{1}{x^{2}+a b}(2 x)-\frac{1}{x}-0 .
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+a b}-\frac{1}{x} \text { is exist }\left(v^{\prime} x^{\prime}\right) \text { in }(a, b)
$$

$f(x)$ is derivable in $(a ; b)$

$$
\begin{aligned}
f(a) & =\log \left(a^{2}+a b\right)-\log a(a+b) \\
& =\log \left(a^{2}+a b\right)-\log \left(a^{2}+a b\right) \\
& =0 \\
f(b) & =\log \left(b^{2}+a b\right)-\log b(a+b) \\
& =\log \left(b^{2}+a b\right)-\log \left(a b+b^{2}\right) \\
& =0 \\
f(a) & =f(b) \\
\text { \# } & a c \in(a, b) \cdot f^{\prime}(c)=0
\end{aligned}
$$

We have $f^{\prime}(x)=\frac{2 x}{x^{2}+a b}-\frac{1}{x}$

$$
\begin{aligned}
& f^{\prime}(c)= \frac{2 c}{c^{2}+a b}-\frac{1}{c}=0 \\
& 2 c^{2}-c^{2}-a b=0 \\
& c^{2}=a b \\
& c=\sqrt{a b} \\
& c=\sqrt{a b}(a r)-\sqrt{a b} \\
& c=\sqrt{a b} \in(a, b) .
\end{aligned}
$$

(3) $f(x)=x \cdot(x+3) e^{-x / 2}$ en $[-30]$
soddy $f(x)$ is contencious $\forall x$.
(i) $f(x)$ is continuous in $[-3,0]$
(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}+3 x\right) e^{-x / 2} \\
f^{\prime}(x) & =\left(x^{2}+3 x\right) e^{-x / 2} \cdot \frac{-1}{2}+e^{-x / 2}(2 x+3) \\
& =\frac{-\left(x^{2}+3 x\right)}{2} e^{-x / 2}+(2 x+3) e^{-x / 2} \\
& =e^{-x / 2}\left[(2 x+3)-\frac{\left(x^{2}+3 x\right)}{2}\right] \\
& =e^{-x / 2}\left[\frac{4 x+6-x^{2}-3 x}{2}\right] \\
& =e^{-x / 2}\left[\frac{-x^{2}+x+6}{2}\right] \\
& =\frac{e^{-x / 2}}{2}\left(-x^{2}+x+6\right)
\end{aligned}
$$

$f^{\prime}(x)$ is exist in E-30].
$\Rightarrow f(x)$ is derivable in $(-3,0)$.
We have to show that if $(-3)=f(0)$

$$
\begin{aligned}
& f(-3)=-3(-3+3) e^{-3 / 2} \\
&=-3(0) e^{-3 / 2} \\
&= 0 \\
& f(0)= 0(0+3) e^{-0 / 2} \\
&= 0 \\
& \therefore f(-3)=f(0)
\end{aligned}
$$

Then fa $c \in(a, b) \ni f^{\prime}(c)=0$.

$$
\begin{gathered}
f^{\prime}(x)=\frac{e^{-x / 2}}{2}\left(-x^{2}+x+6\right) \\
f^{\prime}(c)=\frac{e^{-c / 2}}{2}\left(-x^{2}+c+6\right)=0 \\
\left(-c^{2}+c+6\right) e^{-c / 2}=0 \\
e^{-c / 2}=0 \text { and }-c^{2}+c+6=0 \\
c^{2}-c-6=0 \\
c^{2}-3 c+2 c-6=0 \\
c(c-3)+2(c-3)=0 \\
(c-3)(c+2)=0 \\
c=3, \quad c=-2) \in(-3,0)
\end{gathered}
$$

(4). $f(x)=|x|$ in $[-1,1]$

Sol:- We know that $|x|=\left\{\begin{array}{cl}-x & \text { if } x<0 \\ x & \text { if } x>0 .\end{array}\right.$
(1) $f(x)=|x|$ is contincious $\forall x$
$\Rightarrow|x|$ is continuous in $[-1,1]$
(i) The derivative of $|x|$ does not exist.

Because,

$$
\text { L.H.D } \begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\
= & \lim _{x \rightarrow 0^{-}}\left(\frac{-x-0}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}} \frac{-x}{x} \\
& =\lim _{x \rightarrow 0^{-}}(-1)=-1
\end{aligned}
$$

R.H.D

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
= & \lim _{x \rightarrow 0^{+}} \frac{x-0}{x-0} \\
= & \lim _{x \rightarrow 0^{+}} \frac{x}{x} \\
= & \lim _{x \rightarrow 0^{+}}(1)=1 \\
& \therefore \text { L.H.D } \neq \text { R.H.D }
\end{aligned}
$$

Hence Rolle's theorem is not verified.
(10). $f(x)=(x-a)^{m} \cdot(x-b)^{n}$ in $[a, b]$.
soly $f(x)$ is sxist $\forall x$.
$\Rightarrow f(x)$ is contincrous in $[a, b]$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =(x-a)^{m} \cdot(x-b)^{n} \\
f^{\prime}(x) & =(x-a)^{m} \cdot n(x-b)^{n-1}+(1-a-b)^{n} m(x-a)^{m-1}(1-0) \\
& =n \cdot(x-b)^{n-1} \cdot(x-a)^{m}+m \cdot(x-a)^{m-1} \cdot(x-b)^{n} \\
& =n \cdot(x-b)^{n} \cdot(x-b)^{-1} \cdot(x-a)^{m}+m \cdot(x-a)^{m} \cdot(x-a)^{-1}(x-b)^{n} \\
& =(x-a)^{m}(x-b)^{n}\left[n \cdot(x-b)^{-1}+m \cdot(x-a)^{-1}\right] \\
& =(x-a)^{m} \cdot(x-b)^{n}\left(\frac{n}{x-b}+\frac{m}{x-a}\right) \\
& =(x-a)^{n} \cdot(x-b)^{n}\left(\frac{n(x-a)+m(x-b)}{(x-a)(x-b)}\right)
\end{aligned}
$$

$f(x)$ is exist $\forall x$. except at $x=a$ and $x=b . \notin(x, b)$
$\therefore f(x)$ is exist in (a, b).
$\therefore f(x)$ is derivable in (a, b)

$$
\begin{aligned}
f(a) & =(a-a)^{m} \cdot(a-b)^{n} \\
& =0)^{0} \cdot(a-b)^{n} \\
& =0 .
\end{aligned}
$$

$$
\begin{aligned}
f(b)= & (b-a)^{m}(b-b)^{n} \\
= & (b-a)^{m}(0) \\
= & 0 . \quad f(a)=f(b)
\end{aligned}
$$

Then f a $c \in(a, b) \ominus f^{\prime}(c)=0$

$$
\begin{aligned}
& f(x)=(x-a)^{m} \cdot(x-b)^{n} \\
& f^{\prime}(x)=(x-a)^{m} \cdot(x-b)^{n}\left(\frac{n(x-a)+m(x-b)}{(x-a) x-b)}\right) \\
& f^{\prime}(c)=(c-a)^{m} \cdot(c-b)^{n} \cdot\left[\frac{n(c-a)+m(c-b)}{(c-a)(c-b)}\right]=0 \\
&=(c-a)^{m}(c-b)^{n}\left[\frac{n c-n a+m c-m b}{(c-a)(c-b)}\right]=0 \\
&=(c-a)^{m} \cdot(c-b)^{n} \quad\left[\frac{(m+n) c-(n a+m b)}{(c-a)(c-b)}\right]=0 \\
&(c-a)^{m}=0 \quad(c-b)^{n}=0 \quad a n d(m+n) c-n a-m b=0 \\
& \Rightarrow(m+n) c=\frac{m a+m b}{m} \\
& \quad c=\frac{n a+m b}{m+n} \in(a, b)^{\prime}
\end{aligned}
$$

(5) $f(x)=\frac{1}{x^{2}}$ in $[-1,1]$.

Sol: $f(x)=\frac{1}{x^{2}}$
$f(x y)$ is
$\Rightarrow f(x)$ is does not continuous. in $[-1 ; 1]$ except at $x=0$

$$
f^{\prime}(x)=-2 x^{-3}=\frac{-2}{x^{3}}
$$

$\Rightarrow f(x)$ is dos not derivable in $(-1,1)$ except at $t=0$.
But $t=0 \in(-1,1)$
\therefore Rolles theorem can not applied.
(6) $f(x)=\sin x$ in $[-\pi, \pi]$.
sols

$$
f(x)=\sin x
$$

$f(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is continuous in $[-\pi / \pi]$

$$
f^{\prime}(x)=\cos x .
$$

$\Rightarrow f^{\prime}(x)$ is derivable in $(-\pi, \pi)$
We have to show that $f(-\pi)=f(\pi)$

$$
\begin{gathered}
f(-\pi)=\sin (-\pi)=-\sin \pi=0 \\
f(\pi)=\sin \pi=0 \\
f(-\pi)=f(\pi)
\end{gathered}
$$

Then $\exists a c \in(-\pi / \pi) \ni f^{\prime}(c)=0$.

$$
\begin{aligned}
f(x)=\sin x & \Rightarrow f^{\prime}(x)=\cos x \\
f^{\prime}(c) & =0 \\
\cos c & =0 \\
c & =\cos ^{-1}(0) \\
c & =\cos ^{-1}(\cos \pi / 2) \\
c & =\pi / 2 \quad \in(-\pi / 2, \pi / 2)
\end{aligned}
$$

(7)

$$
\begin{aligned}
& f(x)=\tan x \text { in }[0, \pi] \\
& f(x)=\tan x
\end{aligned}
$$

$f(x)$ is exist $\forall x$. except at $x=\pi / 2 \in(0, \pi)$.
$\therefore f(x)$ is does not continuous in $[0, \pi]$.

$$
f^{\prime}(x)=\sec ^{2} x
$$

$f^{\prime}(x)$ is does not exist $\forall x$. except at $x=0 . \in(0, \pi)$
Rolle's theorem can not be verified.
(8) $f(x)=\sec x$ in $[0,2 \pi]$

$$
f(x)=\sec x
$$

$f(x)$ is exist $-V x$. Except at $x=\pi / 2 \in(0,2 \pi)$
$\rightarrow f(x)$ is contincious in $[0,2 \pi]$ except at $x=\pi / 2 \in(0,2 \pi)$

$$
f^{\prime}(x)=\sec x \cdot \tan x
$$

$f^{\prime}(x)$ is exist $\forall x$. Except at $x=\pi / 2 \in(0,2, \pi)$
$\Rightarrow f^{\phi}(x)$ is derivable $\operatorname{pn}(0,2 \pi)$ Except at $x=\pi / 2$.
$\Rightarrow f(0)=f(2 \pi)$ (wB have to S.T)

$$
\begin{aligned}
& f(0)=\sec 0^{\circ}=1 \\
& f(2 \pi)=\sec 2 \pi=1 \\
& f(0)=f(2 \pi)
\end{aligned}
$$

Then $\mathcal{J} a c \in(0,2 \pi) \ni f^{\prime}(c)=0$

$$
\begin{array}{ll}
\sec c \cdot \tan c=0 & \\
\tan c=0 & \text { and } \sec c=0 \\
c=\tan ^{-1}(0) & c=\sec ^{-1}(0) \\
c=\tan ^{-1}(\tan 0) & \operatorname{sic} \sec ^{-1} \sec \\
c=0 &
\end{array}
$$

(9) $f(x)=e^{x}-\sin x$ in $[0, \pi]$.

$$
f(x)=e^{x} \sin x
$$

$f(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is contincious in $[0, \pi]$

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \cos x+\sin x e^{x} \\
& =e^{x}(\cos x+\sin x)
\end{aligned}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is derivable in $(0, \pi)$.
we have to show that

$$
\begin{aligned}
& \Rightarrow \text { we have to show that } \\
& f(0)=f(\pi) \text {. } \\
& f(0)=e^{0} \cdot \sin 0=0 \\
& f(\pi)=e^{\pi} \sin \pi=0 \\
& f(0)=f(\pi)
\end{aligned}
$$

Then $\exists a c \in(0, \pi) \ni f^{\prime}(c)=0$

$$
\begin{aligned}
e^{c}(\cos c+\sin c) & =0 \\
\cos c+\sin c & =0 \\
\sin c & =-\cos c \\
\frac{\sin c}{\cos c} & =-1 \\
\tan c & =-1 \\
c & =\tan ^{-1}(-1) \\
c & =\tanh ^{-1}(\tan 3 \pi / 4) \\
c & =3 \pi / 4] \in[0, \pi)] .
\end{aligned}
$$

seturday
Lagrange's mean. Value Theorem:
Let $f(x)$ be function of x : if
(i) $f(x)$ is contincious in $[a, b]$
(ii) $f(x)$ is derivable in (a, b)
((a, i) Then $\mathcal{J} a c \in(a, b) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
(1) $f(x)=x(x-1)(x-2)$. in $[0,1 / 2]$
(2) $f(x)=\log x \quad[1, e]$
(3) $f(x)=e^{x}[0,1]$
(4). $f(x)=\frac{1}{x} \quad[1,4]$
(5) $f(x)=x-x^{3} \quad[-2,1]$
(6). If $x>0$ show, that $x>\log (1+x)>x-\frac{x^{2}}{2}$

By lising LM.M.T,
(8) $\frac{\pi}{3}-\frac{1}{5 \sqrt{3}}>\cos ^{-1}(8 / 5)>\pi / 3-1 / 8$.
(9) $x \leq \sin ^{-1} x \leq \frac{x}{1-x^{2}}$
(1) $f(x)=x(x-1)(x-2)$ in $[0,1 / 2]$
$f(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is continuous in $[0,1 / 2]$

$$
\begin{aligned}
f^{p}(x) & =\left(x^{2}-x\right)(x-2) \\
& =x^{3}-2 x^{2}-x^{2}+2 x \\
f(x) & =x^{3}-3 x^{2}+2 x \\
f^{\prime}(x) & =3 x^{2}-6 x+2
\end{aligned}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is derivable in $(0, t / 2)$.
\Rightarrow Then $\mathcal{F} c \in(0,1 / 2) \partial f(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{aligned}
& 3 c^{2}-6 c+2=\frac{3 / 8}{-1 / 2}-0 \\
& 3 c^{2}-6 c+2=\frac{3}{8} \times \frac{3 / 1}{4} \\
& 3 c^{2}-6 c+2-3 / 4=0 \\
& 3 c^{2}-6 c+5 / 4=0 \\
& c=\frac{6 \pm \sqrt{36-15}}{2(3)} \\
&=\frac{6 \pm \sqrt{21}}{6} \\
&=\frac{6}{6} \pm \frac{\sqrt{21}}{6}, \\
&=1+\frac{\sqrt{21}}{6}, 1-\frac{\sqrt{21}}{6} \\
& c=1-\frac{\sqrt{21}}{6} \in(0,1 / 2)
\end{aligned}
$$

(2) $f(x)=\log x$ in $[1, e]$
$f(x)$ is continuous $\forall x$. except at $x=0 \notin(1, e)$
$\Rightarrow f(x)$ is continuous in $[1, e]$

$$
f^{\prime}(x)=\frac{1}{x} \text {. }
$$

$f^{\prime}(x)$ is exist $\forall x$. except at $x=0 \notin(1, e)$.
$\Rightarrow f^{p}(x)$ is derivable in $(1, e)$.

Then $f a \quad c \in(1, e) \rightarrow f^{\prime}(c)=\frac{\delta(b)-f(a)}{b-a}$

$$
\begin{array}{rlrl}
\frac{1}{c} & =\frac{\log e-\log 1}{e-1} \\
\frac{1}{c} & =\frac{1-0}{e-1} \\
\frac{1}{c} & =\frac{1}{e-1} & & \\
\Rightarrow & e=2.7-e-1 & C(1, e) & e-1
\end{array}=2.7-19 .
$$

(3). $f(x)=e^{x}$ in $[0,1]$
$f(x)$ is continciocis $\forall x$.
$\Rightarrow f(x)$ is contincious in $[0, t]$
$f^{\prime}(x)=e^{x}$ is exist $\forall x$.
$\Rightarrow f(x)$ is derivable in $(0, i)$.
Then $\mathcal{F} \in \in(0,1) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{aligned}
& e^{c}=\frac{e^{1}-e^{0}}{1-0} \\
& e^{c}=\frac{e-1}{1} \\
& e^{c}=e-1 \\
& c=\log (e-1) \in(0,1)
\end{aligned}
$$

(4) $f(x)=\frac{1}{x}$ in $[1,4]$
$f(x)$ is continuous $\forall x$. except at $x=0 \notin(1,4)$
$\Rightarrow f(x)$ is contincious in $[1,4]$
$f^{\prime}(x)=\frac{-1}{x^{2}}$ is exist $\forall x$. Except at $x=0 \notin(1,4)$
$\Rightarrow f(x)$ is derivable in $(1,4)$
Then $\mathcal{F} a \quad c \in(1,4) \rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{aligned}
& \frac{-1}{c^{2}}=\frac{1 / 4-1}{4-1} \\
& \frac{-1}{c^{2}}=\frac{\frac{1-4}{4}}{3} \\
& \frac{-1}{c^{2}}=\frac{-3 / 4}{46}
\end{aligned}
$$

$$
\begin{aligned}
+\frac{1}{c^{2}} & =\frac{+1}{4} \\
c^{2} & =4 \\
c & =\sqrt{4} \Rightarrow c= \pm 2 \\
c & =2 \in(1,4)
\end{aligned}
$$

(5) $f(x)=x-x^{3}$ in $[-2,1]$
$f(x)=x-x^{3}$ is contencious $\forall x$.
$\rightarrow f(x)$ is contincloces in $[-2,1]$.

$$
f^{\prime}(x)=1-3 x^{2}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$\Rightarrow f(x)$ is derivable in $(-2,1)$

$$
\begin{aligned}
\mathcal{J} c \in(-2,1) & \rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
1-3 c^{2} & =\frac{\left[1-(1)^{3}\right]-\left[-2-(-2)^{3}\right]}{1-(-2)} \\
1-3 c^{2} & =\frac{(1-1)-(-2-(-8))}{1+2} \\
1-3 c^{2} & =\frac{0-c-2+8)^{\prime}}{3} \\
3-9 c^{2} & =-6 \\
A c^{2} & =9 \\
c^{2} & =1 \\
c & = \pm 1 \\
c & =-1
\end{aligned}
$$

(6) If $x>0$ show that $x>\log (1+x)>x-\frac{x^{2}}{2}$.
sol:-
Let us take $f(x)=\log (1+x)$
since. $f(x)=\log (1+x)$ is continuous $\forall x>0$. and $f(x)$ is derivable $f=x>0$:

By -using L.M.V.T,

$$
J_{a} c \in(0, x) \rightarrow f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}
$$

We have $f(x)=\log (1+x)$

$$
\begin{align*}
& f^{\prime}(x)=\frac{1}{1+x} \\
& \frac{1}{1+c}=\frac{\log (1+x)-\log (1+0)}{x-0} \\
& \frac{1}{1+c}=\frac{\log (1+x)-0}{x} \\
& \frac{1}{1+c}=\frac{\log (1+x)}{x} \rightarrow c \tag{1}
\end{align*}
$$

Given that $0<c<x$

$$
\begin{aligned}
& 1<c+1<x+1 \\
& 1<\frac{1}{c+1}<\frac{1}{x+1} \\
& 1<\frac{\log (1+x)}{x}<\frac{1}{x+1} \\
& x<\log (1+x)<\frac{x}{1+x}
\end{aligned}
$$

(7) Let $f(x)=\tan ^{-1} x$ in $[a, b]$

Giver, $\forall(x)$ Ps continuous I x. except. $f(x)$ is contincious in $[a, b]$ and $f(x)$ is derivable in (a, b).
By using L.M.V.T,
Then $f a c \in(a, b) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\frac{1}{1+c^{2}}=\frac{\tan ^{-1}(b)-\tan ^{-1}(a)}{b-a}
$$

Given that, $a<c<b$

$$
\begin{aligned}
& a^{2}<c^{2}<b^{2} \\
& 1+a^{2}<1+c^{2}<1+b^{2} \\
& \frac{1}{1+a^{2}}>\frac{1}{1+c^{2}}>\frac{1}{1+b^{2}} \\
& \frac{1}{1+a^{2}}>\frac{\tan ^{-1}(b)-\tan ^{-1}(a)}{b-a}>\frac{1}{1+b^{2}} \\
& \frac{b-a}{1+a^{2}}>\tan ^{-1}(b)-\tan ^{-1}(a)>\frac{b-a}{1+b^{2}}
\end{aligned}
$$

Given that $a=1, \quad b=4 / 3$

$$
\begin{aligned}
& \frac{4 / 3-1}{1+(1)^{2}}>\tan ^{-1}(4 / 3)-\tan ^{-1}(1)>\frac{4 / 3-1}{1+(9 / 3)^{2}} \\
& \frac{1 / 3}{2}>\tan ^{-1}(4 / 1)-\pi / 4>\frac{1 / 3}{\frac{25}{9 / 3}} \\
& \frac{1}{6}>\tan ^{-1}(4 / 3)-\pi / 4>\frac{3}{25} \\
& \frac{1}{6}+\frac{\pi}{4}>\tan ^{-1}(4 / 3)>\frac{3}{25}+\frac{\pi}{4} \\
& \frac{\pi}{4}+\frac{3}{25}>\tan ^{-1}(4 / 3)>\frac{\pi}{4}+\frac{1}{6} .
\end{aligned}
$$

(8)

Given that, $f(x)$ is continuous in $[a, b]$.
and $f(x)$ is derivable in (a, b)
By using L-M.VT;

$$
\begin{aligned}
& \text { Fa } c \in(a, b) \ni f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
& f(x)=\cos ^{-1} x \Rightarrow f^{\prime}(x)=\frac{-1}{\sqrt{1-x}} \\
& \frac{-1}{\sqrt{1-c^{2}}}=\frac{\cos ^{-1}(b)-\cos ^{-1}(a)}{b-a}
\end{aligned}
$$

wee know that, $\quad a<c k b$

$$
\begin{aligned}
& \because a^{2}<c^{2}<b^{2} \\
& -a^{2}>-c^{2}>-b^{2} \\
& 1-a^{2}>1-c^{2}>1-b^{2} \\
& \quad \sqrt{1-a^{2}}>\sqrt{1-c^{2}}>\sqrt{1-b^{2}} \\
& \quad \frac{1}{\sqrt{1-a^{2}}}<\frac{1}{\sqrt{1-c^{2}}}<\frac{1}{\sqrt{1-b^{2}}} \\
& \frac{1}{\sqrt{1-a^{2}}}<\frac{\cos ^{-1}(a)-\cos ^{2}(b)}{b-a}<\frac{1}{\sqrt{1-b^{2}}} \\
& \frac{-(b-a)}{\sqrt{1-a^{2}}} \geq-\left[\cos ^{+1}(a)-\cos ^{-1}(b)\right]<\frac{-(b-a)}{\sqrt{1-b^{2}}}
\end{aligned}
$$

Given that $a=3 / 5,1$ be.

$$
\frac{a-b}{\sqrt{1-a^{2}}}>\cos ^{-1}(b)-\cos ^{-1}(a)>\frac{a-b}{\sqrt{1-b^{2}}}
$$

Given that

Monday
ail 10 Cauchy's mean value Theorem:
Let $f(x), g(x)$, are a functions of ' x '.
(i) $f(x), g(x)$ are continuous in $[a, b]$
(ii) $f(x), g(x)$ are derivable in (a, b)

Then $\mathcal{J} a c \in(a, b) \Rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g^{\prime}(b)-g(a)}$
verify the cauchy's mean value Theorem for the following functions.
(1) $f(x)=\sqrt{x}, g(x)=\frac{1}{\sqrt{x}}$ in $[a, b] \quad \ll a<b$.
(2) $f(x)=\sin x, \quad g(x)=\cos x$ in $[0, \pi / 2]$
(3). $f(x)=e^{x}, \quad g(x)=e^{-x}$ in $[a, b]$
(4) $f(x)=\frac{1}{x^{2}}, g(x)=\frac{1}{x}$. in $[a, b]$ if $0<a<b$.
(5) $f(x)=x^{2}+2 ; g(x)=x^{3}-1$ in $[1,2]$
(6) $f(x)=\log x, \quad g(x)=\frac{1}{x}$ in $[1, e]$
(7) $f(x)=x^{3}, g(x)=2-x$ in $[0,9]$
(1) $f(x)$ is always continuous $\forall x$.
$g(x)$ is continuous $\forall x$. Except at $x=0 \notin(a, b)$ (0<a<b]
$\Rightarrow f(x), g(x)$ are continuous in $[a, b]$.

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, g^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

$f^{\prime}(x)$ is exist $\forall x$: except at $x=0 \notin(a ; b)$
$f(x)$ is derivable in (a, b).
$g^{\prime}(x)$ is exist $\forall x$. Except at $x=0 \in(a, b)$
$g(x)$ is derivable in (a, b)
$\Longrightarrow f(x), g(x)$ are derivable in (a, b)
Then $f a c \in(a, b) \geqslant \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

$$
\frac{\frac{1}{2 \sqrt{c}}}{\frac{-1}{2 \sqrt{x}} c}=\frac{\sqrt{b}-\sqrt{a}}{\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{a}}}
$$

$$
\begin{aligned}
-c & =\frac{\sqrt{b}-\sqrt{a}}{\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}} \\
+c & =\frac{\sqrt{b}-\sqrt{2}}{+(\sqrt{b}-\sqrt{a})} \sqrt{a b} \\
c & =\sqrt{a b} \in(a, b)
\end{aligned}
$$

(2) $f(x)=\sin x, g(x)=\cos x . \quad[0, \pi / 2]$ $f(x), g(x)$ are always continctaus $\forall x$.
$\Rightarrow f(x), g(x)$ are contincious in $[0, \pi / 2]$.

$$
f^{\prime}(x)=\cos x, \quad g^{\prime}(x)=-\sin x
$$

$f^{\prime}(x)$ is exist $\forall x$.
$g^{\prime}(x)$ is exist $\forall x$.
$\Rightarrow f(x), g(x)$ are derivable in $(0, \pi / 2)$
Then $\exists a c \in(0, \pi / 2) \rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(c)}{g(b)-g(a)}$

$$
\begin{aligned}
\frac{\cos C}{-\sin C} & =\frac{\sin \pi / 2-\sin 0}{\cos \pi / 2-\cos 0} \\
\frac{\cos c}{-\sin C} & =\frac{1-0}{0-1} \\
\frac{\cos C}{+\sin C} & =\frac{1}{+1} \\
\cos C & =\sin C \\
\frac{\sin C}{\cos C} & =1 \\
\tan C & =1 \\
c & =\tan (1) \\
\quad c & =\pi / 4 \quad \in(0, \pi / 2)
\end{aligned}
$$

(3) $f(x)=e^{x}, \quad g(x)=e^{-x}$ in $[a, b]$
$f(x)$ is contincuass $\forall x$:
$g(x)$ is continuous $\forall x$.
$\Rightarrow f(x), g(x)$ are continuous in $[a, b]$

$$
\begin{array}{ll}
f(x)=e^{y} & g(x)=e^{-x} \\
f^{\prime}(x)=e^{x} & g^{\prime}(x)=-e^{-x}
\end{array}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$g^{\prime}(x)$ is Exist $\forall x$.
$\Rightarrow f(x), g(x)$ ate derivable in (a, b)
Then $J_{a} c \in(a, b) \rightarrow \frac{f f(i)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

$$
\begin{aligned}
\frac{e^{c}}{-e^{-c}} & =\frac{e^{b}-e^{a}}{e^{-b}-e^{-x}} \\
-e^{c} \cdot e^{c} & =\frac{e^{b}-e^{a}}{\frac{1}{e^{b}}-\frac{1}{e^{a}}} \\
-\left(e^{c}\right)^{2} & =\frac{e^{b}-e^{a}}{\frac{e^{a}-e^{b}}{e^{a} e^{b}}} \\
+e^{2 c} & =\frac{e^{b}-e^{a}}{+c e^{b}-e^{a}} \quad e^{a} e^{b} \\
e^{2 c} & =e^{a} e^{b} \\
e^{2 c} & =e^{a+b} \\
2 c & =a+b \\
c & =\frac{a+b}{2} \in(a, b)
\end{aligned}
$$

(4) $f(x)=\frac{1}{x^{2}, 1} g(x)=\frac{1}{x} \quad$ in $[a, b] \quad(0<a<b$.)
$f(x)$ is continciouls $\forall x$. \&xcept at $x=0 \notin(a, b)$
$g(x)$ is contencrous $\forall x$, exceptat $x=0 \notin(a b)$
$\Rightarrow f(x), g(x)$ are contincuous in $[a, b]$

$$
f^{\prime}(x)=-2 x^{-3} \quad g^{\prime}(x)=\operatorname{deg} x \frac{-1}{x^{2}}
$$

$f^{\prime}(x)$ is exist Af except at $x=0$.
$g^{\prime}(x)$ is exist $\forall x$, Except at $x=0$
$\rightarrow f(x), g(x)$ are derivable in (a, b)
Then $J a c \in(a, b) \quad \vartheta \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

$$
\frac{\frac{12}{x^{3}}}{f 1 / y^{2}}=\frac{1 / b^{2}-1 / a^{2}}{1 / b-1 / a}
$$

$$
\begin{aligned}
& \frac{2}{c}=\frac{\frac{a^{2}-b^{2}}{a^{2} b^{2}}}{\frac{a-b}{a b}} \\
& \frac{2}{c}=\frac{(a+b)(a-b)}{(a b)^{4}} \times \frac{a b}{a-5} \\
& x=\frac{2 a b}{a+b} \in(a \mid b)
\end{aligned}
$$

(5) $f(x)=x^{2}+2, g(x)=x^{3}-1$, in $[1,2]$
$f(x)$ is contincuous $\forall x$.
$g(x)$ is contincious $\forall x$.
$\Rightarrow f(x), g(x)$ are contincious in $[1,2]$

$$
f^{\prime}(x)=2 x . \quad, g^{\prime}(x)=3 x^{2}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$g^{\prime}(x)$ is exist $\forall x$.
$\Rightarrow f(x), g(x)$ ase devivable in $(1,2)$
Then $\mathcal{f} \quad c \in(1,2) \ni \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

$$
\begin{aligned}
\frac{2 \not \subset}{3 C^{4}} & =\frac{\left[(2)^{2}+2\right]-\left[(1)^{2}+2\right]}{\left[(2)^{3}-1\right]-\left((1)^{3}-1\right]} \\
\frac{2}{3 c} & =\frac{(4+2)-(1+2)}{(8-1)-(1-1)} \\
\frac{2}{3 c} & =\frac{6-3}{7-0} \\
\frac{2}{3 c} & =\frac{3}{7} \\
a c & =14 \\
c & =\frac{14}{9} \in(1,2)
\end{aligned}
$$

(6)

$$
f(x)=\log x, g(x)=\frac{1}{x} \text { in }[1, e]
$$

$f(x)$ is continuous $\forall x$. except at $x=0 \notin(1, e)$ $g(x)$ is contincious $\forall x$. Except at $x=0 \notin(1, e)$ $\Rightarrow f(x), g(x)$ are continciouts in $[1, e]$

$$
f^{\prime}(x)=\frac{1}{x} \quad, g^{\prime}(x)=\frac{-1}{x^{2}}
$$

$f^{\prime}(x)$ is exist $\forall x$: except at $x=0 \notin(1, e)$
$g^{\prime}(x)$ is exist $\forall x$. except at $x=0 \quad \notin(1, e)$
$\Rightarrow f(x), g(x)$ is derivable in $(1, e)$.
Then $\mathcal{J} a c \in(1, e) \rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

$$
\begin{aligned}
\frac{1 / c}{-1 / c \psi} & =\frac{\log e-\log 1}{1 / e-1 / 1} \\
-c & =\frac{\log _{e} e-0}{\frac{1-e}{e}} \\
-c & =\frac{1-0}{\frac{1-e}{e}} \\
-c & =\frac{e}{1-e} \\
c & =\frac{e}{e-1} \in(1, e) \\
c & =1.58
\end{aligned}
$$

(7)
$f(x)=x^{3}, g(x)=2-x$ in $[0,9]$
$f(x)$ is continuous $\forall x$.
$g(x)$ is continuous $\forall x$.
$\Rightarrow f(x), g(x)$ are contincious in $[0,9]$

$$
f^{\prime}(x)=3 x^{2}
$$

$f^{\prime}(x)$ is exist $\forall x$.
$f(x)$ is derivable in $(0,9)$.

$$
g^{\prime}(x)=0-1=-1
$$

$g^{\prime}(x)$ is exist $\forall x$.
$g(x)$ is derivable in $(0,9)$.
$\Rightarrow f(x), g(x)$ are derivable in $(0,9)$.

$$
\begin{aligned}
& \text { Then } \mathcal{J} a c \in(0, a) \cdot \ni \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b) \cdot f(a)}{g(b) \cdot g(a)} \\
& \frac{3 c^{2}}{-1}=\frac{(9)^{3}-(0)^{3}(2-0)^{3}}{(2-9)-(2-0)} \\
& +\beta \beta^{2}=\frac{81 \times \phi / B-8}{+A-12} \\
& c^{2} \Rightarrow \frac{81 \times 9}{7} \\
& -3 c^{2}=\frac{721}{-7-2} \\
& +3 c^{2}=\frac{721}{+9} \\
& c^{2}=\frac{721}{27} \\
& c=\sqrt{\frac{721}{27}} \\
& c=5.1675 \quad \in(0,9)
\end{aligned}
$$

2310 Taylor's Expansion And Madurin's:
Taylor's expansion at $x=a, x=1, x=\pi / 2$.
Taylor's expansion about $\}$ at $x=a$

$$
f(x)=f(a)+(x-a) \cdot f(a)+\frac{(a-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots
$$

This is adso called as taytor's expansion in powerx of $(x-1)$.
Maclurinis:
at $x=0, f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots$.
(1) $f(x)=\sin x$
(2) $f(x)=\log (1+x)$
(3) $f(x)=\tan ^{-1} x$
(a) $f(x)=e^{x}$ at $x=1$.
(5) $f(x)=(1-x)^{5 / 2}$
(6) $f(x)=\log x$ in powers of $x-1$ and hence evaluate $\log (.1$ correct to four decimal process.
(7) $f(x)=2 x^{3}-7 x^{2}+x+6$ at $x=2$.
((6) $f(x)=\log x$.
By Teyulor's expention at $x^{\prime}=a$

$$
\begin{aligned}
& f(x)=A(a)+(x-\phi) f)(a)+\frac{(x-a)^{2}}{2!} / f \cdot(a i)+\frac{(x-\mu)^{3} / f^{\prime \prime \prime}}{3!}(a) \uparrow \\
& f(x)=\log x \\
& \Rightarrow \text { if }(x)=\log (x)=0 \text {. } \\
& f(x)=1 \frac{x}{x} \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \\
& f^{\mu 11}(x)=2 x^{-3} \Rightarrow f(x)=2 \\
& \begin{array}{l}
\rightarrow f(x)=1 \\
\Rightarrow f(x)=-1 \\
2 x^{-2} \Rightarrow f(x)=2 \\
\Rightarrow x^{-4} \Rightarrow x(1)=-6
\end{array} \\
& \frac{(x-4)^{4}}{4!} f^{\infty}(x)+ \\
& \text { wrong } \\
& f^{\prime \prime}(x)=-6 x^{-4} \Rightarrow x(1 x=-6 \\
& \therefore f^{\prime}(x)=\log \alpha, a(x-a) \text {. }
\end{aligned}
$$

(6) $f(x)=\log (x)$

By Taylor's explension at $x=a$

$$
\begin{aligned}
& \text { is } f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+ \\
& \text { at } a=1 \\
& \frac{(x-a)^{4}}{4!} f^{(v}(a)+\ldots \\
& f(x)=f(1)+(x-1) s^{\prime}(x)+\frac{(x-4)^{2}}{2!} f^{\prime \prime}(x)+\frac{(x-1)^{3}}{3!} f^{\prime \prime \prime}(1)+ \\
& \frac{(a-1)^{4}}{4!} \cdot f^{(1)}(1)+\cdots \\
& f(x)=\log x \Rightarrow f(1)=\log (1)=0 \\
& f^{\prime}(x)=\frac{1}{x} \quad \Rightarrow f^{\prime}(1)=1 \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \rightarrow f^{\prime \prime}(1)=\left(f\left(x \cdot x^{3}\right)=\left(\left.\frac{x}{x^{2}}=x \right\rvert\, x-1\right.\right. \\
& f^{\prime \prime \prime}(x)=2 x^{-3} \Rightarrow f^{\prime \prime \prime}(1)=2 \\
& f^{\prime V}(x)=-6 x^{-4} \Rightarrow f^{I V}(x)=-6
\end{aligned}
$$

from (1),

$$
\begin{aligned}
& \log x=0+(x-1)(1)+\frac{(x-1)^{2}}{2!}(-1)+\frac{(x-1)^{3}}{3!} 2 \\
&+\frac{(x-1)^{4}}{4!}(-6)+\cdots \\
& \log x=(x-1)-\frac{(x-1)^{2}}{2!}+2 \frac{(x-1)^{3}}{3!}-6 \frac{(x-1)^{4}}{4!}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \log x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6 / 3}(x)-6 \cdot \frac{(x-1)^{4}}{2 y}+\cdots \\
&=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots \\
& \log (1)=(1.1-1)-\frac{(x .1-1)^{2}}{2}+\frac{(1.1-1)^{3}}{3}+\frac{(1.1-1)^{4}}{4}+\cdots \\
&=0.1-\frac{0.01}{2}+\frac{0.001}{3}+\frac{0.00001}{4}+\cdots \\
&=0.1-0.005+0.0003+0.000002 \\
&=0.105302 \\
& \log (101)=0.095310179 \\
& \log (1.1) \cong 0.094
\end{aligned}
$$

(7) $f(x)=2 x^{3}-7 x^{2}+x+6$ at $x=2$.

By Taylor's expansion at $x=2$

$$
\begin{equation*}
\text { is } f(x)=f(2)+(x-2) f^{\prime}(2)+\frac{(x-2)^{2}}{2!} f^{\prime \prime}(2)+\frac{(x-2)^{3}}{3!} f^{\prime \prime} \tag{2}
\end{equation*}
$$

$$
f(x)=2 x^{3}-7 x^{2}+x+6 \Rightarrow f^{\prime}(2)=-4
$$

$$
\begin{equation*}
+\frac{(x-2)^{4}}{4!}+{ }^{w}(2)+\cdots \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& f^{\prime}(x)=2 x-14 x+10 f^{\prime}(2)=24-28+18=-3 \\
& f^{\prime}(x)=6 x^{2}-10-14-10
\end{aligned}
$$

$$
f^{\prime \prime \prime}(x)=12
$$

$f^{\prime \prime}(x)=\sigma$

$$
f^{\prime \prime}(x)=12 x-14 \rightarrow f^{\prime \prime}(2)=24-14=10
$$

$$
\Rightarrow \quad f^{\prime \prime \prime}(2)=12
$$

from (1),

$$
\begin{aligned}
& \text { from }, \\
& 2 x^{3}-7 x^{2}+x+6=-4+(x-2)(-3)+\frac{(x-2)^{2}}{2!} 10+\frac{(x-2)^{3}}{3!} 12 \\
&=-4+(x-2)(-3)+\frac{(x-2)^{2}}{2!} 10+\frac{(x-2)^{3}}{3!} \\
&=-4-3(x-2)+10 \frac{(x-2)^{2}}{2!}+12 \cdot \frac{(x-2)^{3}}{3!}
\end{aligned}
$$

(2) $f(x)=\log (1+x)$

Now, the Maclurin's expansion is

$$
\begin{aligned}
& f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots \\
& f(x)=\log (1+x) \quad \Rightarrow f(0)=\log (1+0)=0 \\
& f^{\prime}(x)=0 \\
& f^{\prime \prime}(x)=\frac{-1}{(1+x)^{2}} \quad \Rightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime \prime}(x)=\frac{2}{(1+x)^{3}} \quad \Rightarrow f^{\prime \prime}(0)=\frac{-1}{0} \\
& f^{\prime V}(x)=\frac{-6}{(1+x)^{4}} \quad \Rightarrow f^{\prime \prime \prime}(0)=2
\end{aligned}
$$

from (1);

$$
\begin{aligned}
\log (1+x) & =0+x(1)+\frac{x^{2}}{2!}(-1)+\frac{x^{3}}{3!}(2)+\frac{x 4}{4!}(-6)+\ldots \\
& =x-\frac{x^{2}}{2!}+2: \frac{x^{3}}{3!}-6 \frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

(5)

$$
f(x)=(1-x)^{5 / 2}
$$

By.: Maclurin's expansion is

$$
\begin{align*}
& f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} f^{\prime V}(0)+\cdots \rightarrow 0 \tag{1}\\
& f(x)=(1-x)^{5 / 2} \Rightarrow f(0)=1 \\
& f^{\prime}(x)=\frac{5}{2}(1-x)^{3 / 2}(-1) \Rightarrow f^{\prime}(0)=\frac{-5}{2} \\
& f^{\prime \prime}(x)=-\frac{5}{2} \frac{3}{2}(1-x)^{1 / 2}(-1) \Rightarrow f^{\prime \prime}(0)=\frac{15}{4} \\
& f^{\prime \prime \prime}(x)=\frac{15}{4} \frac{1}{2}(1-x)^{-1 / 2}(-1) \Rightarrow f^{\prime \prime \prime}(0)=\frac{-15}{8}
\end{align*}
$$

from (1),

$$
\begin{aligned}
(1-x)^{5 / 2} & =1+x \cdot\left(\frac{-5}{2}\right)+\frac{x^{2}}{2!}\left(\frac{15}{4}\right)+\frac{x^{3}}{3!}\left(\frac{-15}{8}\right)+\ldots \\
& =1-\frac{5}{2} x+\frac{15 x^{2}}{4}+-\frac{15}{8}-\frac{x^{3}}{3!}+\ldots \\
& =1-\frac{5}{2} x+\frac{15}{8} x^{2}-\frac{5}{16} x^{3}+\cdots
\end{aligned}
$$

(1) $f(x)=\sin x$.

Now, the Maclurin's expansion is

$$
\begin{aligned}
& \text { Now, the Maclurins Expansion Is } \\
& f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{x y}{4!} f^{\prime \prime}(0)+\cdots \\
& f(x)=\sin x \Rightarrow f^{\prime}(0)=0 \\
& f^{\prime}(x)=\cos x \Rightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=-\sin x \Rightarrow f^{\prime \prime}(0)=0 \\
& f^{\prime \prime \prime}(x)=-\cos x \Rightarrow f^{\prime \prime \prime}(0)=-1 . \\
& f^{\prime \prime}(x)=-(-\sin x) \Rightarrow f^{\prime \prime \prime}(0)=0 .
\end{aligned}
$$

from (1),

$$
\begin{aligned}
& \sin x=0+x(1)+\frac{x^{2}}{2!}(0)+\frac{x^{3}}{3!}(-1)+\frac{x^{4}}{4!}(0)+\ldots \\
& \sin x=x-\frac{x^{3}}{3!}+\ldots
\end{aligned}
$$

(2) $f(x)=\tan ^{-1} x$.

Now, Maclurin's expansion is

$$
\begin{aligned}
& f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime}(0)+\frac{x^{4}}{4!} f^{\prime \prime}(0)+\ldots \\
& f(x)=\tan ^{-1} x \Rightarrow f(0)=\operatorname{Tan}^{-1}(0)=0 \\
& f^{\prime}(x)=\frac{1}{1+x^{2}} \Rightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=\frac{-1}{\left(1+x^{2}\right)^{2}}(2 x) \Rightarrow f^{\prime \prime}(0)=0 . \\
& f^{\prime \prime \prime}(x)=\frac{\left(1+x^{2}\right)^{2}(-2)-(-2 x) 2\left(1+x^{2}\right)(2 x)}{\left[\left(1+x^{2}\right)^{2}\right]^{2}} \\
& =\frac{-2\left(1+x^{2}\right)^{2}+8 x^{2}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{4}} \Rightarrow f^{\prime \prime \prime}(0)=\frac{-2\left(1+(0)^{2}\right)^{2}+0}{(1+0)^{4}}=-2
\end{aligned}
$$

from (1),

$$
\begin{aligned}
& \operatorname{Tan}^{-1} x=0+x \cdot(1)+\frac{x^{2}}{2!}(0)+\frac{x^{3}}{3!}(-2)+\cdots \\
& \operatorname{Tan}^{-1} x=x-2 \frac{x^{3}}{3!}+\ldots
\end{aligned}
$$

(4) $f(x)=e^{x}$ at $x=1$

Now, Taylor's expan spon is

$$
\begin{aligned}
& f(x)=f(\infty)+(x-a)^{\prime} f^{\prime}(x-a)+\frac{x^{2}}{2!} f^{\prime \prime}(x-a)+\frac{x^{3}}{3!} f^{\prime \prime \prime} x-a \\
& f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots
\end{aligned}
$$

\Rightarrow at $a=1$

$$
\begin{align*}
& \text { at } a=1 \tag{1}\\
& f(x)=f(1)+(x-1) \delta^{\prime}(1)+\frac{(x-1)^{2}}{2!} f^{\prime \prime}(1)+\frac{(x-4)^{3}}{3!} f^{\prime \prime \prime}(1)+\ldots
\end{align*}
$$

$$
\begin{aligned}
& f(x)=e^{x} \Rightarrow f(1)=e \\
& f^{\prime}(x)=e^{x} \Rightarrow f^{\prime}(1)=e^{\phi} \\
& f^{\prime \prime}(x)=e^{x} \Rightarrow f^{\prime \prime}(1)=e \\
& f^{\prime \prime \prime} \cdot(x)=e^{x} \Rightarrow f^{\prime \prime \prime}(1)=e \\
& f^{\prime \prime}(x)=e^{x} \Rightarrow f^{\prime V}(1)=e
\end{aligned}
$$

from 10 :

$$
\begin{aligned}
& e^{x}=e+(x-1) e+\frac{(x-1)^{2}}{2!} e+\frac{(x-1)^{2}}{3!} e+\cdots \\
& e^{x}=e\left[1+(x-1)+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{3}}{3!}+\cdots\right]
\end{aligned}
$$

Lif ferentiation
Jormulae:

$$
\text { y+ परe }=\text { \& ताग } \frac{b}{x t}
$$

$$
\begin{aligned}
& \rightarrow \frac{d}{d x}(\text { constant })=0 \\
& \rightarrow \frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1} \\
& \rightarrow \frac{d}{d x}\left(A \cdot x^{n}\right)=A \cdot n \cdot x^{n-1} \\
& \rightarrow \frac{d}{d x}(x)=1 \\
& \rightarrow \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \rightarrow \frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \log a \\
& \rightarrow \cdot \frac{d}{d x}(\sin x)=\cos x \\
& \rightarrow \frac{d}{d x}(\cos x)=-\sin x \\
& \rightarrow \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \rightarrow \frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x \\
& \rightarrow \frac{d}{d x}(\sec x)=\cdot \sec x \cdot \tan x \\
& \rightarrow \frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cdot \cot x \\
& \rightarrow \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \rightarrow \frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}} \\
& \rightarrow \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \rightarrow \frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}} \\
& \rightarrow \frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}} \\
& \rightarrow \frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}} \\
& \rightarrow \frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}} \\
& \rightarrow \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \cdot \log a} \\
& \rightarrow \frac{d}{d x} \cdot \frac{1}{x^{n}}=\frac{-n}{x^{n-1}} \\
& \rightarrow \frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x} \\
& \rightarrow \frac{d}{d x}(|x|)=\frac{|x|}{x} \\
& \rightarrow \frac{d}{d x}(\sin h x)=\cosh x \\
& \rightarrow \frac{d}{d x}(\cosh x)=\sinh x \\
& \rightarrow \frac{d}{d x}(\tan h x)=\operatorname{sech}^{2} x \\
& \rightarrow \frac{d}{d x}(\operatorname{coth} h) \leqslant-\operatorname{cosech}^{2} x \\
& \rightarrow \frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \cdot \tanh x \\
& \rightarrow \frac{d}{d x} \cdot(\operatorname{cosech} x)=-\operatorname{cosec} h x \cdot \operatorname{coth} x \\
& \rightarrow \frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}} \\
& \rightarrow \frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}} \\
& \rightarrow \frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}} \\
& \rightarrow \frac{d}{d x}\left(\operatorname{coth}^{-1} x\right)=\frac{1}{1-x^{2}} \\
& \rightarrow \frac{d}{d x}\left(\operatorname{sech}^{-1} x\right)=\frac{-1}{|x| \sqrt{1-x^{2}}} \\
& \rightarrow \frac{d}{d x}\left(\operatorname{cosech}^{-1} x\right)=\frac{-1}{(x) \sqrt{1+x^{2}}}
\end{aligned}
$$

Integrations
Formulae:

$$
\begin{aligned}
& \rightarrow \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\
& \rightarrow \int x d x=\frac{x^{2}}{2}+c \\
& \rightarrow \int(1) d x=x+c \\
& \rightarrow \int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c \\
& \rightarrow \int \frac{1}{x} d x=\log ^{x} x+C \\
& \rightarrow \int \frac{1}{a x+b} d x=\frac{\log _{e}(a x+b)}{a}+c \\
& \rightarrow \int e^{x} d x=e^{x}+c \\
& \rightarrow \int e^{a x+b} d x=\frac{e^{a x+b}}{a}+c \\
& \rightarrow \int a^{-x} \cdot d x=\frac{a^{x}}{\log a}+c \\
& \rightarrow \int k^{a x+b} d x=\frac{k^{a x+b}}{a \cdot \log k}+c \\
& \rightarrow \int \log x d x=x \log x-x \text {. } \\
& \rightarrow \int \sin x d x=-\cos x+c \\
& \rightarrow \quad \int \cos x d x=+\sin x+c \\
& \rightarrow \int \sin (a x+b) d x=\frac{-\cos (a x+b)}{a}+c \\
& \rightarrow \int \cdot \tan x d x=\log |\sec x|+c \\
& \rightarrow \int \tan x \cdot d x=-\log ^{\prime}|\cos x|^{\prime \prime}+c
\end{aligned}
$$

$$
\begin{align*}
& \rightarrow \int \tan (a x+b) d x=\log \frac{\sec (a x+b)}{a}+c \\
& \rightarrow \int \cot x d x=\log |\sin x|+c \\
& \rightarrow \int \sec a x \cdot d x=\log |\sec x+\tan x|+c \\
& \rightarrow \int \operatorname{cosec} x d x=\log (\operatorname{cosec} x-\cot x)+c \\
& \rightarrow \int(f(x))^{n}=\frac{f(x)^{n+1}}{n+1}+c \\
& \rightarrow \int \frac{f^{\prime}(x)}{f^{\prime}(x)} d x=\log |f(x)|+c \\
& \rightarrow \int \frac{f^{\prime}(x)}{\sqrt{f(x)}} d x=2 \sqrt{f(x)}+c \\
& \rightarrow \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\
& \rightarrow \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c \\
& \left.\left.\rightarrow \int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \right\rvert\, \frac{a+x}{a-x}\right)+c \\
& \rightarrow \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c \\
& \rightarrow \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\sin n h^{-1}\left(\frac{x}{a}\right)+c \\
& \rightarrow \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \\
& \rightarrow \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\cos h^{-1}\left(\frac{x}{a}\right)+c \\
& \rightarrow \log \left(x+\sqrt{x^{2}+a^{2}}\right)+c \\
& \rightarrow \cos ^{-1}\left(x+\sqrt{x^{2}-a^{2}}\right)+c \\
& \rightarrow
\end{align*}
$$

$$
\begin{aligned}
& \rightarrow \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\
& \rightarrow \int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \sinh ^{-1}\left(\frac{x}{a}\right)+C \\
& \rightarrow \int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \cosh ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
$$

ILATE

$$
\begin{aligned}
& \rightarrow \int e^{a x} \cdot \sin b x \cdot d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cdot \sin b x-b \cdot \cos b x]+c \\
& \rightarrow \int e^{a x} \cos b x \cdot d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cdot \cos b x+b \sin b x]+c
\end{aligned}
$$

U,V formulae:

$$
\begin{aligned}
& \rightarrow d(u \pm v)=d(u) \pm d(v) \\
& \rightarrow d(u \cdot v)=d(d \cdot d \cdot u \cdot d v+v \cdot d u . \\
& \rightarrow d\left(\frac{u}{v}\right)=\frac{v \cdot d u-u \cdot d v}{v^{2}}
\end{aligned}
$$

Solutions of First Order Differential
Equations fid Applications.
(4) $\cos ^{2} x \frac{d y}{d x}+y=\operatorname{Tan} x$.

Sol:-

$$
\begin{align*}
\frac{\cos ^{2} x}{\cos ^{2} x} \frac{d y}{d x}+\frac{y}{\cos ^{2} x} & =\frac{\tan x}{\cos ^{2} x} \\
\quad \frac{d y}{d x}+\frac{1}{\cos ^{2} x} \cdot y & =\tan x \cdot \sec ^{2} x \\
\frac{d y}{d x}+\sec ^{2} x \cdot y & =\tan x \cdot \sec ^{2} x \tag{1}
\end{align*}
$$

Here $P=\sec ^{2} x \quad Q=\tan x \cdot \sec ^{2} x$
Now, I.f $e^{\int p(x) d x}=e^{\int \sec ^{2} x \cdot d x}$

$$
=e^{\tan x}
$$

Now the solution of equi(i) is

$$
y \cdot e^{\tan x}=\int \tan x \cdot \sec ^{2} x \cdot e^{\tan x} d x+c
$$

y.

Let $\tan x=t$

$$
\begin{aligned}
& \sec ^{2} x \cdot d x=d t \\
y \cdot e^{\tan x} & =\int t-e^{t} \cdot d t+c \\
& =t-e^{t}-e^{t}+c+\frac{D}{e^{t}} \\
& =e^{t}(t-1)+c-1>e^{t} \\
y \cdot e^{\tan x} & =e^{\tan x}(\tan x-1)+c
\end{aligned}
$$

(2) $\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{d x}{d y}=1$

Sol:-

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{1}{\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}} \\
& \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} .
\end{aligned}
$$

$$
\begin{align*}
& \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \\
& \frac{d y}{d x}+\frac{1}{\sqrt{x}} \cdot y=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \tag{1}
\end{align*}
$$

where $P=\frac{1}{\sqrt{x}}$, and $Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$
Now, I.F $=e^{\int P(x) d x}$

$$
\begin{aligned}
& =e^{\int \frac{1}{\sqrt{x}} d x} \\
& =e^{\int x^{-1 / 2} d x} \\
& =e^{\frac{x^{1 / 2}}{1 / 2}} \\
& =e^{2 \sqrt{x}}
\end{aligned}
$$

Now the solution of equ (1) is

$$
\begin{aligned}
y \cdot e^{2 \sqrt{x}} & =\int \frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \cdot e^{2 \sqrt{x}} d x+c \\
& =\int \frac{1}{\sqrt{x}} d x+c \\
& =\int x^{-1 / 2} d x+c \\
& =\frac{x^{1 / 2}}{1 / 2}+c \\
y \cdot e^{2 \sqrt{x}} & =2 \sqrt{x}+c
\end{aligned}
$$

(13) $\frac{d y}{d x}=\frac{y}{2 y \cdot \log y+y-x}$
$8011-$

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{2 y \log y+y-x}{y} \\
& \frac{d x}{d y}=\frac{2 y \log y}{y}+\frac{y}{y}-\frac{x}{y} \\
&=2 \log y+1-\frac{x}{y} \\
& \frac{d x}{d y}+\frac{1}{y} \cdot x=2 \log y+1
\end{aligned}
$$

where $p=\frac{1}{y}, Q=2 \log y+1$
Now I.F $e^{\int \Gamma(y) d y}$

$$
\begin{aligned}
& =e^{\int \frac{1}{y} d y} \\
& =e^{\log _{e} y}=y
\end{aligned}
$$

Now the solution of ecu (i) is

$$
\begin{aligned}
& \text { 7. } x \cdot e^{\log y} \neq \int(2 \log y+1) \cdot e y d y+c \\
& x \cdot y=\int(2 \log y+1) y \cdot d y+c \\
& x y=\int(2 y \cdot \log y+y) d y+c \\
& x y=2 \int \cdot y \cdot \log y \cdot d y+\int y \cdot d y+c \\
&=2\left[\log y \cdot \frac{y^{2}}{2}-\int \frac{1}{y} \cdot \frac{y^{4}}{2} d y\right]+\frac{y^{2}}{2}+c \\
&=2\left[\log y \cdot \frac{y^{2}}{2}-\frac{1}{2} \int y d y\right]+\frac{y^{2}}{2}+c \\
&=2\left[\log \cdot y \cdot \frac{y^{2}}{2}-\frac{1}{2} \frac{y^{2}}{2}\right]+\frac{y^{2}}{2}+c \\
&=2 \cdot \log y \cdot y^{2}-\frac{y^{2}}{2}+\frac{y^{2}}{2}+c \\
& x \cdot y=y^{2}-\log y+c
\end{aligned}
$$

HEW
(3) $\frac{d y}{d x}+\frac{y}{x}=x^{3}-3$.

Sol:-

$$
\begin{aligned}
\frac{d y}{d x}+\frac{1}{x} \cdot y & =x^{3}-3 \\
\text { I.P } e^{\int P(x) d x} & =e^{\int \frac{1}{x} d x} \\
& =e^{\log x} \\
& =x
\end{aligned}
$$

Now, the solution of equ(1) is

$$
\begin{aligned}
y \cdot x & =\int\left(x^{3}-3\right) x \cdot d x+c \\
& =\int\left(x^{4}-3 x\right) d x+c \\
x y & =\frac{x^{5}}{5}-\frac{3 x^{2}}{2}+c
\end{aligned}
$$

(5)

$$
x \cdot \log x \frac{d y}{d x}+y=2 \cdot \log x
$$

Sol:-

$$
\begin{align*}
\frac{x \cdot \log x}{x \cdot \log x} \cdot \frac{d y}{d x}+\frac{y}{x \cdot \log x} & =\frac{2 \log x}{x \cdot \log x} \\
\frac{d y}{d x}+\frac{1}{x \cdot \log x}-y & =\frac{2}{x} \rightarrow(1) \tag{1}
\end{align*}
$$

where $P=\frac{1}{x \cdot \log x}, \quad Q=\frac{2}{x}$
I.F

$$
\begin{aligned}
e^{\int p(x) d x} & =e^{\int \frac{1}{x \cdot \log x} d x} \\
& =e^{\int \frac{1}{t} d t} \\
& =e^{\log t} \\
& =t \\
& =\log x
\end{aligned}
$$

Now the solution of equ (1) is

$$
\begin{aligned}
y \cdot \log x & =\int \frac{2}{x} \cdot \log x \cdot d x+c \\
& =2 \int \frac{1}{x} \cdot \log x \cdot d x+c \quad \text { pcet } \log x=t \\
& =2 \int t \cdot d t+c \\
& =2 \cdot \frac{t^{2}}{x} \cdot d x=d \\
& =t^{2}+c \\
y \cdot \log x & =(\log x)^{2}+c
\end{aligned}
$$

(6) $\left(1+x^{3}\right) \frac{d y}{d x}+6 x^{2} y=1+x^{2}$
solr

$$
\begin{align*}
& \frac{\left(1+x^{3}\right)}{1+x^{3}} \frac{d y}{d x}+\frac{6 x^{2} y}{1+x^{3}}=\frac{1+x^{2}}{1+x^{3}} \\
& \frac{d y}{d x}+\frac{6 x^{2}}{1+x^{3}}-y=\frac{1+x^{2}}{1+x^{3}} \tag{1}
\end{align*}
$$

where $P=\frac{6 x^{2}}{1+x^{3}}, Q=\frac{1+x^{2}}{1+x^{3}}$.

$$
\text { I.F } \begin{aligned}
e^{\int p(x) d x} & =e^{\int \frac{6 x^{2}}{1+x^{3}} d x} \\
& =e^{2 \int \frac{3 x^{2}}{1+x^{3}} d x} \\
& =e^{2 \cdot \log \left(1+x^{3}\right)} \\
& =e^{\log _{e}\left(1+x^{3}\right)^{2}} \\
& =\left(1+x^{3}\right)^{2}
\end{aligned}
$$

Now the solution of equ(1) is.

$$
\begin{aligned}
y .\left(1+x^{3}\right)^{2} & =\int \frac{1+x^{2}}{\left(1+x^{3}\right)}\left(1+x^{3}\right)+d x+c \\
& =\int\left(1+x^{3}+x^{2}+x^{5}\right) d x+c \\
y \cdot\left(1+x^{3}\right)^{2} & =x+\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{6}}{6}+c
\end{aligned}
$$

(7) $\frac{d y}{d x}+y \cdot \cot x=\cos x$
soor

$$
\begin{equation*}
\frac{d y}{d x}+\cot x y=\cos x \tag{1}
\end{equation*}
$$

where $P=\cot x, Q=\cos x$

$$
\text { I.F } \begin{aligned}
e^{\int p(x) d x} & =e^{\int \cot x d x} \\
& =e^{\log _{e}(\sin x)} \\
& =\sin x
\end{aligned}
$$

Now, the solution of equ(1) is

$$
\begin{aligned}
y \cdot \sin x & =\int \cos x \cdot \sin x \cdot d x+c \\
& =\int t \cdot d t+c \\
& =\frac{t^{2}}{2}+c \\
y \cdot \sin x & =\frac{(\sin x)^{2}}{2}+c
\end{aligned}
$$

(8) $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\operatorname{Tan}^{-1} x}$
put $\sin x=t$

$$
\cos x \cdot d x=d t
$$

Sof:-

$$
\begin{align*}
& \frac{1+x^{2}}{1+x^{2}} \frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}} \\
& \frac{d y}{d x}+\frac{1}{1+x^{2}}=y=\frac{e^{\operatorname{Tan}^{-1} x}}{1+x^{2}} \tag{1}
\end{align*}
$$

where $P=\frac{1}{1+x^{2}} ; Q=\frac{e^{T \cdot a n^{-1} x}}{1+x^{2}}$

$$
\text { I.F } \begin{aligned}
e^{\int P(x) d x} & =e^{\int \frac{1}{1+x^{2}} d x} \\
& =e^{\operatorname{Tan}^{-1} x}
\end{aligned}
$$

Now the solution of equal) is

$$
\begin{aligned}
& y \cdot e^{\tan ^{-1} x}=\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} \cdot e^{\tan ^{-1} x} d x+c \\
& =\int e^{t} \cdot e^{t} \cdot d t+c \text {. } \\
& =\int e^{2 t} d t+c \\
& =\frac{e^{2 t}}{2}+c \\
& \begin{aligned}
& =\frac{e^{2}}{2} \cdot+c \\
y \cdot e^{\tan ^{-1} x} & =\frac{e^{2 \tan ^{-b} x}}{2}+c
\end{aligned} \\
& \text { put } \tan ^{-1} x=t \\
& \frac{1}{1+x^{2}} d x=d t
\end{aligned}
$$

(10) $e^{-y} \sec ^{2} y \cdot d y=d x+x d y$

Sol:-

$$
\begin{align*}
& e^{-y} \sec ^{2} y d y-x \cdot d y=d x \\
& \left(e^{-y} \sec ^{2} y d y-x\right) d y=d x \\
& e^{-y} \sec ^{2} y-x=\frac{d x}{d y} \\
& \frac{d x}{d y}+x=e^{-y} \cdot \sec ^{2} y \tag{1}
\end{align*}
$$

.
where $P=1, \quad Q=e^{-y} \sec ^{2} y$

$$
\text { I.f } \begin{aligned}
e^{\int p(y) d y} & =e^{\int(1) d y} \\
& =e^{y}
\end{aligned}
$$

Now the solution of eque (1) is

$$
\begin{aligned}
x \cdot e^{y} & =\int e \not y \cdot \sec ^{2} y \cdot e y d y+c \\
& =\int \sec ^{2} y d y+c \\
x \cdot e^{y} & =\tan y+c
\end{aligned}
$$

(11) $y \cdot e^{y} d x=\left(y^{2}-2 x e^{y}\right) d y$.
sol: $y \cdot e^{y} d x=\left(y^{2}-2 x e^{y}\right) d y$

$$
\begin{align*}
\frac{d x}{d y} & =\frac{y^{y}}{y \cdot e^{y}}-\frac{2 x-e^{y}}{y-e^{y}} \\
\frac{d x}{d y} & =\frac{y}{e^{y}}-\frac{2 x}{y} \\
\frac{d x}{d y}+\left(\frac{2}{y}\right) & x=\frac{y}{e^{y}} \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

where $P=\frac{2}{y}, \quad Q=\frac{y}{e^{y}}$

$$
\text { I.F } \begin{aligned}
e^{\int P(y) d y} & =e^{\int \frac{2}{y} d y} \\
& =e^{2 \log y} \\
& =e^{\log _{e} y^{2}} \\
& =y^{2}
\end{aligned}
$$

Now, the solution of equ(1) is

$$
\begin{array}{rlr}
x \cdot y^{2}= & \int \frac{y}{e^{y}} y^{2} d y+c \\
& =\int e^{-y} y^{3} d y+c \quad D & +y^{3} \\
x \cdot y^{2}=-y^{3} e^{-y}-3 y^{2} e^{-y}-6 y e^{-y}-6 e^{-y}+c & -3 y^{2} & -e^{-y} \\
x \cdot y^{2}=-e^{-y}\left[y^{3}+3 y^{2}+6 y+6\right]+c \quad & -6 \geqslant & >e^{-y} \\
& -e^{-y} \\
e^{-y}
\end{array}
$$

(12) $\left(1+y^{2}\right)+\left(x-e^{-\tan ^{-1} y}\right) \frac{d y}{d x}=0$

Sol:-

$$
\begin{align*}
& \left(x-e^{-\tan ^{-1} y}\right) \frac{d y}{d x}=-\left(1+y^{2}\right) \\
& \frac{d y}{d x}=\frac{-\left(1+y^{2}\right)}{x-e^{-\tan ^{-1} y}} \\
& \frac{d x}{d y}=\frac{x}{-\left(1+y^{2}\right)}-\frac{e^{-\tan ^{-1} y}}{-\left(1+y^{2}\right)} \\
& \frac{d x}{d y}+\frac{1}{1+y^{2}} \cdot x=+\frac{e^{-\tan ^{-1} y}}{1+y^{2}} \tag{1}
\end{align*}
$$

where $p=\frac{1}{1+y^{2}}$ and $Q=\frac{e^{-\tan ^{-1} y}}{1+y^{2}}$ I.f $e^{\int \frac{1}{1+y^{2}} d y}=e^{\operatorname{Jan}^{-1} y}$.

Now the solution of equ (1) is

$$
\begin{aligned}
& \text { the solution of equal (1) is } \\
& x \cdot e^{\tan ^{-1} y}
\end{aligned}=\int \frac{e^{-\tan ^{-1} y}}{1+y^{2}} \cdot e^{\tan ^{-1} y} d y+c .
$$

(14) $\sqrt{1-y^{2}} d x=\left(\sin ^{-1} y-x\right) d y$

Sol:-

$$
\begin{align*}
& \frac{d x}{d y}=\frac{\sin ^{-1} y-x}{\sqrt{1-y^{2}}} \\
& \frac{d x}{d y}=\frac{\sin ^{-1} y}{\sqrt{1-y^{2}}}-\frac{x}{\sqrt{1-y^{2}}} \\
& \frac{d x}{d y}+\frac{1}{\sqrt{1-y^{2}}} \cdot x=\frac{\sin ^{-1} y}{\sqrt{1-y^{2}}} \tag{1}
\end{align*}
$$

where $p=\frac{1}{\sqrt{1-y^{2}}}$ and $Q=\frac{\sin ^{-1} y}{\sqrt{1-y^{2}}}$

$$
\begin{aligned}
\text { I.F } e^{\int p(y) d y} & =e^{\int \frac{1}{\sqrt{1-y^{2}}} d y} \\
& =e^{\tan \sin ^{-1} y}
\end{aligned}
$$

Now the solution of equ(0 is

$$
\begin{aligned}
x-e^{\sin ^{-1} y}= & \int \frac{\sin ^{-1} y}{\sqrt{1-y^{2}}} \cdot \sin e^{\sin ^{-1} y} d y+c \\
& \text { put } \sin ^{-1} y=t \\
& \frac{1}{\sqrt{1-y^{2}}} d y=d t \\
= & \int t \cdot e^{t} d t+c \\
= & e^{t} t-e^{t}+c \\
= & e^{t}(t-1)+c \\
x-e^{\sin ^{-1} y}= & e^{\sin ^{-1} y}\left(\sin ^{-1} y-1\right)+c
\end{aligned}
$$

(19) $d r+(2 r \cot \theta+\sin 2 \theta) d \theta=0$.
sol:- $\quad(2 r \cot \theta+\sin 2 \theta) d \theta=-d \theta$

$$
\begin{align*}
& \frac{d \theta}{d r}=*(2 r \cot \theta+\sin 2 \theta) \\
& \frac{d r}{d \theta}=-(2 r \cot \theta+\sin 2 \theta) \\
& \frac{d r}{d \theta}+2 r \cot \theta=-\sin 2 \theta \\
& \frac{d r}{d \theta}+(2 \cot \theta) r=-\sin 2 \theta \tag{1}
\end{align*}
$$

where $P=2 \cot \theta$ and $Q=-\sin 2 \theta$

$$
\text { I.F } \begin{aligned}
e^{\int P(\theta) d \theta} & =e^{\int 2 \cot \theta d \theta} \\
& =e^{2 \int \cot \theta d \theta} \\
& =e^{2 \log (\sin \theta)} \\
& =e^{\log _{e}(\sin \theta)^{2}} \\
& =e^{\sin ^{2} \theta}
\end{aligned}
$$

Now the solction of equ (1) is.

$$
\begin{aligned}
r \cdot \sin ^{2} \theta & =\int-\sin 2 \theta \cdot \sin ^{2} \theta \cdot d \theta+c \\
& =-\int 2 \sin \theta \cdot \cos \theta \cdot \sin ^{2} \theta \cdot d \theta+c \\
& =-2 \int \sin ^{3} \theta \cdot \cos \theta \cdot d \theta+c \\
& =-2 \int t^{3} \cdot d t+c \\
& =-1 \cdot \frac{t^{4}}{4_{2}}+c \\
r \cdot \sin ^{2} \theta & =-\frac{\sin ^{4} \theta}{2}+c
\end{aligned}
$$

(20) $\cosh x \frac{d y}{d x}+y \cdot \sinh x=2 \cosh ^{2} x \cdot \sinh x$.

Sol:-

$$
\begin{align*}
\frac{\cosh x}{\cosh x} \cdot \frac{d y}{d x}+y \cdot \frac{\sinh x}{\cosh x} & =\frac{2 \cdot \cosh h x \cdot \sinh x}{\cosh x} \\
\frac{d y}{d x}+\tan h x \cdot y & =2 \cdot \sinh x \cdot \cosh x \tag{1}
\end{align*}
$$

Here $p=\tanh x$ and $Q=2 \sin h x \cosh x$

$$
\text { IVF } \begin{aligned}
e^{\int p(x) d x} & =e^{\int \tanh x d x} \\
& =e^{\log _{e}|\operatorname{sech} x|} \\
& =\operatorname{sech} x .
\end{aligned}
$$

Now the solution of cue (1) is

$$
\begin{aligned}
y \cdot \operatorname{sech} x & =\int 2 \sinh x \cdot \cosh x \cdot \operatorname{sech} x d x+c \\
& =2 \cdot \int \sin h x \cdot d x+c \\
y \cdot \operatorname{sech} x & =2 \cdot \cosh x+c
\end{aligned}
$$

(16) $\frac{d y}{d x}+y \cdot \cot x=4 x \operatorname{cosec} x$ if $y=0$ when $x=\pi / 2$

Sol:-

$$
\begin{align*}
& \frac{d y}{d x}+y \cdot \cot x=4 x \cdot \operatorname{cosec} x \\
& \frac{d y}{d x}+\cot x \cdot y=4 x \cdot \operatorname{cosec} x \tag{1}
\end{align*}
$$

Here $P=\cot x$ and $Q=4 x \cdot \operatorname{cosec} x$.
IF

$$
\begin{aligned}
e^{\int p(x) d x} & =e^{\int \cot x \cdot d x} \\
& =e^{\log _{e}|\sin x|} \\
& =\sin x
\end{aligned}
$$

Now the solution of equip is

$$
\begin{aligned}
y \cdot \sin x & =\int 4 x \cdot \operatorname{cosec} x \cdot \sin x \cdot d x+c \\
& =4 \int x \cdot d x+c \\
y \cdot \sin x & =y^{2} \cdot \frac{x^{2}}{2}+c \\
y \cdot \sin x & =2 x^{2}+c \\
\text { (0) } \cdot \sin \pi / 2 & =x \frac{\pi^{2}}{44_{2}}+c
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{\pi^{2}}{2}+c \\
& \therefore C=-\pi^{2} / 2
\end{aligned}
$$

(17) $\frac{d y}{d x}-y \cdot \tan x=3 \cdot e^{-\operatorname{sen} x}$ if, $y=4$ when $x=0$.

Sol:- $\quad \frac{d y}{d x}+(-\tan x) \cdot y=3 \cdot e^{-\sin x}$
Here $P=-\tan x$ and $Q=3 \cdot e^{-\sin x}$

$$
\text { IVF } \begin{aligned}
e^{\int P(x) d x} & =e^{-\int T d n x \cdot d x} \\
& =e^{-(-\log \cdot|\cos x|)} \\
& =e^{\log _{e}|\cos x|} \\
& =\cos x
\end{aligned}
$$

Now the solution of equ(1) is

$$
\begin{aligned}
y \cdot \cos x & =\int 3 \cdot e^{-\sin x} \cdot \cos x d x+c \\
& =3 \cdot \int e^{-\sin x} \cos x d x+c \quad \text { put } \sin x=t \\
& =3 \cdot \int e^{-t} d t+c \\
& =3 \cdot e^{-t}(-1)+c \\
& =-3 \cdot e^{-\sin x}+c \\
y \cdot \cos x & =-3 \\
4(\cos 0) & =-3 e^{-\sin 0}+c \\
4(1) & =-3 e^{0}+c \\
4 & =-3(1)+c \\
c & =4+3 \\
c & =7
\end{aligned}
$$

(18) $\frac{d y}{d x}+y \cot x=5 \cdot e^{\cos x}$. if $y=-4$ when $x=\pi / 2$
sol:-

$$
\begin{equation*}
\frac{d y}{d x}+\cot x \cdot y=5 \cdot e^{\cos x} \tag{0}
\end{equation*}
$$

Here $P=\cot x$ and $Q=5 \cdot e^{\cos x}$
I.f $e^{\int p(x) d x}=e^{\int \cot x d x}$.

$$
\begin{aligned}
& =e^{\log _{e}|\sin x|} \\
& =\sin x
\end{aligned}
$$

Now the solution of equ(1) is

$$
\begin{aligned}
y \cdot \sin x & =\int 5 \cdot e^{\cos x} \cdot \sin x \cdot d x+c \\
y \cdot \sin x & =5 \int e^{\cos x} \cdot \sin x d x+c \\
& =5 \int e^{t}(-d t)+c \\
& =-5 \int e^{t} d t+c \\
& =-5 e^{t}+c \\
y \cdot \sin x & =-5 \cdot e^{\cos x}+c \\
(-4) \sin \pi / 2 & =-5 \cdot e^{\cos \pi / 2}+c \\
(-4)(1) & =-5 \cdot e^{0}+c \\
(-4) & =-5(1)+c \\
c & =-4+5 \\
c & =1
\end{aligned}
$$

(1) $x\left(1-x^{2}\right) \frac{d y}{d x}+\left(2 x^{2}-1\right) y=x^{3}$.

Sol:-

$$
\begin{gather*}
x\left(1-x^{2}\right) \frac{d y}{d x}+\left(2 x^{2}-1\right) y=x^{3} \\
\cos \pi\left(1-\cos ^{2} t\right) \frac{d y}{d x}+\left(2 \cos ^{2} t-1\right) y=\cos ^{3} t \quad d x=-\sin t \cdot d t \\
\frac{\cos t \cdot \sin ^{2} t}{\cos t-\sin ^{2} t} \frac{d y}{d x}+\frac{\cos 2 t \cdot y}{\cos t \cdot \sin ^{2} t}=\frac{\cos 3 t}{\cos t \cdot \sin ^{2} t} \\
\frac{d y}{d x}+\frac{\cos 2 t}{\cos t \cdot \sin ^{2} t} y=\cot ^{2} t . \\
\cos t \sin t t \cdot \frac{d y}{-\sin t \cdot d t}+\cos 2 t \cdot y=\cos ^{3} t \\
\frac{-\cos t \cdot \sin t}{\cos t \sin t} \frac{d y}{d t}+\frac{\cos 2 t}{\cos t \cdot \sin t} \cdot y=\frac{\cos ^{2} t}{\cos ^{2} t \cdot \sin ^{2} t} \\
\frac{d y}{d t}+\left(\frac{-\cos 2 t}{\cos t \cdot \sin t}\right) y=-\frac{-\cos ^{2} t}{\sin t} \rightarrow \text { (1) } \tag{1}
\end{gather*}
$$

Here $p=\frac{-\cos 2 t}{\cos t \cdot \sin t}$ and $Q=\frac{-\cos ^{2} t}{\sin t}$
I.F

$$
\begin{aligned}
e^{\int \rho(t) d t} & =e^{\int \frac{-\cos 2 t}{\cos t-\sin t} \cdot d t} \\
& =e^{-\int \frac{2 \cos 2 t}{\sin 2 t} \cdot d t} \\
& =e^{-\log |\sin 2 t|}
\end{aligned}
$$

$$
=e^{\log _{e}(\sin 2 t)^{-1}}=(\sin 2 t)^{-1}=\frac{1}{\sin 2 t}
$$

Now the solution of equ(1) is

$$
\begin{aligned}
y \cdot \frac{1}{\sin 2 t} & =\int \frac{-\cos ^{2} t}{\sin t} \cdot \frac{1}{\sin 2 t} d t+c \\
\frac{y \cdot}{\sin 2 t} & =-\int \frac{\cos ^{1} t}{\sin t \cdot 2 \operatorname{sen} t \cdot \operatorname{sos} t} d t+c \\
\frac{y}{\sin 2 t} & =-\frac{1}{2} \int \operatorname{cosec} t \cdot \cot t \cdot d t+c \\
\frac{y}{\sin 2 t} & =-\frac{1}{2}(-\operatorname{cosec} t)+c \\
\frac{y}{\sin 2 t} & =\frac{\operatorname{cosec} t}{2}+c \\
\frac{y}{\left.\sin 2 \cdot \cos ^{-1} x\right)} & =\frac{\operatorname{cosec}\left(\cos ^{-1} x\right)}{2}+c \cdot
\end{aligned}
$$

(15) $x\left(\frac{d y}{d x}+y\right)=1-y$

Sol:-

$$
\begin{align*}
& x\left(\frac{d y}{d x}+y\right)=1-y \\
& \quad \frac{d y}{d x}+y=\frac{1-y}{x} \\
& \frac{d y}{d x}+y=\frac{1}{x}-\frac{y}{x} \\
& \frac{d y}{d x}+y+\frac{y}{x}=\frac{1}{x} \\
& \frac{d y}{d x}+\left(1+\frac{1}{x}\right) y=\frac{1}{x} \tag{1}
\end{align*}
$$

Here $P=1+\frac{1}{x}$ and $Q=\frac{1}{x}$

$$
\text { IVF } \begin{aligned}
e^{\int\left(1+\frac{1}{x}\right) d x} & =e^{\int(1) d x+\int \frac{1}{x} d x} \\
& =e^{x+\log x} \\
& =e^{x}-e^{\log _{e} x} \\
& =x-e^{x}
\end{aligned}
$$

Now the solution of eque is

$$
\begin{aligned}
y \cdot x \cdot e^{x} & =\int \frac{j}{x} \cdot x \cdot e^{x} d x+c \\
& =\int e^{x} d x+c \\
x \cdot y \cdot e^{x} & =e^{x}+c
\end{aligned}
$$

(9) $\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}$

Sol: $\quad \frac{1-x^{2}}{1-x^{2}} \cdot \frac{d y}{d x}+\frac{2 x y}{1-x^{2}}=\frac{x \sqrt{1-x^{2}}}{1-x^{2}}$

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{2 x}{1-x^{2}} \cdot y=\frac{x\left(1-x^{2}\right)^{1 / 2}}{\left(\sqrt{\left.1-x^{2}\right)!}\right.} \\
& \frac{d y}{d x}+\frac{2 x}{1-x^{2}} \cdot y=\frac{x}{\sqrt{1-x^{2}}} \rightarrow \text { (1) }
\end{aligned}
$$

Eque (1) $\stackrel{\text { is }}{ }$ of lenear form $\frac{d y}{d x}+p \cdot y=Q$. Here $P=\frac{2 x}{1-x^{2}}$ and $Q=\frac{x}{\sqrt{1-x^{2}}}$
I.F $e^{\int p(x) d x}=e^{\int \frac{2 x}{1-x^{2}} d x}$

$$
\begin{aligned}
& =e^{-\int \frac{-2 x}{1-x^{2}} d x} \\
& =e^{-\log \left[1-x^{2}\right]} \\
& =e^{\log _{e}\left(1-x^{2}\right)^{-1}}
\end{aligned}
$$

$$
=\left(1-x^{2}\right)^{-1}
$$

$$
=\frac{1}{1-x^{2}}
$$

Now the solution of equ(1) is

$$
\text { y. } \begin{aligned}
& \frac{1}{1-x^{2}}=\int \frac{x}{\sqrt{1-x^{2}}} \cdot \frac{1}{1-x^{2}} d x+c \\
&=\int \frac{x}{\left(1-x^{2}\right)^{3 / 2}} d x+c \\
&=\frac{-1}{2} \int \frac{-2 x}{\left(1-x^{2}\right)^{3 / 2}} d x+c \quad \text { put } \quad-x^{2}=t . \\
&=\frac{-1}{2} \int \frac{1}{t^{3 / 2}} \cdot d t+c \\
&=\frac{-1}{2} \iint^{-3 / 2} \cdot d t+c \\
&=-\frac{1}{2} \frac{t^{-3 / 2}+1}{-3 / 2+1}+c \\
&=\frac{-1}{\not 2} \frac{t^{-1 / 2}}{+1 / 4}+c \\
&=\frac{1}{t^{1 / 2}}+c \\
&=\frac{1}{\sqrt{1-x^{2}}}+c \\
& \frac{y}{1-x^{2}}
\end{aligned}
$$

(1)

$$
\begin{align*}
& x\left(1-x^{2}\right) \frac{d y}{d x}+\left(3 x^{2}-1\right) y=x^{3} \\
& \cdot \frac{d y}{d x}+\frac{3 x^{2}-1}{x\left(1-x^{2}\right)} y=\frac{x^{2}}{x\left(1-x^{2}\right)} \\
& \frac{d y}{d x}+\frac{3 x^{2}-1}{x\left(1-x^{2}\right)} \cdot y=\frac{x^{2}}{1-x^{2}} \tag{1}\\
& \text { Here } p=\frac{3 x^{2}-1}{x\left(1-x^{2}\right)} \text { and } Q=\frac{x^{2}}{1-x^{2}} \\
& \begin{aligned}
& \text { I.f.e } e^{\int \frac{3 x^{2}-1}{x\left(1-x^{2}\right)} d x}=e^{\int \frac{3 x^{2}-1}{x-x^{3}} \cdot d x} \\
&=e^{-\int \frac{1-3 x^{2}}{x-x^{3}} d x}=e^{-\log \left(x-x^{3}\right)} \\
&=\frac{1}{x\left(1-x^{2}\right)}
\end{aligned}
\end{align*}
$$

soll-

Now the solution of eque φ is

$$
\begin{aligned}
y \cdot \frac{1}{x\left(1-x^{2}\right)} & =\int \frac{x t}{1-x^{2}} \cdot \frac{1}{x\left(1-x^{2}\right)} d x+c \\
& =\frac{-1}{2}-\frac{2 x}{\left(1-x^{2}\right)^{2}} d x+c \quad \quad 1-x^{2}=t \\
& =\frac{-1}{2} \int \frac{1}{t^{2}} \cdot d t+c \quad-2 x d x=d t \\
& =\frac{-1}{2} \int t^{-2} d t+c \\
& =\frac{t 1}{2} \frac{t^{-1}}{T}+c \\
& =\frac{1}{2 t}+c \\
y & \\
\frac{1}{x \cdot\left(1-x^{2}\right)} & =\frac{1}{2\left(1-x^{2}\right)}+C
\end{aligned}
$$

Reducible To The Linear form:
(1) $\frac{d y}{d x}+x \cdot \sin 2 y=x^{3} \cdot \cos ^{2} y$

Sol:-

$$
\begin{align*}
& \frac{d y}{d x}+x \cdot \sin 2 y=x^{3} \cdot \cos ^{2} y \\
& \frac{1}{\cos ^{2} y} \cdot \frac{d y}{d x}+\frac{x \cdot \sin 2 y}{\cos ^{2} y}=\frac{x^{3} \cdot \cos ^{2} y}{\cos ^{2} y} \\
& \frac{x}{\sec ^{2} y} \cdot \frac{d y}{d x}+\frac{x \cdot 2 \sin y \cdot \cos y}{\cos ^{2} y}=x^{3} \\
& \sec ^{2} y \cdot \frac{d y}{d x}+2 x \cdot \tan y=x^{3} \quad \tan y=t \\
& \quad \frac{d t}{d x}+2 x \cdot t=x^{3} \rightarrow(1) \quad \sec ^{2} y \cdot d y=d t \tag{1}
\end{align*}
$$

Here $P=2 x$ and $Q=x^{3}$

$$
\text { If } \begin{aligned}
e^{\int 2 x \cdot d x} & =e^{2 \int x \cdot d x} \\
& =e^{2 \cdot \frac{x^{2}}{4}} \\
& =e^{x^{2}}
\end{aligned}
$$

Now the solution of equ(1)

$$
\begin{aligned}
t \cdot e^{x^{2}} & =\int x^{2} \cdot x e^{x^{2}} \cdot d x+c \\
& =\int v \cdot e^{v} \cdot \frac{d v}{2}+c \\
& =\frac{1}{2} \int v \cdot e^{v} \cdot d v+c \\
t \cdot e^{x^{2}} & =\frac{-1}{2} e^{v}(v-1)+c \\
\operatorname{Tan} \cdot \cdot e^{x^{2}} & =\frac{1}{2} e^{x^{2}}\left(x^{2}-1\right)+c
\end{aligned}
$$

Let $x^{2}=v$

$$
3 x^{\prime} d x=d x
$$

$$
x^{2}=
$$

$$
2 x-d x=d v
$$

$$
x \cdot d x=\frac{d v}{2}
$$

(2) $e^{y} \cdot y^{\prime}=e^{x}\left(e^{x}-e^{y}\right)$
sol:-

$$
\begin{array}{ll}
e^{y} \cdot \frac{d y}{d x} & =e^{x}\left(e^{x}-e^{y}\right) \\
e^{y} \cdot \frac{d y}{d x}=e^{x} \cdot e^{x}-e^{x} \cdot e^{y} \\
e^{y} \cdot \frac{d y}{d x}=e^{2 x}-e^{x} \cdot e^{y} \\
e^{y} \frac{d y}{d x}+e^{x} \cdot e^{y}=e^{2 x} & e^{y}=t \\
\frac{d t}{d x}+e^{x} \cdot t=e^{2 x} \rightarrow(1) \quad e^{y} \cdot d y=d t
\end{array}
$$

eruct is of the linear form d

$$
\begin{aligned}
P=e^{x} & \text { and } Q=e^{2 x} \\
\text { I.F } e^{\int p(x) d x} & =e^{\int e^{x} \cdot d x} \\
& =e^{e^{x}}
\end{aligned}
$$

Now the solution of equal) is

$$
\begin{array}{rlr}
t \cdot e^{e^{x}} & =\int e^{2 x} \cdot e^{e^{x}} \cdot d x+c \\
& =\int e^{x} \cdot e^{x} \cdot e^{-e^{x}} \cdot d x+c \quad \text { Let } e^{x}=t \\
& =\int t \cdot e^{\forall t} d y+c \\
t \cdot e^{e^{x}} & =e^{y}(\forall-1)+c \\
e^{y} \cdot e^{e^{x}} & =e^{e^{x}}\left(e^{x}-1\right)+c
\end{array}
$$

(3) $(2 x \log x-x y) d y=-2 y d x$

Sol:-

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-2 y}{2 x \cdot \log x-x y} \\
& \frac{d x}{d y}=\frac{2 x \cdot \log x-x y}{-2 y} \\
& \frac{d x}{d y}=\frac{\$ x \cdot \log x}{-\nmid y}+\frac{x y}{2 y} \\
& \frac{d x}{d y}=\frac{-x \cdot \log x}{y}+\frac{x}{2} \\
& \frac{d x}{d y}-\frac{x}{2} \neq \frac{-x \cdot \log x}{y}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d x}{d y}+\frac{x \cdot \log x}{y}=\frac{x}{2} \\
& \frac{1}{x}-\frac{d x}{d y}+\frac{x \cdot \log x}{y} \cdot \frac{1}{x}=\frac{x}{2} \cdot \frac{1}{x} \\
& \frac{d t}{d y}+\frac{1}{y} \cdot t=\frac{1}{2} \quad \rightarrow 0 \quad \text { put } \log x=t \tag{1}
\end{align*}
$$

Here $P=\frac{1}{y}$ and $Q=\frac{1}{2}$

$$
\text { I.F } \begin{aligned}
e^{\int p(y) d y} & =e^{\int \operatorname{tg} d y} \\
& =e^{\log _{c} y} \\
& =\dot{y}
\end{aligned}
$$

Now the solution of equip is

$$
\begin{aligned}
t \cdot y & =\int \frac{1}{2} \cdot y \cdot d y+c \\
t \cdot y & =\frac{1}{2} \int y \cdot d y+c \\
& =\frac{1}{2} \frac{y^{2}}{2}+c \\
t-y & =\frac{y^{2}}{4}+c \\
\log x \cdot y & =\frac{y^{2}}{4}+c
\end{aligned}
$$

(4) $\frac{d y}{d x}-\tan x \cdot y=-y^{2} \cdot \sec ^{2} x$.

Sol:-

$$
\begin{align*}
& \Rightarrow \frac{d y}{d x}-\tan x \cdot y=-y^{2} \cdot \sec ^{2} x \\
& \frac{1}{y^{2}} \frac{d y}{d x}-\frac{\tan x \cdot y}{y^{2}}=\frac{-y^{2} \cdot \sec ^{2} x}{y^{x}} \\
& \frac{1}{y^{2}} \cdot \frac{d y}{d x}-\frac{+1}{y} \cdot \tan x=-\sec ^{2} x \text {. } \\
& \frac{-d t}{d x}+\tan x t=-\sec ^{2} x . \\
& \frac{d t}{d x}-\tan x \cdot \sec ^{2} x \tag{1}\\
& \text { Here } P=-\tan x \quad Q=\sec ^{2} x \text {. } \\
& \text { InF } e^{\int P(x)-d x}=e^{-\int \tan x-d x} \\
& =e^{+\log _{e}(\cos x)} \\
& =\cos x
\end{align*}
$$

Now the solution of equice is

$$
\begin{aligned}
t \cdot \cos x & =\int \sec ^{2} x \cdot \cos x \cdot d x+c \\
& =\int \frac{1}{\cos t} \cdot \cos x \cdot d x+c \\
t \cdot \cos x & =\int \cdot \sec x \cdot d x+c \\
\frac{1}{y} \cdot \cos x & =\log |\sec x+\tan x|+C
\end{aligned}
$$

(5) $e^{y}\left(\frac{d y}{d x}+1\right)=e^{x}$
sol:-

$$
\begin{aligned}
& e^{y} \frac{d y}{d x}+e^{y}=e^{x} \\
& \frac{d t}{d x}+(1) t=e^{x} \rightarrow \text { (1) } \quad \text { put } e^{y}=t \\
& e^{y} d y=d t
\end{aligned}
$$

Here $p=1$ and $Q=e^{x}$

$$
\begin{aligned}
I \cdot F \quad e^{\int p(x) d x} & =e^{\int(1) d x} \\
& =e^{x}
\end{aligned}
$$

Now the solution of equ(1) is

$$
\begin{aligned}
t \cdot e^{x} & =\int e^{x} \cdot e^{x}-d x+c \\
& =\int e^{2 x} \cdot d x+c \\
t \cdot e^{x} & =e^{2 x} \cdot(2)+c \\
e^{x} \cdot e^{y} & =2 \cdot e^{2 x}+c
\end{aligned}
$$

(6) $(x+1) \cdot \frac{d y}{d x}+r=2 e^{-y}$
(7) $\tan y \cdot \frac{d y}{d x}+\tan x=\cos y \cdot \cos ^{2} x$.

Sol y-

$$
\begin{aligned}
& \tan y \cdot \frac{d y}{d x}+\tan x=\cos y \cos ^{2} x \\
& \frac{\tan y}{\cos y} \frac{d y}{d x}+\frac{\tan x}{\cos y}=\frac{\cos y \cdot \cos ^{2} x}{\cos y} \\
& \sec y \cdot \tan y \cdot \frac{d y}{d x}+\sec y \cdot \tan x=\cos ^{2} x .
\end{aligned}
$$

$$
\begin{equation*}
\frac{d t}{d x}+\tan x \cdot t=\cos ^{2} x \tag{1}
\end{equation*}
$$

Here $p=\tan x . \quad a=\cos ^{2} x$

$$
\sec y=t
$$

secy $\tan y-d y=d t$.

$$
\begin{aligned}
I \cdot F e^{\int P(x) d x} & =e^{\int \tan x \cdot d x} \\
& =e^{\log _{e}(\sec x)} \\
& =\sec x
\end{aligned}
$$

Now the solution of eque is

$$
\begin{aligned}
t \cdot \sec x & =\int \cos ^{2} x \cdot \sec x \cdot d x+c \\
& =\int \cos ^{2} x \cdot \frac{1}{\cos x} \cdot d x+c \\
& =\int \cos x \cdot d x+c \\
t \cdot \sec x & =\sin x+c \\
\sec x \cdot \sec y & =\sin x+c
\end{aligned}
$$

(8) $\cdot \frac{d z}{d x}+\frac{z}{x} \cdot \log z=\frac{d^{z}}{x}(\log z)^{2}$.
sal:-

$$
\begin{gather*}
\frac{d z}{d x}+\frac{z}{x} \cdot \log z=\frac{z}{x} \cdot(\log z)^{2} \\
\frac{1}{z \cdot(\log z)^{2}} \frac{d z}{d x}+\frac{1}{x} \frac{z \cdot \log z}{z \cdot \log z)^{2}}=\frac{1}{x} \cdot \frac{z(\log z)^{2}}{z(\log z)^{2}} \\
\frac{1}{z(\log z)^{2}} \frac{d z}{d x}+\frac{1}{x} \frac{1}{\log z}=\frac{1}{x} \quad \frac{1}{\log z}=t \\
\quad \frac{d t}{d x}+\frac{1}{x} \cdot t=\frac{1}{x} \quad \frac{-1}{(\log z)^{2}} \frac{1}{z(\log z)^{2}} d z= \\
\frac{d t}{d x}-\frac{1}{x} \cdot t=\frac{-1}{x} \quad \rightarrow \text { (1) } \tag{1}
\end{gather*}
$$

Here $P=\frac{-1}{x}$ and $Q=\frac{-1}{x}$.

$$
\begin{aligned}
I \cdot F \cdot e^{\left.\int \rho c x\right) d x} & =e^{-\frac{1}{x} d x} \\
& =e^{-\int \frac{1}{x} d x} \\
& =e^{-\log x}=e^{\log _{e} x^{-1}} \\
& =\frac{1}{x} \\
& =\frac{1}{x}
\end{aligned}
$$

Now the solution of equ(1) is

$$
\begin{aligned}
t \cdot \frac{1}{x} & =\int \frac{-1}{x} \cdot \frac{1}{x} d x+c \\
& =-\int \frac{1}{x^{2}} d x+c \\
& =-\int x^{-2} d x+c \\
& =-\frac{x^{-1}}{-1}+c \\
t \cdot \frac{1}{x} & =\frac{1}{x}+c \\
\frac{1}{x \cdot \log z} & =\frac{1}{x}+c
\end{aligned}
$$

(6) $(x+1) \frac{d y}{d x}+1=2 e^{-y}$.

Sol:- $\quad(x+1) \frac{d y}{d x}=2 e^{-y}-1$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 e^{-y}}{x+1}-\frac{1}{x+1} \\
& \frac{d y}{d x}+\frac{1}{x+1}=\frac{2 e^{-y}}{x+1} \\
& \frac{1}{e^{-y}} \frac{d y}{d x}+\frac{1}{x+1} \cdot \frac{1}{e^{-y}}=\frac{2 e^{-y}}{x+1} \times \frac{1}{e^{-y}}
\end{aligned}
$$

$e^{y} \cdot \frac{d y}{d x}+\frac{1}{x+1} \cdot e^{y}=\frac{2}{x+1}$

$\frac{d t}{d x}+\frac{1}{x+1} \cdot t=\frac{2}{x+1}$
Here $P=\frac{1}{x+1}$ and $Q=\frac{1}{x+1}$

$$
\text { I.F } \begin{aligned}
e^{\int p(x) d x} & =e^{\int \frac{1}{x+1} \cdot d x} \\
& =e^{\log _{e}(x+1)} \\
& =x+1
\end{aligned}
$$

Now the solution of eque(1) is

$$
\begin{aligned}
t \cdot(x+1) & =\int \frac{2}{x+1}(x+1) d x+c \\
& =2 \int(1) d x+c \\
t \cdot(x+1) & =2 x+c \\
\text { ty. }(x+1) & =2 x+c
\end{aligned}
$$

(9) $\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \cdot \sec y$
sol:-

$$
\begin{gathered}
\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \cdot \sec y \\
\frac{1}{\sec y} \cdot \frac{d y}{d x}-\frac{\tan y}{1+x} \frac{1}{\sec y}=\frac{(1+x) e^{x} \cdot \sec y}{\sec y} \\
\cos y \cdot \frac{d y}{d x}-\frac{1}{1+x} \cdot \frac{\sin y}{\cos y} \cdot \cos y=(1+x) e^{x} \\
\cos y: \frac{d y}{d x}-\frac{1}{1+x} \cdot \sin y=(1+x) e^{x} \quad \operatorname{sen} y=t \\
\frac{d t}{d x}-\frac{1}{1+x} \cdot t=(1+x) e^{x} \quad \rightarrow(C) \quad \cos y \cdot d y=d t
\end{gathered}
$$

Eque(1) is of linear form
\therefore where $P=\frac{-1}{1+x}$ and $Q=(1+x) e^{\dot{x}}$.

InF

$$
\begin{aligned}
e^{\int p(x) d x} & =e^{-\frac{1}{1+x} \cdot d x} \\
& =e^{-\int \frac{1}{1+x} \cdot d x} \\
& =e^{-\log (1+x)} \\
& =e^{\log _{e^{(1+x}}(1+x)^{-1}} \\
& =\frac{1}{1+x}
\end{aligned}
$$

Now the solution of equ(D) is.

$$
\begin{aligned}
t \cdot \frac{1}{1+x} & =\int(1+x) \cdot e^{x} \frac{1}{1+x} \cdot d x+c \\
& =\int e^{x} \cdot d x+c \\
t \cdot \frac{1}{1+x} & =e^{x}+c \\
\frac{\sin y}{1+x} & =e^{x}+c
\end{aligned}
$$

(10) $\frac{d y}{d x}+\frac{y \cdot \log y}{x}=\frac{y(\log y)^{2}}{x^{2}}$

Sol:

$$
\begin{align*}
& \frac{d y}{d x}+\frac{y \cdot \log y}{x}=\frac{y \cdot(\log y)^{2}}{x^{2}} \\
& \frac{1}{y \cdot\left(\log y^{2}\right.}-\frac{d y}{d x}+\frac{y \cdot \frac{\log y}{x} \cdot \frac{1}{y-(\log y)^{2}}=\frac{y-(\log y)^{2}}{x^{2}} \cdot \frac{1}{y(\log y)^{2}}}{\frac{1}{y(\log y)^{2}}-\frac{d y}{d x}+\frac{1}{x} \cdot \frac{1}{\log y}=\frac{1}{x^{2}}} \begin{array}{l}
\frac{-d t}{d x}+\frac{1}{x} \cdot t=\frac{1}{x^{2}}=t \\
\frac{d t}{d x}+\frac{1}{x} \cdot t=\frac{-1}{x^{2}} \rightarrow(1) \quad \frac{-1}{(\log y)^{2}} \frac{1}{y}-d y=d t
\end{array} \quad \frac{1}{y \cdot(\log y)^{2}} d y=-d t
\end{align*}
$$

Here $P=\frac{-1}{x}$ and $Q=\frac{-1}{x^{2}}$

$$
\begin{aligned}
\text { IF } e^{\int \frac{-1}{x} \cdot d x} & =e^{-\int \frac{1}{x} \cdot d x} \\
& =e^{-\log (x)} \\
& =e^{\log _{e}(x)^{-1}} \\
& =\frac{1}{x}
\end{aligned}
$$

Now the solution of equin (1) is

$$
\begin{aligned}
t \cdot \frac{1}{x} & =\int-\frac{1}{x^{2}} \cdot \frac{1}{x} \cdot d x+c \\
& =\int \frac{-1}{x^{3}} \cdot d x+c
\end{aligned}
$$

$$
\begin{aligned}
& =-\int x^{-3} d x+c \\
& =-\frac{x^{-2}}{-2}+c \\
t-\frac{1}{x} & =\frac{1}{2 x^{2}}+c \\
\frac{1}{x \cdot \log y} & =\frac{1}{2 x^{2}}+c
\end{aligned}
$$

16109
Bernoulli's Equation:
(2) $\left(x y^{2}-e^{1 / x^{3}}\right) \cdot d x-x^{2} y \cdot d y=0$

Sol:-

$$
\begin{align*}
\left(x y^{2}-e^{1 / x^{3}}\right) d x & =x^{2} y \cdot d y \\
\frac{d y}{d x} & =\frac{x y^{2}-e^{1 / x^{3}}}{x^{2} y} \\
\frac{d y}{d x} & =\frac{x y^{2}}{x+y}-\frac{e^{1 / x^{3}}}{x^{2} y} \\
\frac{d y}{d x} & =\frac{y}{x}-\frac{e^{1 / x^{3}}}{x^{2} y} \\
\frac{d y}{d x}-\frac{1}{x} \cdot y & =-\frac{e^{1 / x^{3}}}{x^{2}} y^{-1}
\end{align*}
$$

Equal es of Bernoulli's form $\frac{d y}{d x}+p-y=Q \cdot y^{n}$.
This can be reduced to linear form.

$$
\begin{align*}
& y \frac{d y}{d x}-\frac{1}{x} \cdot y \cdot y=\frac{-e^{1 / x^{3}}}{x^{2}} \cdot y^{-1} \cdot y \\
& y \cdot \frac{d y}{d x}-\frac{1}{x} \cdot y^{2}=\frac{-e^{1 / 2}}{x^{2}} \quad y^{2}=t \\
& \frac{1}{2} \cdot \frac{d t}{d x}-\frac{1}{x} \cdot t=-\frac{e^{1 / x^{3}}}{x^{2}} \quad 2 y d y=d t \\
& \frac{d t}{d x}-\frac{2}{x} \cdot t=-\frac{2 \cdot e^{1 / x^{3}}}{x^{2}} \quad \rightarrow \text { (2) }
\end{align*}
$$

Equ(2) is in linear form. where $P=\frac{-2}{x}$ and $Q=\frac{-2 e^{\frac{1}{x^{3}}}}{x^{2}}$

$$
\begin{aligned}
\text { IF } e^{\int P(x) d x} & =e^{-2 \int \frac{1}{x} d x} \\
& =e^{-2 \log (x)} \\
& =e^{\log _{e}(x)^{-2}} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Now the solution of equ(2) is.

$$
\begin{array}{rlrl}
t \cdot \frac{1}{x^{2}} & =\int \frac{2 e^{1 / x^{3}}}{x^{2}} \cdot \frac{1}{x^{2}} \cdot d x+c \\
& =-2 \int e^{1 / x^{3}} \cdot \frac{1}{x^{4}} d x+c & \\
& =-2 \int e^{x^{-3}} \cdot x^{-4} d x+c & x^{-3}=v \\
& =-2 \int e^{v} \cdot \frac{-1}{3} d t+c & -3 \cdot x^{-3-1} d x=d t \\
& =\frac{2}{3} \int e^{v} \cdot d v+c & x^{-4} \cdot d x=\frac{-1}{3} d t \\
t-\frac{1}{x^{2}} & =\frac{2}{3} e^{t}+c \\
y^{2} \cdot \frac{1}{x^{2}} & =\frac{2}{3} e^{x^{-3}}+c \\
\frac{y^{2}}{x^{2}} & =\frac{2}{3} e^{1 / x^{3}+c .}
\end{array}
$$

() $x-\frac{d y}{d x}+y=x^{3} y^{6}$

Sol:-

$$
\begin{align*}
& x \cdot \frac{d y}{d x}+y=x^{3} y^{6} \\
& \frac{x}{y^{6}} \cdot \frac{d y}{d x}+\frac{y^{\prime}}{y^{8} 5}=\frac{x^{3} y / 6}{y^{6}} \\
& x-y^{-6} \cdot \frac{d y}{d x}+y^{-5}=x^{3} \\
& x-y^{-6} \frac{d y}{d x}+\frac{1}{x} \cdot y^{-5}=x^{2} \quad y^{-5}=t \\
& \frac{-1}{5} \frac{d t}{d x}+\frac{1}{x} \cdot t=x^{2} \quad-5 y^{-6} d y=d t \\
& \frac{d t}{d x}-\frac{5}{x} \cdot t=-5 x^{2} \quad \rightarrow \text { (1) }
\end{align*}
$$

Equ(1) is in linear form.
where $P=\frac{-5}{x}$ and $Q=-5 x^{2}$

$$
\begin{aligned}
\text { I.F } e^{\int p(x) d x} & =e^{-\int \frac{-5}{x} d x} \\
& =e^{-5 \int \frac{1}{x} d x} \\
& =e^{-5 \log x} \\
& =e^{\log (x)^{-5}} \\
& =x^{-5} \\
& =\frac{1}{x 5}
\end{aligned}
$$

Now the solution of equ(c) is

$$
\begin{aligned}
t \cdot \frac{1}{x^{5}} & =\int-5 x^{2} \cdot \frac{1}{x 5} d x+c \\
& =-5 \int x^{-3} \cdot d x+c \\
& =-5+8 \cdot x^{-4} \\
& =-5 \frac{x^{-2}}{-2}+c \\
t \cdot \frac{1}{x-5} & =\frac{5}{2} \cdot \frac{1}{x^{2}}+C . \\
\frac{1}{x^{5} \cdot y^{5}} & =\frac{5}{2} \cdot \frac{1}{x^{2}}+C .
\end{aligned}
$$

(3) $x y\left(1+x y^{2}\right) \cdot \frac{d y}{d x}=1$

Sol:-

$$
\begin{align*}
& x y\left(1+x y^{2}\right)=\frac{d x}{d y} \\
& \frac{d x}{d y}=x y+x^{2} y^{3} \\
& \frac{d x}{d y}-x y=x^{2} y^{3} \\
& \frac{d x}{d y}-y \cdot x=x^{2} y^{3} \tag{1}
\end{align*}
$$

Eque (1) is Bernoullis form $\frac{d x}{d y}+p \cdot x=Q \cdot x^{n}$. This can be reduced to linear form.

$$
\begin{align*}
& \frac{d x}{d y}-y-x=x^{2}-y^{3} \\
& \frac{1}{x^{2}} \cdot \frac{d x}{d y}-y \cdot \frac{x}{x^{4}}=\frac{x^{2}-y^{3}}{x^{2}} \\
& \frac{1}{x^{2}} \cdot \frac{d x}{d y}-y \cdot\left(\frac{1}{x}\right)=y^{3} \\
& +\frac{d t}{d y}+y \cdot t=-y^{3} \tag{1}
\end{align*}
$$

Equ(2) in linear form.

$$
\begin{gathered}
\frac{+1}{x}=t \\
+\left(\frac{-1}{x^{2}}\right) d x=d t \\
\frac{1}{x^{2}} \cdot d x=d t
\end{gathered}
$$

where $P=y$. and $Q=y^{3}$

$$
\text { I.f } \begin{aligned}
e^{\int p(y) d y} & =e^{\int y \cdot d y} \\
& =e^{y^{2} / 2}
\end{aligned}
$$

Now the solution of eque (2) is

$$
t-e^{y^{2} / 2}=\int-y^{3} \cdot e^{y^{2} / 2} d y+c
$$

$$
\begin{aligned}
& =-\int y \cdot y^{2} \cdot e^{y^{2} / 2} \cdot d y+c \quad \frac{y^{2}}{2}=H \rightarrow y^{2}=2 甘 \\
& =-\int \cdot e^{t} \cdot 2 t \cdot d V+c \cdots \quad \frac{1}{3} \cdot d y=d y y^{\prime} d t \\
& =-2 \int e^{t} \cdot v \cdot d t+c \quad y \cdot d y=d t \\
& t \cdot e^{y / 2}=-2 \cdot e^{v}(v-1)+c \\
& \frac{1}{x} \cdot e^{y^{2} / 2}=-2 \cdot e^{y / 2}\left(\frac{y^{2}}{2}-1\right)+c \text {. }
\end{aligned}
$$

(5) $\frac{d y}{d x}-x^{2} y=y^{2} \cdot e^{-x^{3} / 3}$

Sol:-

$$
\frac{d y}{d x}-x^{2} \cdot y=e^{-x / 3} \cdot y^{2} \rightarrow 0
$$

Equn(1) is of Bernoallis form $\frac{d y}{d x}+p \cdot y=Q \cdot y^{n}$. This can be reduced to linear form.

$$
\begin{array}{ll}
\frac{1}{y^{2}} \frac{d y}{d x}-x^{2} \cdot y \frac{1}{y}=e^{-x^{3} / 3} \cdot y^{2} \frac{1}{y^{2}} & \\
\frac{1}{y^{2}} \frac{d y}{d x}-x^{2} \cdot \frac{1}{y}=e^{-x / 3} & \frac{1}{y}=t \\
-\frac{d t}{d x}-x^{2} \cdot t=e^{-x^{3} / 3} & \frac{-1}{y^{2}} \cdot d y=d t \\
\frac{d t}{d x}+x^{2} \cdot t=-e^{-x^{3} / 3} \rightarrow(2) & \frac{1}{y^{2}} \cdot d y=-d t
\end{array}
$$

$E q u^{n}(2)$ is in linear form.
where $P=x^{2}$ and $\theta=-e^{-x} 3 / 3$.
I.f $e^{\int P(x) d x}=e^{\int x^{2} d x}$

Now the solution of equ" © is

$$
\begin{aligned}
t \cdot e^{x / 3} & =\int-e^{-x / 3 / 3} \cdot e^{x 2 / 3} \cdot d x+c \\
& =-1(1) d x+c \\
t \cdot e^{x / 3 / 3} & =-x+c \\
\frac{1}{y} \cdot e^{x / 3} & =-x+c
\end{aligned}
$$

(4) $2 \cdot \frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{2}}$.

Sol:-

$$
\begin{aligned}
& 2 \cdot \frac{d y}{d x}=\frac{y}{x}+\frac{y^{2}}{x^{2}} \\
& 2 \cdot \frac{d y}{d x}-\frac{y}{x}=\frac{y^{2}}{x^{2}}
\end{aligned}
$$

$\rightarrow 0$
$E q \mu^{n}$ (1) is of Bernoulli's form

$$
\frac{2}{y^{2}} \cdot \frac{d y}{d x}-\frac{1}{x} \cdot \frac{y y}{y^{2}}=\frac{1}{x^{2}} \cdot \frac{y^{4}}{y^{2}}
$$ $\frac{d y}{d x}+P y=Q . y^{n}$. This can be reduced to linear form.

$$
\frac{2}{y^{2}} \cdot \frac{d y}{d x}-\frac{1}{x} \cdot \frac{1}{y}=\frac{1}{x^{2}}
$$

$$
\& \cdot \frac{-d t}{d x}-\frac{1}{x} \cdot t=\frac{1}{x^{2}}
$$

$$
\begin{equation*}
\frac{d t}{d x}+\frac{1}{2 x} \cdot t=\frac{-1}{2 x^{2}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { put } \frac{1}{y}=t \\
& \frac{-1}{y^{2}} \cdot d y=d t \\
& \frac{1}{y^{2}} \cdot d y=-d t
\end{aligned}
$$

Equ'(i) is of Bernoulli's form $\frac{d y}{d x}+p y y=Q y^{n}$
Entities can be reduced to linear form.
Equn(2) is in linear form.
Where $P=\frac{1}{2 x}$ and $Q=\frac{-1}{2 x^{2}}$

$$
\text { IVF } \begin{aligned}
e^{\int P(x) d x} & =e^{\frac{1}{2} \int \frac{1}{x} d x} \\
& =e^{\frac{1}{2} \log x} \\
& =e^{\log _{e}(x)^{1 / 2}} \\
& =x^{1 / 2}
\end{aligned}
$$

Now the solution of equn(2) is

$$
\begin{array}{rlrl}
t \cdot x^{1 / 2} & =\int \frac{-1}{2 x^{2}} \cdot \frac{1}{2 x} d x+c & t \cdot x^{1 / 2} & =\int \frac{-1}{2 x^{2}} x^{1 / 2} d x+c \\
& =\frac{-1}{4} \int \frac{-1}{x^{3}} / d x+c & & =\frac{-1}{2} \int x^{-2} \cdot x^{1 / 2} d x+c \\
& =\frac{-1}{4} / x^{-3} d x+c & & =\frac{-1}{2} \int x^{-3 / 2} d x+c \\
& =\frac{-1}{4} \frac{x^{-1 / 2}}{-1 / 2}+c \\
& =\frac{x^{-2}}{-^{2}}+c & t \cdot x^{1 / 2} & =\frac{1}{x^{1 / 2}+c} \\
t \cdot x^{1 / 2} & =\frac{1}{8 x^{2}}+c & \frac{1}{y} \cdot x^{1 / 2} & =\frac{1}{x^{1 / 2}}+c .
\end{array}
$$

(6) $\left(x^{3} y^{2}+x y\right) d x=d y$

Sol:-

$$
\begin{align*}
\left(x^{3} y^{2}+x y\right) d x & =d y \\
\frac{d y}{d x} & =x^{3} y^{2}+x y \\
\frac{d y}{d x}-x y & =x^{3} y^{2} \tag{1}
\end{align*}
$$

Equn (1) is of Bernoulli's form $\frac{d y}{d x}+p \cdot y=y^{n}$. This can be reduced to linear form.

$$
\begin{aligned}
& \frac{1}{y^{2}} \frac{d y}{d x}-x \cdot y^{2} \cdot \frac{1}{y^{4}}=x^{3} \cdot \frac{y}{y} \\
& \frac{1}{y^{2}} \cdot \frac{d y}{d x}-x \cdot \frac{1}{y}=x^{3} \\
& \frac{-d t}{d x}-x \cdot t=x^{3} \quad \frac{1}{y}=t \\
& \frac{d t}{d x}+x \cdot t=-x^{3} \rightarrow \text { (2) } \quad \frac{-1}{y^{2}} d y=d t \\
& \frac{1}{y^{2}} \cdot d y=d t(-1)
\end{aligned}
$$

Equation (2) ins in linear form
there $P=x$. and $Q=-x^{3}$

$$
\text { IVF } \begin{aligned}
e^{\int P(x) d x} & =e^{\int x \cdot d x} \\
& =e^{x^{L} / 2}
\end{aligned}
$$

Now the solution of equn(2) is

$$
\begin{array}{rlrl}
t \cdot e^{x^{2} / 2} & =\int-x^{3} \cdot e^{x^{2} / 2} \cdot d x+c & & \Rightarrow x^{2}=2 v \\
& =-\int x^{2} \cdot x \cdot e^{x^{2} / 2} d x+c \quad \begin{aligned}
& \frac{x^{2}}{2}=v \\
&=-\int 2 v \cdot e^{v} \cdot d v+c \\
&=-2 \int e^{v} \cdot v d v+c \\
& t \cdot e^{x^{2} / 2}=-2 \cdot e^{v}(v-1)+c d x=d v \\
& \frac{1}{y} \cdot e^{x^{2} / 2}=-2 \cdot e^{x^{2} / 2}\left(\frac{x^{2}}{2}-1\right)+c
\end{aligned} r d x=d v \\
& &
\end{array}
$$

(7) $\frac{d y}{d x}+y=x y^{3}$
sol:-

$$
\begin{equation*}
\frac{d y}{d x}+y=x y^{3} \tag{0}
\end{equation*}
$$

Equn(1) is of linear form $\frac{d y}{d x}+p \cdot y=0 y^{n}$. This can be reduced to linear form.

$$
\begin{align*}
\frac{1}{y^{3}} \frac{d y}{d x}+y^{\prime} \frac{1}{y^{3}} & =x \cdot y^{3} \frac{1}{y^{3}} \\
\frac{1}{y^{3}} \cdot \frac{d y}{d x}+\frac{1}{y^{2}} & =x \\
y^{3} \cdot \frac{d y}{d x}+y^{-2} & =x \\
-\frac{1}{2} \cdot \frac{d t}{d x}+t & =x . \\
\frac{d t}{d x}-2 t & =-2 x . \tag{2}
\end{align*}
$$

Put $y^{-2}=t$

$$
\begin{aligned}
-2 \cdot y^{-3} d y & =d t \\
y^{-3} \cdot d y & =\frac{-1}{2} d t
\end{aligned}
$$

Equ' (2) is in linear form
where $P=-2$ and $Q=-2 x$
I.F $e^{\int P(x) d x}$

$$
\begin{aligned}
& =e^{\int-2 \cdot d x} \\
& =e^{-2 \int(1) d x} \\
& =e^{-2 \cdot x}=e^{-2 x}
\end{aligned}
$$

Now the solution of equt(2) is

$$
\begin{aligned}
t \cdot e^{-2 x} & =\int-2 x \cdot e^{-2 x} d x+c \\
& =+\int t \cdot e^{t} \cdot \frac{1}{2} d t+c \quad-2 x=2 t \\
& =-\frac{1}{2} \cdot \int e^{t} \cdot d t d x=d y \\
& =-\frac{1}{2} \cdot e^{t}(v-1)+c \quad d x=-\frac{1}{2} d t \\
t \cdot e^{-2 x} & =-\frac{1}{2} \cdot e^{-2 x}(-2 x-1)+c \\
\frac{1}{y^{2}} \cdot e^{-2 x} & =\frac{1}{2} \cdot e^{-2 x}(2 x+1)+c
\end{aligned}
$$

(8) $\frac{d y}{d x}+y \cdot \tan x=y^{3} \cdot \cos x$.

Sod:-

$$
\begin{equation*}
\frac{d y}{d x}+y \cdot \tan x=\cos x \cdot y^{3} \tag{1}
\end{equation*}
$$

Equn(1) is of Bernoulli's form $\frac{d y}{d x}+p \cdot y=0 . y$?
This can be reduced to linear farm

$$
\begin{array}{ll}
\frac{1}{y^{3}} \frac{d y}{d x}+y \cdot \tan x \cdot \frac{1}{y^{2}}=\cos x \cdot y^{3} \cdot \frac{1}{y^{3}} \\
y^{-3} \cdot \frac{d y}{d x}+\tan x \cdot y-2=\cos x . & \\
-\frac{1}{2} \frac{d t}{d x}+\tan x \cdot t=\cos x & -2 y^{-3}=t y=d t \\
\frac{d t}{d x}-2 \cdot \tan x+c-2 \cdot \cos x & y-3 d y=-\frac{1}{2} d t
\end{array}
$$

Equn (2) is in linear form.
Where $P=-2 \tan x$, and $Q=-2 \cos x$.

$$
\begin{aligned}
\text { I. } \cdot e^{\int p(x) d x} & =e^{\int-2 \operatorname{Tan} x \cdot d x} \\
& =e^{-2 \tan x d x} \\
& =e^{+2 \log (\cos x)} \\
& =e^{\log _{e}(\cos x)^{2}} \\
& =\cos ^{2} x
\end{aligned}
$$

Now the solution of equine (2) is.

$$
\begin{aligned}
t \cdot \cos ^{2} x & =\int-2 \cdot \cos x \cdot \cos ^{2} x-d x+c \\
& =-2 \int \cos ^{3} x \cdot d x+c \\
& =-2 \cdot \frac{\cos 4 x}{4} \\
& =-\frac{2}{4} \int(\cos 3+3 \cos x) d x+c \\
& =-\frac{1}{2}\left[\frac{\sin 31}{3}+3 \sin x\right]+c
\end{aligned}
$$

(a) $\frac{d y}{d x}+\frac{x}{1-x^{2}}-y=x \sqrt{y}$.
sol:-

$$
\begin{align*}
& \frac{d y}{d x}+\frac{x}{1-x^{2}} \cdot y=x \sqrt{y} \\
& \frac{d y}{d x}+\frac{x}{1-x^{2}} \cdot y=x \cdot y^{1 / 2} \tag{i}
\end{align*}
$$

Equn(1) is of Bernoulli form $\frac{d y}{d x}+p \cdot y=Q \cdot y^{n}$.
This can be reduced to linear form.

$$
\begin{align*}
& \frac{1}{y^{1 / 2}} \frac{d y}{d x}+\frac{x}{1-x^{2}} \cdot y-\frac{1}{y^{1 / 2}}=x \cdot y^{1 / 2} \cdot \frac{1}{y^{1 / 2}} \\
& \frac{1}{y^{1 / 2}} \cdot \frac{d y}{d x}+\frac{x}{1-x^{2}} \cdot y \cdot y^{-1 / 2}=x . \\
& \frac{1}{y^{1 / 2}} \cdot \frac{d y}{d x}+\frac{x}{1-x^{2}} y^{1 / 2}=x . \\
& 2 \quad \frac{y^{1 / 2}}{d t}+\frac{x}{1-x^{2}} \cdot t=x \rightarrow \frac{1}{2} \cdot y^{1 / 2-1} \cdot d y=d t \\
& \frac{d t}{d x}+\frac{1}{2\left(1-x^{2}\right)^{-}} \cdot t=x-y^{-1 / 2} \cdot d y=d t . \\
& \frac{d t}{d x}+\frac{x}{2\left(1-x^{2}\right)} \cdot t=\frac{x}{2} \rightarrow \text { (2) } \quad \frac{1}{y^{1 / 2}} \cdot d y=2 \cdot d t
\end{align*}
$$

$E q u^{n}$ (2) is in linear form.
there $P=\frac{x}{2\left(1-x^{2}\right)}$ and $Q=\frac{x}{2}$

$$
\text { IF } \begin{aligned}
& e^{\int P(x)} d x \\
&=e^{\int \frac{x}{2\left(1-x^{2}\right)} d x} \\
&=e^{\frac{1}{2} \int \frac{x}{1-x^{2}} d x} \\
&=e^{1 / 2 \times \frac{1}{2} \int \frac{-2 x}{1-x^{2}} d x} \\
&=e^{-1 / 4 \cdot \log \left(1-x^{2}\right)} \\
&=e^{\log \left(1-x^{2}\right)^{-1 / 4}} \\
&=e^{\log e}\left(1-x^{-1}\right)^{-1 / 4} \\
&=\left(1-x^{2}\right)^{-1 / 4}=\frac{1}{\left(1-x^{2}\right)^{1 / 4}}
\end{aligned}
$$

Now the solution of $\mathrm{equ}^{n}(2)$ is

$$
\begin{aligned}
t: \frac{1}{\left(1-x^{2}\right)^{1 / 4}} & =\int \frac{x}{2} \cdot\left(1-x^{2}\right)^{-1 / 4} \cdot d x+c \\
& =\frac{1}{2} \int x \cdot\left(1-x^{2}\right)^{-1 / 4} d x+c \\
& =\frac{1}{2(-2)} \int(-2 x)\left(1-x^{2}\right)^{-1 / 4} \cdot d x+c
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{4} \int v^{-1 / 4} \cdot d v+c \\
& =\frac{-1}{4} \cdot \frac{v^{-1 / 4+1}}{-1 / 4+1}+c \\
& =\frac{-1}{4} \cdot \frac{v^{3 / 4}}{3 / 4}+c \\
t \cdot\left(1-x^{2}\right)^{-1 / 4} & =\frac{-1}{3} \cdot v^{3 / 4}+c \\
y^{1 / 2} \cdot\left(1-x^{-2}\right)^{4} & =\frac{-1}{3} \cdot\left(1-x^{2}\right)^{3 / 4}+c .
\end{aligned}
$$

$$
1-x^{2}=v
$$

$$
-2 x \cdot d x=d v
$$

(10) $y-\cos x \cdot \frac{d y}{d x}=y^{2}(1-\sin x) \cdot \cos x$. GT $y=2$ aphen $x=0$.

Sol:-

$$
\begin{align*}
y-\cos x \cdot \frac{d y}{d x} & =y^{2}(1-\sin x) \cos x \\
-\cos x \frac{d y}{d x} & =y^{2}(1-\sin x) \cos x-y \\
\frac{-\cos x}{-\cos x} \frac{d y}{d x} & =\frac{y^{2}(1-\sin x) \cos x}{-\cos x}-\frac{y}{-\cos x} \\
\frac{d y}{d x} & =-y^{2}(1-\sin x)+\frac{y}{\cos x} \\
\frac{d y}{d x}-\sec x \cdot y & =y^{2}(\sin x-1)
\end{align*}
$$

$E q u^{n}(1)$ is of Bernoulti's form $\frac{d y}{d x}+p y=Q \cdot y^{n}$
This can be reduced to linear form.

$$
\begin{array}{ll}
\frac{1}{y^{2}} \frac{d y}{d x}-\sec x \cdot \frac{y}{y^{t}}=\frac{y^{2}(\sin x-1)}{y^{2}} \\
\frac{1}{y^{2}} \frac{d y}{d x}-\sec x \cdot \frac{1}{y}=\sin x-1 \quad & \frac{1}{y}=t \\
\frac{-d t}{d x}-\sec x \cdot t=\sin x-1 & \frac{-1}{y^{2}} d y=d t \\
\frac{d t}{d x}+\sec x \cdot t=1-\sin x \rightarrow \text { (2) } \quad \frac{1}{y^{2}} d y=-d t
\end{array}
$$

Equn (2) is in inear form.
Where $P=\sec x$ and $\theta=1-\sin x$
I.F

$$
\begin{aligned}
e^{\int P(x) d x} & =e^{\int \sec x d x} \\
& =e^{\log _{e}(\sec x+\tan x)} \\
& =\sec x+\tan x
\end{aligned}
$$

Now the solution of equn(2) is

$$
\begin{aligned}
& \text { t. }(\sec x+\tan x)=\int(1-\sin x)(\sec x+\tan x) d x+c \\
& 7 \int(\sec x+\tan x+\sin x \cdot \sec x-\operatorname{sen} x \cdot \tan x) \\
& d x+-C . \\
& \pm \int \sec x \cdot d x+\int \tan x \cdot d x-\int \operatorname{sedn} x-d x \\
&+f \\
&=\int(1-\sin x)\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right) d x+c \\
&=\int(1-\sin x)\left(\frac{1+\sin x}{\cos x}\right) d x+c \\
&=\int \frac{1-\sin x}{\cos x} d x+c \\
&=\int \frac{\cos \cos x}{\cos x} \cdot d x+c \\
&=\operatorname{sen} x+c \\
& t \cdot(\sec x+\tan x) \\
& \frac{1}{y} \cdot(\sec x+\tan x)=\sin x+c .
\end{aligned}
$$

Given that $y=2$ when $x=0$

$$
\begin{aligned}
& \frac{1}{2}\left(\sec 0^{\circ}+\tan 0^{\circ}\right)=\sin 0^{\circ}+c \\
& \frac{1}{2}(1+0)=0+c \\
& \frac{1}{2}(1)=c \\
& \therefore c=1 / 2 \\
& \therefore \frac{1}{y}(\sec x+\tan x)=\operatorname{sen} x+1 / 2
\end{aligned}
$$

(11) $\frac{d y}{d x}-\tan x \cdot y=-y^{2} \cdot \sec x$.

Sol:- $\frac{d y}{d x}-\tan x \cdot y=-y^{2} \cdot \sec x \rightarrow$ (1) is Bernoulli's.

$$
\begin{array}{ll}
\frac{1}{y^{2}} \cdot \frac{d y}{d x}-\tan x \cdot y \cdot \frac{1}{y^{2}}=\frac{-y^{2} \sec x}{y^{2}} & \frac{1}{y}=t \\
\frac{1}{y^{2}} \frac{d y}{d x}-\tan x \cdot \frac{1}{y}=-\sec x & \frac{-1}{y^{2}} d y=d t^{\prime} \\
\frac{-d t}{d x}-\tan x \cdot t=-\sec x & \frac{1}{y^{2}} d y=-d t \\
\frac{d t}{d x}+\tan x \cdot t=+\sec x . \rightarrow \text { (2) } &
\end{array}
$$

Equn (2) is in linear form.
where $P=\tan x$ and $\theta=+\sec x$.

$$
\begin{aligned}
\text { IF } e^{\int p(x) d x} & =e^{\int \tan x d x} \\
& =e^{\log _{c}(\sec x)} \\
& =\sec x
\end{aligned}
$$

Now the solution of equn (2) is

$$
\begin{aligned}
1+\sec x & =\int^{1}+\sec x \cdot \sec x \cdot d x+c \\
& =+\int \sec ^{2} x \cdot d x+c \\
t \cdot \sec x & =+\tan x+c \\
\frac{1}{y} \cdot \sec x & =+\tan x+c
\end{aligned}
$$

Exact Differential Equations:
(2) $[\cos x \tan y+\cos (x+y)] d x+\left[\sin x \sec ^{2} y+\cos (x+y)\right] d y=0$

Sol:- $[\cos x \tan y+\cos (x+y)] d x+\left[\operatorname{sen} x \cdot \sec ^{2} y+\cos (x+y)\right] d y=0$
Equin(1) is of exact form of $M d x+N d y=0$.
Whee e $M=\cos x \cdot \tan y+\cos (x+y)$

$$
\begin{aligned}
& \text { and } N=\sin x \sec ^{2} y+\cos (x+y) \\
& M=\cos x \cdot \tan y+\cos x \cos y-\sin x \sin y \\
&\left(\frac{\partial M}{\partial y}\right)=\cos x \cdot \sec ^{2} y+\cos x(-\sin y)-\sin x(\cos y) \\
& x=\operatorname{cons} \\
& \frac{\partial M}{\partial y}=\cos x \cdot \sec ^{2} y-\cos x \sin y-\sin x \cos y \\
& N=\sin ^{2} x-\sec ^{2} y+\cos x \cos y-\sin x \sin y \\
&\left(\frac{\partial N}{\partial y}\right)=\sec ^{2} y \cos x+\cos y(-\sin x)-\sin y \cos x \\
& y=\operatorname{con} s t \frac{\partial N}{\partial x}=\sec ^{2} y \cos x-\cos y \sin x-\sin y \cos x \\
&=\cos x \cdot \sec 2 y-\cos x \sin y-\sin x \cos y
\end{aligned}
$$

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Hence equn(1) is an exact.
solution of equn(1) is $\int M d x+\int N d y=C$.

$$
\begin{aligned}
& \int(\cos x \tan y+\cos (x+y)] d x+\int(\sin x \sec l y+\cos (x+y)] d y=C \\
& \int \cos x \tan y d x+\int(\cos x \cos y-\sin x \sin y) d x \\
& \quad+\int \sin x \sec ^{2} y d y+\int(\cos x \cos y-\sin x \sin y) d y=C \\
& \int \cos x \tan y d x+\int \cos x \cos y d x-\int \sin x \sin y d x \\
& +\int \sin x \sec ^{2} y d y+\int \cos \cos y d y-\int \sin x \sin y d y=C \\
& \tan y \int \cos x d x+\cos y \int \cos x d x-\int \ln y \int \sin x d x+0+0-0=C \\
& \tan y \sin x+\cos y \sin x-\sin y \cos x)=c \\
& \quad \tan y \sin x+\sin x \cos y+\cos x \sin y=C \\
& \quad \sin x \tan y+\sin (x+y)=c
\end{aligned}
$$

(5) $\left(1+e^{x / y}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0$

Sol:-

$$
\text { L:. } \begin{array}{rlrl}
\left(1+e^{x / y}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y & =0 \longrightarrow(1) \\
M=1+e^{x / y} \quad \text { and } \quad N & =\left(1-\frac{x}{y}\right) \cdot e^{x / y} \\
\begin{aligned}
\frac{\partial M}{\partial y}=0+e^{x / y} \cdot \frac{-x}{y^{2}} & \frac{\partial N}{\partial x}
\end{aligned}=\left(0-\frac{1}{y}\right) \frac{d}{y / y}+e^{x / y} \cdot \frac{d}{d x}\left(\frac{x}{y}\right)\left(1-\frac{x}{y}\right) \\
& =-e^{x / y} \cdot \frac{x}{y^{2}} & e^{x / y}+e^{x / y} \frac{1}{y} \cdot\left(1-\frac{x}{y}\right) \\
& =-\frac{1}{y} e^{x / y}+\frac{1}{y} e^{x / y}-\frac{x}{y} \cdot e^{x / y} \\
& =-e^{x / y} \cdot \frac{x}{y^{2}} \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

Hence quo is an exact.
Now the solution of equip it is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(1+e^{x / y}\right) d x+\int(1-x / y) e^{x / y} d y=c \\
& \int(1) d x+\int e^{x / y} d x+\int\left(e^{x / y} d y-\int \frac{1}{y} \cdot e^{x / y} d y=c\right.
\end{aligned}
$$

$$
\begin{array}{r}
x+\frac{e^{x / y}}{1 / y}+0-0=c \\
x+y \cdot e^{x / y}=c \tag{1}
\end{array}
$$

(6) $\left(\sec x \tan x \tan y-e^{x}\right) d x+\sec x \cdot \sec ^{2} y d y=0$
solve
Equn (1) is of exact shostros differential equation.

$$
M d x+N d y=0
$$

Where $M=\sec x \tan x \tan y,-e^{x}$

$$
\begin{aligned}
& \quad \frac{\partial M}{\partial y}=\sec x \cdot \tan x \cdot \sec ^{2} y-0 . \\
& \left(x=\operatorname{con}(y)=\sec x \cdot \tan x \cdot \sec ^{2} y\right. \\
& \text { and } \quad N=\sec x \cdot \sec ^{2} y . \\
& \\
& \frac{\partial N}{\partial x}=\sec ^{2} y \cdot \sec x \cdot \tan x \\
& \left(y \operatorname{con}(t)=\sec x \cdot \tan x \sec ^{2} y .\right. \\
& \therefore \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

Hence Equn(1) is an exact form.
Now the solution of cain is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(\sec x \tan x \operatorname{sen} y-e^{x}\right) d x+\int \sec ^{x} \sec ^{2} y d y=c \\
& \tan y \int \sec x \tan x \cdot d x-\int e^{x} d x+0=c \\
& \tan y \sec x-e^{x}=c
\end{aligned}
$$

$$
\begin{equation*}
\text { (1) }\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0 \text {. } \tag{i}
\end{equation*}
$$

Sol:- Equn (1) is of exact differential equation

Where $M=5 x^{4}+3 x^{2} y^{2}-2 x y^{3}$ and $N=2 x^{3} y-3 x^{2} y^{2}-5 y^{4}$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y(x=c o n)} & =0+3 x^{2}(2 y)-2 x \cdot 3 y^{2} \\
& =6 x^{2} y-6 x y^{2} & & \frac{\partial N}{\partial x}=2 y\left(3 x^{2}\right)-3 y^{2}(2 x)-0 \\
\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

Hence equn(1) is an exact.
solution of equin(1) is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\int\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=C \\
& 5 \int x^{4} d x+3 y^{2} \cdot \int x^{2} \cdot d x-2 y^{3} \int x \cdot d x+\int 2 x^{3} y \cdot d y-\int 3 x^{2} y^{2} d y-\int 5 y^{4} d y=C \\
& 5\left(\frac{\left.x^{3}\right)}{5}+\frac{8 y^{2}}{5} \frac{\left(x^{3}\right)-2 y^{3}\left(\frac{x^{2}}{4}\right)+0-0-5 \cdot y^{5}}{8}=C\right. \\
& x^{5}+x^{3} y^{2}-x^{2} y^{3}-y^{5}=C . \\
& x^{5}-y^{5}+x^{3} y^{2}-x^{2} y^{3}=c .
\end{aligned}
$$

(3) $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$.

Sol:-

$$
\begin{align*}
& \frac{d y}{d x}=-\frac{y \cos x+\sin y+y}{\sin x+x \cdot \cos y+x} \\
& (\sin x+x \cos y+x) d y=-(y \cos x+\sin y+y) d x \\
& (y \cos x+\sin y+y) d x+(\sin x+x \cos y+x) d y=0 \tag{1}
\end{align*}
$$

Equncio is of exact differential equation of $M d r+N d y=0$ Where $M=y \cdot \cos x+\sin y+y \quad$ and $N=\sin x+x \cos y+x$.

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\cos x \cdot(1)+\cos y+1 & \frac{\partial N}{\partial x} & =\cos x+\cos y(1)+1 \\
& =\cos x+\cos y+1 & & =\cos x+\cos y+1
\end{aligned}
$$

Hence Equ(1) is an exact.
Now the, solution of equaco is $\int M d x+\int N d y=c$.

$$
\begin{gathered}
\int(y \cos x+\sin y+y) d x+\int(\sin x+x \cos y+x) d y=c \\
y \int \cos x \cdot d x+\sin y \int d x+y \int \cdot d x+\int \sin x \cdot d y+\int x-\cos y d y+\int x d y=c \\
y \sin x+\sin y-x+y \cdot x+-\cos 0+0+0=c \\
\sin x \cdot y+x \cdot \sin y+x y=c
\end{gathered}
$$

（4）$\left(2 x^{3}-x y^{2}-2 y+3\right) d x-\left(x^{2} y+2 x\right) d y=0$ ：
Sol： Eqn⿻丅⿵冂⿰⿱丶丶⿱丶丶⿴囗十 $^{(1)}$ is of exact differential equation：
of $M a x+N d y=0$
Where $M=2 x^{3}-x y^{2}-2 y+3$ ．and $\quad N=-x^{2} y-2 x$ ．

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =0-x y 2 y-2+0 & \frac{\partial N}{\partial x} & =-y \cdot(2 x)-2 \\
& =-2 x y-2 . & & =-2 x y-2 .
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Hence equn（1）is an exact．
Now the solution of $e q u^{n}(1)$ is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(2 x^{3}-x y^{2}-2 y+3\right) d x+\int\left(-x^{2} y^{2}-2 x\right) d y=c \\
& 2 \int x^{3} d x-y^{2} \int x d x-\int 2 y d x+3 \int(1) d x-\int x^{2} y^{2} d y-\int 2 x d y=c \\
& \left\{\frac{x y}{42}-y^{2}-\frac{x^{2}}{2}-2 y x+3 x-0-0=c\right. \\
& \frac{x^{4}}{2}-\frac{x^{2}}{2} y^{2}-2 x y+3 x=c \\
& \frac{x^{2}}{2}\left[x^{2}-y^{2}\right]-2 x y+3 x=c
\end{aligned}
$$

（7）：$\left(\cos x: \log (2 y-8)+\frac{1}{x}\right) d x+\frac{\sin x}{y-4} d y=0$
Solo－Equn（1）is of exact differential form $M d x+N d y=0$ where $M=\cos x \cdot \log \left(2 y-s^{2}\right)+\frac{1}{x}$ ，and

$$
\frac{\partial M}{\partial y}=\cos x \cdot \frac{1}{2 y-8}(2-0)+0
$$

$$
=\frac{\cos x}{y-y}
$$

$$
\begin{aligned}
N & =\frac{\sin x}{y-y} \\
\frac{\partial N}{\partial x} & =\frac{1}{y-y}(\cos x) \\
& =\frac{\cos x}{y-y}
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Hence equn（1）is an exact
Now the solution of equnce is $\int M d x+\int N d y=C$ ．

$$
\begin{gathered}
\int\left(\cos x \cdot \log (2 y-8)+\frac{1}{x}\right) d x+\int \cdot \frac{\sin x}{y-4} d y=C \\
\log (2 y-8) \int \cos x \cdot d x+\int \frac{1}{x} d x+0=C \\
\log (2 y-8) \cdot \operatorname{sen} x+\log x=C
\end{gathered}
$$

(8) $\left(2 x y \cos x^{2}-2 x y+1\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0$

Solo Equip (1) is of exact differential equation

$$
M d x+N d y=0
$$

where $M=2 x y \cos x^{2}-2 x y+1 \quad$ and $\quad N=\sin x^{2}-x^{2}$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =2 x \cos x^{2}-2 x+0 & \frac{\partial N}{\partial x} & =\cos x^{2} \cdot(2 x)-2 x \\
& =2 x\left(\cos x^{2}-1\right) & & =2 x\left(\cos x^{2}-1\right)
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Hence equncti is an exact.
Now the solution of equin (1) is $\int m d x+\int n d y=C$

$$
\begin{aligned}
& \int\left(2 x y \cos x^{2}-2 x y+1\right) d x+\int\left(\operatorname{sen} x^{2}-x^{2}\right) d y=c \\
& y \cdot \int 2 x \cdot \cos x^{2} d x-2 y \int x d x+\int(1) d x+\int \sin x^{2} d y-\int x^{2} \cdot d y=c \\
& y \int \cos t \cdot d t-2 y \frac{x^{2}}{3}+x+0-0=c \\
& y \cdot \operatorname{sen} t-x^{2} y+x=c \\
& \operatorname{sen} x^{2} y-x^{2} y+x=c \\
& y\left(\sin ^{2}-x^{2}\right)+x=c
\end{aligned}
$$

$$
\text { Put } x^{2}=t
$$

$$
2 x d x=d t
$$

(9) $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$

Sol)- Equn(is of an exact differential equation,

$$
M d x+N d y=0
$$

Where

Hence equn(1) is an exact.
Now the solution of equn(1) 另 $\int m d x+\int N d y=C$.

$$
\begin{gathered}
\int\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\int\left(2 x y \cdot e^{x y^{2}}-3 y^{2}\right) d y=c \\
\int y^{2} e^{x y^{2}} \cdot d x+\int 4 x^{3} d x+\int 2 x y e^{x y^{2}} d y-\int 3 y^{2} d y=c .
\end{gathered}
$$

$$
\begin{aligned}
& M=y^{2} e^{x y^{2}}+4 x^{3} \quad \text { and } \\
& \frac{\partial M}{\partial y}=y^{2} \cdot e^{x y^{2}(2)}(2 y)+e^{x y^{2}}-2 y \\
& =2 y\left[x y^{2} \cdot e^{x y^{2}}+e^{x y^{2}}\right] \\
& N=2 x y e^{x y^{2}}-3 y^{2} \\
& \frac{d N}{d x}=2 y\left[x \cdot e^{x y^{2}}(y)^{2}(1)+e^{x y^{2}}(-1)\right] \text {-0 } \\
& =2 y\left[x y^{2} \cdot e^{x y^{2}}+e^{x y^{2}}\right] \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\begin{gathered}
y^{2} \int e^{x y^{2}} d x+4 \int x^{3} d x+0-3 \int y^{2} d y=c \\
y^{2} \frac{e^{x y^{2}}}{y^{2}}+y^{2} \frac{x^{y}}{y}-\beta^{3} \frac{y^{3}}{y^{2}}=C \\
e^{x y^{2}}+x y-y^{3} \Rightarrow C_{1}
\end{gathered}
$$

(10) $\left[y \cdot\left(1+\frac{1}{x}\right)+\cos y\right] d x+(x+\log x-x \sin y) d y=0$

Sol:- Equno is of an exact differential equation $M d x+N d y=0$.
where $M=y\left(1+\frac{1}{x}\right)+\cos y$ and $N=x+\log x-x \sin y$

$$
\begin{array}{rlr}
\frac{\partial M}{\partial y}= & \left.\left(1+\frac{1}{x}\right)+\operatorname{sen} y\right) \\
= & 1+\frac{1}{x}-\sin y & =1+\frac{1}{x}-\sin y(1) \\
& \quad \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

Hence equ^{n} (1) is an exact.
Now the solution of equip (1) is $\int m d x+\int N d y=$.

$$
\begin{gathered}
\int\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+\int(x+\log x-x \sin y) d y=c \\
y \int\left[\left(1+\frac{1}{x}\right)+\cos y\right] d x+\int x d y+\int \log x d y-\int x \sin y d y=C \\
y \int(1) d x+\int \frac{1}{x} d x+\cos y \int(1) d x+0+0-0=c \\
y \cdot x+\log x+\cos y \cdot x=c \\
x y+x \cdot \cos y+\log x=C
\end{gathered}
$$

Non-Exact! 19-09 (Thussday)
(d)
(Method -I)
(4) $\left(3 x y^{2}-y^{3}\right) d x-\left(2 x^{2} y-x y^{2}\right) d y=0$

Sol:- Equn(1) is of exact form $M d x+N d y=0$.
where $M=3 x y^{2}-y^{3}$ and

$$
\frac{d M}{d y}=3 x(2 y)-3 y^{2}
$$

$$
\begin{aligned}
N & =-2 x^{2} y+x y^{2} \\
\frac{\partial N}{\partial x} & =-2 \cdot(2 x)+y^{2} . \\
& =-4 x+y^{2} .
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Hence equn(1) is non-exact.
Eain(1) can be reduced to exact by multipying an integrating factil.
\rightarrow clearly equn(1) is homogeneous degree " 3 ".

$$
\begin{aligned}
& \rightarrow \quad M x+N y=\left(3 x y^{2}-y^{3}\right) x+\left(-2 x^{2} y+x y^{2}\right) y \\
&=3 x^{2} y^{2}-x y^{3}-2 x^{2} y^{2}+x y^{3} \\
&=x^{2} y^{2} \neq 0 . \\
& \therefore M x+N y \neq 0 \\
& \therefore I \cdot F=\frac{1}{M x+N y}=\frac{1}{x^{2}+y^{2}}
\end{aligned}
$$

from(1),

$$
\begin{align*}
& \left(3 x y^{2}-y^{3}\right) d x-\left(2 x^{2} y-x y^{2}\right) d y=0 \\
& \frac{1}{x^{2} y^{2}}\left(3 x y^{2}-y^{3}\right) d x-\frac{\left(2 x^{2} y-x y^{2}\right) d y}{x^{2} y^{2}}=0 \times \frac{1}{x^{2} y^{2}} \\
& \frac{y^{2}(3 x-y)}{x^{2} y^{2}} d x-\frac{(1 y(2 x-y)}{x+y^{4}} d y=0 \\
& \quad \frac{3 x-y}{x^{2}} d x-\frac{2 x-y}{x y} d y=0 \\
& \left(\frac{3 x}{x^{4}}-\frac{y}{x^{2}}\right) d x-\left(\frac{2 x}{x y}-\frac{y}{x y}\right) d y=0 \\
& \left(\frac{3}{x}-\frac{y}{x^{2}}\right) d x-\left(\frac{2}{y}-\frac{1}{x}\right) d y=0 \tag{2}
\end{align*}
$$

Equ? (2) is of an exact form $M d x+n d y=0$
where $M=\frac{3}{x}-\frac{y}{x^{2}}$ and $N=-\left(\frac{2}{y}-\frac{1}{x}\right)$

$$
\begin{array}{rlrl}
M & =\frac{3}{x}-\frac{y}{x^{2}} & N & =-\frac{2}{y}+\frac{1}{x} \\
\frac{\partial M}{\partial y} & =0-\frac{1}{x^{2}}(1) & \frac{d N}{\partial x} & =-0+\left(\frac{-1}{x^{2}}\right) . \\
& =\frac{-1}{x^{2}} & & =\frac{-1}{x^{2}} . \\
\therefore \frac{d M}{\partial y}=\frac{\partial N}{\partial x} & &
\end{array}
$$

Equ'(2) is an exact form.
Now the solution of equn (2) is $\int M d x+\int N d y=C$.

$$
\begin{gather*}
\int\left(\frac{3}{x}-\frac{y}{x^{2}}\right) d x+\int\left(\frac{-2}{y}+\frac{1}{x}\right) d y=c \\
3 \int \frac{1}{x} d x-y \int \frac{1}{x^{2}} d x-2 \int \frac{1}{y} d y+\int \frac{1}{x} d y=c \\
3 \log x-y \log y+0=c \\
3 \log x-y \cdot \frac{x^{-1}}{-1}-2 \log y=c \\
3 \log x+\frac{y}{x}-2 \log y=c \\
\log x+\frac{y}{x}-\log y^{2}=c \\
\log \left(\frac{x}{y^{2}}\right)+\frac{y}{x}=c \tag{1}
\end{gather*}
$$

(5) $\left(x^{2}-3 x y+2 y^{2}\right) d x+x(3 x-2 y) d y=0$.

Soly Equn is is of an exact form $M d x+N d y=0$
Where $M=x^{2}-3 x y+2 y^{2} \quad$ and $\quad N=3 x^{2}-2 x y$.

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y}= & 0-3 x(U)+2(2 y) & \frac{\partial N}{\partial x} & =3(2 x)-2 y(1) \\
& =4 y-3 x . & & =6 x-2 y \\
& \therefore \frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}
\end{array}
$$

Hence equnco ess non-exact.
Equn(1) can be reduced to exart form by multiplying an Intiglating factor.
\rightarrow clearly Equn(1) is a homogeneous degsee " 2 ".

$$
\begin{aligned}
M x+N y & =\left(x^{2}-3 y x+2 y^{2}\right) x+\left(3 x^{2}-2 x y\right) y \\
& =x^{3}-3 x^{2} y+2 y y^{2}+3 x^{2} y-2 x y^{2} \\
& =x^{3}+0 .
\end{aligned}
$$

$$
M x+N y \neq 0
$$

$$
\therefore I \cdot F=\frac{1}{m x+n / y}=\frac{1}{x^{3}}
$$

from

$$
\begin{align*}
& \left(x^{2}-3 x y+2 y^{2}\right) d x+\left(3 x^{2}-2 x y\right) d y=0 \\
& \frac{x^{2}-3 x y+2 y^{2}}{x^{3}} d x+\frac{3 x^{2}-2 x y}{x^{3}} d y=0 \\
& \left(\frac{x^{2}}{x^{3}}-\frac{3 x y}{x^{2}}+\frac{2 y^{2}}{x^{3}}\right) d x+\left(\frac{3 x^{2}}{x^{2}}-\frac{2 x y}{x^{2}}\right) d y=0 \\
& \left(\frac{1}{x}-\frac{3 y}{x^{2}}+\frac{2 y^{2}}{x^{3}}\right) d x+\left(\frac{3}{x}-\frac{2 y}{x^{2}}\right) d y=0 . \tag{2}
\end{align*}
$$

Equn(2) is an exact. form of $A x+2+2 d x+N d y=0$.
where $M=\frac{1}{x}-\frac{3 y}{x^{2}}+\frac{2 y^{2}}{x^{3}} \quad$ and $N=\frac{3}{x}-\frac{2 y}{x^{2}}$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=0-\frac{3}{x^{2}}(1)+\frac{2}{x^{3}}(2 y) \\
&=\frac{-3}{x^{2}}+\frac{4 y}{x^{3}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=3\left(\frac{-1}{x^{2}}\right):-2 y(-2) x^{-3}
$$

$$
=\frac{-3}{x^{2}}+9 \frac{y}{x^{3}}
$$

clearly
terence equn (2) is an exact.
Now the solution of equn (2) is $\int M d x+\int N d y=c$.

$$
\begin{gathered}
\int\left(\frac{1}{x}-\frac{3 y}{x^{2}}+\frac{2 y^{2}}{x^{3}}\right) d x+\int\left(\frac{3}{x}-\frac{2 y}{x^{2}}\right) d y=C \\
\int \frac{1}{x} d x-3 y \int x^{-2} d x+2 y^{2} \int x^{-3} d x+0=C \\
\log x-3 y \frac{x^{-1}}{-1}+\$ y^{2} \frac{x^{-2}}{-x}=C \\
\log x+\frac{3 y}{x}-\frac{y^{2}}{x^{2}}=C
\end{gathered}
$$

(1) $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.

Sol:- Equn (1) is an exact form of $m d x+N d y=0$
Where $M=x^{2} y-2 x y^{2}$ and $N=-x^{3}+3 x^{2} y$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =x^{2}(1)-2 x(\cdot 2 y) & \frac{\partial N}{\partial x} & =-3 x^{2}+3 y(2 x) \\
& =x^{2}-4 x y & & =-3 x^{2}+6 x y \\
& \therefore \frac{\partial M g}{\partial y} \neq \frac{\partial N}{\partial x}
\end{array}
$$

Hence sequin (1) is non-exact.
Equine can be reduced to exact form by multiplying an integrating factor.
\rightarrow clearly equnco is a homogeneous degree ' 3 '

$$
\begin{align*}
& M x+N y=\left(x^{2} y-2 x y^{2}\right) x-\left(x^{3}-3 x^{2} y\right) y \\
&=x^{3} y y-2 x^{2} y^{2}-x^{3} / y+3 x^{2} y^{2} \\
&=x^{2} y^{2}+0 \\
& M x+N y \neq 0 \\
& I \cdot F=\frac{1}{M x+A y}=\frac{1}{x^{2} y^{2}} \\
& \frac{\left(x^{2} y-2 x y^{2}\right)}{x^{2} y^{2}} \cdot d x-\left(x^{3}-3 x^{2} y\right) \\
&\left(\frac{x^{2} y}{x^{2} y^{2}}-\frac{2 x^{2} y^{2}}{x^{2} y^{2}}\right) d y=0 \\
&\left(\frac{1}{y}-\frac{x^{2}}{x}\right) d x-\left(\frac{x^{2}}{x^{2} y^{2}}-\frac{3 x^{2} y}{x^{2} y y}\right) d y=0 \tag{2}\\
&\left(\frac{x}{y^{2}}-\frac{3}{y}\right) d y=0
\end{align*}
$$

etere Equn (2) an exact form M dat $N d y=0$.
where $M=\frac{1}{y}-\frac{2}{x} \quad$ and $\quad N=-\frac{x}{y^{2}}+\frac{3}{y}$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =\frac{-1}{y^{2}}-0 & \frac{\partial N}{\partial x} & =\frac{-1}{y^{2}}(1)+0 \\
& =\frac{-1}{y^{2}} & =\frac{-1}{y^{2}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} &
\end{array}
$$

clearly equn(1) is exact.
Now the solution of equn(2) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(\frac{1}{y}-\frac{2}{x}\right) d x+\int\left(\frac{-x}{y^{2}}+\frac{3}{y}\right) d y=c \\
\frac{1}{y} \int-\operatorname{lo}(1) d x-2 \int \frac{1}{x} d x-\int \frac{x}{y^{2}} d y+3 \int \frac{1}{y} d y=c \\
\frac{1}{y} \cdot x-2 \cdot \log x-0+3 \log y=c \\
\frac{x}{y}-\log x^{2}+\log y^{3}=c \\
\log \frac{y^{3}}{x^{2}}+\frac{x}{y}=c
\end{gathered}
$$

(2). $\left(x y-2 y^{2}\right) d x-\left(x^{2}-3 x y\right) d y=0$
sol:-
Equncl is of an exact form $M A d x+N d y=0$:
Where $M=x y-2 y^{2} \quad$ and $N=-\left(x^{2}-3 x y\right)$

$$
\begin{aligned}
\frac{d M}{d y} & =x \cdot(1)-2(2 y) & \frac{d N}{d x} & =-[2 x-3 y(1)] \\
& =x-4 y & & =2 x+3 y
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Equn (1) is non-exact.
EqunC can be reduced to exact by multiplying an inegrating sactor.
\rightarrow Clearly equn(1) is a homogeneous degree ' 2 '.

$$
\begin{aligned}
M x+N y & =\left(x y-2 y^{2}\right) x-\left(x^{2}-3 x y\right) y \\
& =x^{2} y-2 x y^{2}-x / y+3 x y^{2} \\
& =x y^{2} \neq 0 . \\
& M x+N y \neq 0
\end{aligned}
$$

$$
\text { I.F: }=\frac{1}{m x+N y}=\frac{1}{x y^{2}}
$$

from (1),

$$
\begin{align*}
& \frac{\left(x y-2 y^{2}\right)}{x y^{2}}-d x-\left(\frac{x^{2}-3 x y}{x y^{2}}\right) d y=0 \\
& \left(\frac{x^{\prime} y}{x y^{4}}-\frac{2 y^{2}}{x y^{2}}\right) d x-\left(\frac{x y}{x y^{2}}-\frac{3 x\left(y^{y}\right.}{x y^{4}}\right) d y=0 \\
& \left(\frac{1}{y}-\frac{2}{x}\right) d x-\left(\frac{x}{y^{2}}-\frac{3}{y}\right) d y=0 \rightarrow \text { (2) } \tag{2}
\end{align*}
$$

Equn (2) \&s an exact form of $M d x+N d y=0$
where $M=\frac{1}{y}-\frac{2}{x} \quad$ and $\quad N=-\frac{x}{y^{2}}+\frac{3}{y}$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{-1}{y^{2}}-0 \\
& =\frac{-1}{y^{2}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=\frac{-1}{y}(1)+0
$$

$$
=-\frac{1}{y^{2}}
$$

clearly equn (2) is an exact.

Now the solution of equn (2) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(\frac{1}{y}-\frac{2}{x}\right) d x+\int\left(-\frac{x}{y^{2}}+\frac{3}{y}\right) d y=c \\
\frac{1}{y} \int(1) d x-2 \int \frac{1}{x} \cdot d x+\int \frac{-x}{y^{2}} d y+3 \int \frac{1}{y} d y=c \\
\frac{1}{y}(x)-2 \log x+0+3 \cdot \log y=c \\
\frac{x}{y}-\log x^{2}+\log y^{3}=c \\
\log \left(\frac{y^{3}}{x^{2}}\right)+\frac{x}{y}=c
\end{gathered}
$$

(3) $x^{2} y \cdot d x-\left(x^{3}+y^{3}\right) d y=0$

Sol:-
Equn(1) is of an exact form $M d x+N d y=0$
Where $M=x^{2} y$ and $N=-\left(x^{3}+y^{3}\right)$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=x^{2}(1) \quad \frac{\partial N}{\partial x} \\
&=-3 x^{2}+0 \\
&=-3 x^{2} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

Hence equnce is non exact.
Equn(1) can be reduced to exact by multiplying
Integrating factor.
clearly eqund is homogeneous degree ' 3 !'

$$
\begin{aligned}
M x+N y & =\left(x^{2} y\right) x+\left[+\left(x^{3}+y^{3}\right)\right] y \\
& =x^{2} y-x-x^{3} y-y^{4} \\
& =x^{3} / y-x^{3} y^{2} y^{4} \\
& =x^{3}(x y-1)-y^{3} \neq 0 y^{4} \neq 0 \\
I \cdot F & =\frac{1}{M x+N y}=\frac{1}{x^{3}\left(x^{3}+1\right)-y^{3}} \frac{1}{y^{4}}
\end{aligned}
$$

from (1),

$$
\begin{array}{r}
\frac{x^{2} y d x}{x^{3}\left(y(y-1)+\left(x^{3}+y^{3}\right)\right.} d y=0 \\
\frac{x^{2} y^{1}}{y^{4}} d x-\frac{\left(x^{3}+y^{3}\right)}{y^{4}} d y=0 \\
\\
\frac{x^{2}}{y^{3}} d x-\left(\frac{x^{3}}{y^{4}}+\frac{y^{3}}{y^{3}}\right) d x=0 \tag{2}
\end{array}
$$

Equn(2) is an exact.

Where

$$
\begin{aligned}
& M=\frac{x^{2}}{y^{3}} \\
& \frac{d M}{\partial y}=x^{2} \cdot\left(-\frac{1}{2} x \sqrt{2} x^{2} \cdot(-3) y^{4}\right. \\
& =\frac{+2 x^{2}}{2\left(y^{2}\right.}-\frac{3 x^{2}}{y^{4}} \\
& \left.\frac{\partial M}{d y}=\frac{d N}{\partial x} \right\rvert\, \cdot \tan ^{n}(2) \text { is an exact. }
\end{aligned}
$$

Now the solution of equn(z) is $\int M d x+\int N d y=C$:

$$
\begin{aligned}
& \int \frac{x^{2}}{y^{3}} d x+\int\left(\frac{-x^{3}}{y^{4}}-\frac{1}{y}\right) d y=c \\
& \frac{1}{y^{3}} \int x^{2} d x-\int \frac{x^{3}}{y^{4}} d y-\int \frac{1}{y} d y=C \\
& \frac{1}{y^{3}} \frac{x^{3}}{3}-0-\log y=c \\
& \quad \frac{x^{3}}{3 y^{3}}-\log y=C
\end{aligned}
$$

Saturday:
21)0912019

Method - II.
(4) $\left(x y^{2}+2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d x y=0$.

Sol:- Equip it is of an exact. form $M d x+N d y=0$
Where $M=x y^{2}+2 x^{2} y^{3} \quad$ and $N=x^{2} y-x^{3} y^{2}$

$$
\begin{aligned}
M & =x y^{2}+2 x^{2} y^{3} & \text { and } & N=x \\
\frac{\partial M}{\partial y} & =x \cdot 2 y+2 x^{2}\left(3 y^{2}\right) & & \frac{\partial N}{\partial x}=y(2 x)-y^{2}-3 x^{2} \\
& =2 x y+6 x^{2} y^{2} & & =2 x y-3 x^{2} y^{2} \\
& =\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} & &
\end{aligned}
$$

Hence equn (1) is non-exact.
Equ'0 can be redciced to exact by multiplying Integrating factor.
t clearly
from ${ }^{(1)}$

$$
\begin{aligned}
y(x y & \left.+2 x^{2} y^{2}\right) d x-x\left(x y-x^{2} y^{2}\right) d y=0 \\
M x-N y & =x y\left(x y+2 x^{2} y^{2}\right)-x y \cdot\left(x y-x^{2} y^{2}\right) \\
& =x^{2} y^{2}+2 x^{3} y^{3}-x^{2} y^{2}+x^{3} y^{3} \\
& =3 x^{3} y^{3}+0 \\
I \cdot F & =\frac{1}{M x-N y} \\
& =\frac{1}{3 x^{3} y^{3}}
\end{aligned}
$$

from(1)

$$
\begin{align*}
& \left(x y^{2}+2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d y=0 \\
& \left(\frac{x y^{2}+2 x^{2} y^{3}}{3 x^{3} y^{3}}\right) d x+\left(\frac{x^{2} y-x^{3} y^{2}}{3 x^{3} y^{3}}\right) d y=0 \\
& \left(\frac{x^{2} y^{2}}{3 x^{3} y^{3}}+\frac{2 x^{4} y^{3}}{3 x y^{3}}\right) d x+\left(\frac{x^{2} y^{3}}{3 x^{3} y^{3} 2}-\frac{x^{3} y^{2}}{3 x^{3} y^{3}}\right) d y=0 \\
& \left(\frac{1}{3 x^{2} y}+\frac{2}{3 x}\right) d x+\left(\frac{1}{3 x y^{2}}-\frac{1}{3 y}\right) d y=0, \tag{2}
\end{align*}
$$

Equn (2) is an exact.
where, $M=\frac{1}{3 x^{2} y}+\frac{2}{3 x} \quad$ and $\quad N=\frac{1}{3 x y^{2}}-\frac{1}{3 y}$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{1}{3 x^{2}} \cos \left(\frac{-1}{y^{2}}\right)+0 \\
& =\frac{-1}{3 x^{2} y^{2}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=\frac{1}{3 y^{2}}\left(\frac{-1}{x^{2}}\right)-0
$$

$$
=\frac{-1}{3 x^{2} y^{2}}
$$

Clearly Eain (2) is an exact.
Now the solution of equn (2) is $\int M d x+\int N d y=C$.

$$
\begin{gathered}
\int\left(\frac{1}{3 x^{2} y}+\frac{2}{3 x}\right) d x+\int\left(\frac{1}{3 x y^{2}}-\frac{1}{3 y}\right) d y=c \\
\frac{1}{3 y} \int \frac{1}{x^{2}} d x+\frac{2}{3} \int \frac{1}{x} d x+\int \frac{1}{3 y^{2} x} d y-\frac{1}{3} \frac{1}{y^{\prime}} d y=c \\
\frac{1}{3 y} \frac{x^{-1}}{-1}+\frac{2}{3} \log x+0-\frac{1}{3} \log y=c \\
\frac{-1}{3 x y}+\frac{2}{3} \log x-\frac{1}{3} \log y=c \\
\frac{-1}{x y}+2 \log x-\log y=3 c \\
-\frac{1}{x y}+\log x^{2}-\log y=3 c \\
-\frac{1}{x y}+\log \left(\frac{x^{2}}{y}\right)=3 C \\
-\frac{1}{3}\left[\frac{1}{x y}+\log \left(\frac{x^{2}}{y}\right)\right]=c
\end{gathered}
$$

(6) $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x \cdot d y=0$
solv- Equn(1) is an exact form $M d x+N d y=0$ where $M=x y^{2} \cdot \sin x y+\cos x y$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =x\left[2 y \cdot \sin x y+y^{2} \cdot \cos x y \cdot x\right]+y(\sin x y)+\cos x y \\
& =2 x y \cdot \sin x y+x^{2} y^{2} \cos x y-x y \sin x y+\cos x y \\
& =x y \sin x y+x^{2} y^{2} \cos x y+\cos x y
\end{aligned}
$$

and $N=x^{2} y \sin x y-\cos x y \cdot(x)$,

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =y\left[2 x \cdot \sin x y+x^{2} \cos x y \cdot y\right]-[x \cdot(-\sin x y) y+\cos x y(1)] \\
& =2 x y \sin x y+x^{2} y^{2} \cos x y+x y \sin x y-\cos x y \\
& =3 x y \sin x y+x^{2} y^{2} \cos x y-\cos x y
\end{aligned}
$$

$$
\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Hence equino is non-exact:
Equn(1) can be reduced to exact by multiplying Integiating factor.
fromen,

$$
\text { (1) } \begin{aligned}
y(x y \sin x y+\cos x y) d x+x(x y \sin x y-\cos x y) d y=0 \\
\text { (2) } \begin{aligned}
M x-N y & =x y(x y \sin x y+\cos x y)-[x y(x y \cdot \sin x y-\cos x y)] \\
& =x^{2} y^{2} \sin x y+x y \cos x y-x^{2} y^{2} \operatorname{sen} x y+x y \cos x y \\
& =2 x y \cos x y \neq 0
\end{aligned}
\end{aligned}
$$

$$
M x-N y \neq 0
$$

$$
I \cdot F=\frac{1}{M x-N y}=\frac{1}{2 x y \cos x y}
$$

frome

$$
\begin{aligned}
& \frac{(x y \cdot \sin x y+\cos x y) y}{2 x y \cos x y} d x+\frac{(x y \sin x y-\cos x y) x}{2 x y \cos x y} \cdot d y=0 \\
& \left(\frac{x y^{y} \sin x y}{2 x y \cos x y}+\frac{y \cdot \cos x y}{2 x y \cos x y}\right) d x+\left(\frac{x^{x} y \sin x y}{2 x y \cos x y}-\frac{x \cdot \cos x y}{2 x y \cos x y}\right) d y=0 \\
& \left(\frac{y}{2} \tan x y+\frac{1}{2 x}\right) d x+\left(\frac{x}{2} \tan x y-\frac{1}{2 y}\right) d y=0
\end{aligned}
$$

Eau ()$^{(2)}$ is an exact.
where $M=\frac{y}{2} \tan x y+\frac{1}{2 x} \quad, \quad$ and $\quad N=\frac{x}{x} \tan x y-\frac{1}{2 y}$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{1}{2}\left[y \cdot \sec ^{2} x y(x)+\tan x y(1)\right]+0 \\
& =\frac{1}{2}\left[x y \sec ^{2} x y+\tan x y\right] \\
& =\frac{1}{2} x y \sec ^{2} x y+\frac{1}{2} \tan x y .
\end{aligned}
$$

and $N=\frac{x}{2} \tan x y-\frac{1}{2 y}$:

$$
\begin{aligned}
& \frac{\partial N}{\partial x}=\frac{1}{2}\left[x \cdot \sec ^{2} x y(y)+\tan x y(0)\right]-0 \\
&=\frac{1}{2}\left[x y \cdot \sec ^{2} x y+\tan x y\right] \\
&=\frac{1}{2} x y \sec ^{2} x y+\frac{1}{2} \tan x y \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

clearly equn (2) is an exact.
Now the solution of equn(2) is $\int M d x+\int N d y=C$

$$
\begin{gather*}
\int\left(\frac{y}{2} \tan x y+\frac{1}{2 x}\right) d x+\int\left(\frac{x}{2} \tan x y-\frac{1}{2} y\right) d y=c \\
\frac{y}{2} \int \tan x y d x+\frac{1}{2} \int \frac{1}{x} d x+\int \frac{x}{2} \tan x y-\frac{1}{2} \int \frac{1}{y d y}=c \\
\frac{y}{2} \frac{\log (\sec x y)}{y}+\frac{1}{2} \log x+\log y=\log c \\
\frac{1}{2}[\log (\sec x y)+\log x-\log y]=\log c \\
\log (\operatorname{sen} y \cdot x)-\log y=2 \log c \\
\log \left(\frac{x \cdot \sec x y}{y}\right)=\log c^{2} \\
\frac{x}{y} \cdot \sec x y=c .
\end{gather*}
$$

(2) $(1+x y)$ y $d x+(1-x y) x d y=0$.

Sol: Equ'(1) is an'exact form of $n d x+n d y=0$
Where $M=y+x y^{2} \quad$ and $N=x-x^{2} y$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =4+x \cdot 2 y \\
& =2 x y+1
\end{aligned} \quad \begin{aligned}
\frac{\partial N}{\partial x} & =1-y \cdot 2 x \\
& =1-2 x y
\end{aligned}
$$

$$
\frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}
$$

clearly equn(1) is non-exact.
Equn(1) can be fedueed to exact by multiplying
Integrating factor.

$$
\begin{aligned}
M x-N y & =x\left(y+x y^{2}\right)-\left(x-x^{2} y\right) \cdot y \\
& =x y^{2}+x^{2} y^{2}-x y+x^{2} y^{2} \\
& =2 x^{2} y^{2} \neq 0 \\
M x & -N y \neq 0
\end{aligned}
$$

$$
I F=\frac{1}{M x-N y}=\frac{1}{2 x^{2} y^{2}}
$$

from (1)

$$
\begin{align*}
& \frac{\left(y+x y^{2}\right) d x}{2 x^{2} y^{2}}+\frac{\left(x-x^{2} y\right)}{2 x^{2} y^{2}} d y=0 \\
& \left(\frac{y^{\prime}}{2 x^{2} y t}+\frac{x y^{2}}{2 x^{2} y^{2}}\right) d x+\left(\frac{x}{2 x^{2} y^{2}}-\frac{x^{2} y}{2 x^{2} y^{2}}\right) d y=0 \\
& \left(\frac{1}{2 x^{2} y}+\frac{1}{2 x}\right) d x+\left(\frac{1}{2 x y^{2}}-\frac{1}{2 y}\right) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $M d x+N d y=0$ Where $M=\frac{1}{2 x^{2} y}+\frac{1}{2 \dot{x}} \quad$ and. $\quad N=\frac{1}{2 x y^{2}}-\frac{1}{2 y}$

$$
\begin{aligned}
\frac{\partial M}{\partial y}= & \frac{1}{2 x^{2}}\left(\frac{-1}{y^{2}}\right)+0 & \frac{\partial N}{\partial x} & =\frac{1}{2 y^{2}}\left(\frac{-1}{x^{2}}\right) \cdot-0 \\
& =\frac{-1}{2 x^{2} y^{2}} & & =\frac{-1}{2 x^{2} y^{2}} \\
& & \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} &
\end{aligned}
$$

clearly Equn(1) is an exact.
Now the solution of equin(2) is . $\int M d x+f N N d y=c$

$$
\begin{gathered}
\int\left(\frac{1}{2 x^{2} y}+\frac{1}{2 x}\right) d x+\int\left(\frac{1}{2 x y^{2}}-\frac{1}{2 y}\right) d y=c \\
\frac{1}{2 y} \int x^{-2} d x+\frac{1}{2} \int \frac{1}{x} d x+\int \frac{1}{2 x y^{2}} d y-\frac{1}{2} \int \frac{1}{y} d y=c \\
\frac{1}{2 y} \frac{x^{-1}}{-1}+\frac{1}{2} \log x+0-\frac{1}{2} \log y=c \\
-\frac{1}{2 x y}+\frac{1}{2} \log x-\frac{1}{2} \log y=c \\
+\frac{1}{2}\left[-\log y+\log x \frac{1}{3} \frac{1}{x y}\right]=c \\
\frac{1}{2}\left[\log \left(\frac{x}{y}\right)-\frac{1}{x y}\right]=c
\end{gathered}
$$

(3) $y(2 x y+1) d x+x\left(1+2 x y-x^{3} y^{3}\right) d y=0$

Sol:- Equh(1) is an exact form $M d x+N d y=0$.
Where

$$
\text { e } \begin{array}{rlrl}
M & =y(2 x y+1) & \text { and } r & =x\left(1+2 x y-x^{3} y^{3}\right) \\
& =2 x y^{2}+y & & =x+2 x^{2} y-x^{4} y^{3} \\
\frac{\partial M}{\partial y} & =2 x(2 y)+1 & & \\
& =4 x y+1 & & \\
& \therefore \frac{\partial N}{\partial x} & =1+2 y(2 x)-y^{3}+x^{3} \\
& =1+4 x y-4 x^{3} y^{3} \\
& &
\end{array}
$$

clearly Equn(1) is non-exact.
Equn ${ }^{(1)}$ can be converted to exact by multiplying Integrating factor.
(2)

$$
\begin{aligned}
M x-N y & =\left(2 x y^{2}+y\right) x-\left(x+2 x^{2} y-x^{4} y^{3}\right) y \\
& =2 x^{2} y^{2}+x y-x y-2 x^{2} y^{2}+x^{4} y^{4} \\
& =x^{4} y^{4} \\
I \cdot F=\frac{1}{M x-N y} & =\frac{1}{x^{4} y^{4}}
\end{aligned}
$$

from (1),

$$
\begin{align*}
& \frac{y(2 x y+1)}{x^{4} y^{4}} d x+\frac{x\left(1+2 x y-x^{3} y^{3}\right)}{x^{4} y^{4}} d y=0 \\
& \left(\frac{2 x y^{2}}{x^{4} y^{2} 4^{2}}+\frac{y^{4}}{x^{4} y^{4} 3}\right) d x+\left(\frac{x}{x^{4} y^{4}}+\frac{2 y^{4} y}{x^{4} y^{4}}-\frac{x^{4} y^{3}}{x^{4} y^{4}}\right) d y=0 \\
& \left(\frac{2}{x^{3} y^{2}}+\frac{1}{x^{4} y^{3}}\right) d x+\left(\frac{1}{x^{3} y^{4}}+\frac{2}{x^{2} y^{3}}-\frac{1}{y}\right) d y=0 \tag{2}
\end{align*}
$$

Equn (1) is an exact firs of $M d x+N d y=0$
Where $M=\frac{2}{x^{3} y^{2}}+\frac{1}{x^{4} y^{3}}$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{2}{x^{3}}(-2) y^{-3}+\frac{1}{x^{4}}(-3) y^{-4} \\
&=\frac{-4}{x^{3} y^{3}}-\frac{3}{x^{4} y^{4}} \\
& \quad \therefore \frac{d M}{d y}=\frac{d N}{d x}
\end{aligned}
$$

$$
\text { and } \quad N=\frac{1}{x^{3} y^{4}}+\frac{2}{x^{2} y^{3}}-\frac{1}{y} \text {. }
$$

$$
\begin{aligned}
\frac{d N}{d x} & =\frac{1}{y^{4}}(-3) x^{4}+\frac{2}{y^{3}}(-2) x^{-3}+0 \\
& =\frac{-3}{x^{4} y^{4}}-\frac{4}{x^{3} y^{3}}
\end{aligned}
$$

clearly equation is an exact.
Now the solution of equin(2) is

$$
\int M d x+\int N d y=C
$$

$$
\begin{gathered}
\int\left(\frac{2}{x^{3} y^{2}}+\frac{1}{x^{4} y^{3}}\right) d x+\int\left(\frac{1}{x^{3} y^{4}}+\frac{2}{x^{2} y^{3}}-\frac{1}{y}\right) d y=c \\
\frac{2}{y^{2}} \int\left(x^{-3}\right) d x+\frac{1}{y^{3}} \int x^{-4} d x+\int \frac{1}{x^{3} y^{4}} d y+\int \frac{2}{x^{2} y^{3}} d y-\int \frac{1}{y} d y=c \\
\frac{2}{y^{2}}\left(\frac{3 \cdot x^{-2}}{-x}\right)+\frac{1}{y^{3}}\left(\frac{x^{-3}}{-3}\right)+0+0-\log y=c \\
\frac{-1}{x^{2} y^{2}}-\frac{1}{3 x^{3} y^{3}}-\log y=c \\
\frac{-1}{x^{2} y^{2}}\left[1+\frac{3}{x y}+\log y^{2}\right]=c \\
\frac{-1}{x^{2} y^{2}}\left[1+\frac{1}{3 x y}\right]-\log y=c .
\end{gathered}
$$

tuesday
(1) $\left(x y^{2}-e^{1 \times 3}\right) d x-x^{2} y d y=0$.

Sos:- Equ ${ }^{n}$ (1) is an exact form of $M d x+N d y=0$
Where $M=x y^{2}-e^{1 / x^{3}} \quad$ and $N=-x^{2} y$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =x(2 y)-0 \\
& =2 x y \\
& \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
\end{aligned}
$$

Hence equnco is non-exact.
This cane be reduced to exact by multiplying an integrating factor.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=2 x y-(-2 x y) \\
&=4 x y \\
& \Rightarrow \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{4 x y}{-x \not y y}=\frac{-4}{x}
\end{aligned}
$$

Now I.F $e^{\int f(x) d x}=e^{\int-\frac{4}{x} d x}$

$$
\begin{aligned}
& =e^{-4 \int \frac{1}{x} d x} \\
& =e^{-4 \log x} \\
& =e^{\log _{e} x^{-4}} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

from 10 ,

$$
\begin{align*}
& \frac{\left(x y^{2}-e^{1 / x^{3}}\right)}{x^{4}} d x-\frac{x^{2} y}{x^{4}} d y=0 \\
& \frac{x y^{2}}{x^{4} / 3}-\frac{e^{1 / x^{3}}}{x^{4}} d x-\frac{x^{2 / y}}{x^{4}} d y=0 \\
& \left(\frac{y^{2}}{x^{3}}-x^{-4} \cdot e^{1 / x^{3}}\right) d x-\frac{y}{x^{2}} d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $M d x+N d y z o$
Whese $M=\frac{y^{2}}{x^{3}}-x^{-4} e^{1 / x^{3}} \quad$ and $\quad N^{\prime}=-\frac{y}{x^{2}}$.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{1}{x^{3}}(2 y)-0 \\
&=\frac{2 y}{x^{3}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=-y(-2) x^{-3}
$$

$$
=\frac{2 y}{x^{3}}
$$

cleasly equn(2) is an exact.
Now the solution of equn (2) is $\int M d x+\int N d y=C$

$$
\begin{array}{cc}
\int\left(\frac{y^{2}}{x^{3}}-x^{-4} \cdot e^{1 / x^{3}}\right) d x+\int \frac{-y}{x^{2}} d y=c \\
y^{2} \int x^{-3} \cdot d x-\int x^{-4} \cdot e^{x^{-3}} \cdot d x-0=c \\
y^{2} \cdot \frac{x^{-2}}{-2}-\int \cdot e^{t}\left(-\frac{1}{3} d t\right)=c & x^{-3}=t \\
\frac{-2}{x^{2} y^{2}}+\frac{1}{3} \cdot \int e^{t} d t=c & x^{-4} d x=d t \\
\frac{-2}{x^{2} y^{2}}+\frac{1}{3} e^{t}=c & x^{-4} d x=-\frac{1}{3} d t \\
\frac{-2}{x^{2} y^{2}}+\frac{1}{3} e^{1 / x^{3}}=c
\end{array}
$$

(2). $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$

Soly Equn (1) is an exact form of $M d x+N d y=0$
Where $M=x y^{3}+y$ and

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=x-3 y^{2}+(1) \\
& 2 x \cdot y^{2}+1
\end{aligned}
$$

$$
=3 x \cdot y^{2}+1
$$

$$
\begin{aligned}
N & =2 x^{2} y^{2}+2 x+2 y^{4} \\
\frac{\partial N}{\partial x} & =2 y^{2}(2 x)+2(1)+0 \\
& =4 x y^{2}+2
\end{aligned}
$$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Hence equic is inon exact.

This can be reduced to exact by multiplying an Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{d N}{\partial x} & =3 x y^{2}+1-\left(4 x y^{2}+2\right) \\
& =3 x y^{2}+1-4 x y^{2}-2 \\
& =-x y^{2}-1 \\
\Rightarrow \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{x M} & =\frac{-x y^{2}-y}{x y^{2} y^{2}+x}=\frac{-\left(x\left(y^{2}+y\right)\right.}{x\left(x x^{2}+1\right)} \\
& =\frac{-x y^{2}-1}{x y^{3}+y} \\
& =\frac{-\left(x y^{2}+1\right)}{y\left(x y^{2}+1\right)} \\
& =\frac{-1}{y}
\end{aligned}
$$

Now I-F $=e^{-\int f(y) d y}$

$$
=e^{-\int \frac{-1}{y} d y}
$$

$$
=e^{\log _{e} y}
$$

$$
=y
$$

from (1)

$$
\begin{align*}
& \frac{\left(x y^{3}+y\right)}{y} d x+\frac{2\left(x^{2} y^{2}+x+y^{4}\right)}{y /} d y=0 \\
& \left(\frac{x b^{2}}{y}+\frac{y}{y}\right) d x+2\left[\frac{x^{2} y t}{y}+\frac{x}{y}+\frac{y^{3}}{y}\right] d y=0 \\
& \left(x y^{2}+1\right) d x+2\left(x^{2} y+\frac{x}{y}+y^{3}\right) d y=0 \tag{2}
\end{align*}
$$

Equn (2) is an exact from of $M d x+N d y=0$
where $M=x y^{2}+1 \quad$ and $N=2\left[x^{2} y+\frac{x}{y}+y^{3}\right]$
$\frac{\partial N}{\partial x}=y(2 x)+\frac{1}{y}:$

$$
=2 x y
$$

from (1),

$$
\begin{align*}
& y\left(x y^{3}+y\right) d x+2 y\left(x^{2} y^{2}+x+y^{4}\right) d y=0 \\
& \left(x y^{4}+y^{2}\right) d x+2\left(x^{2} y^{3}+4 y+y^{5}\right) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $m d x+N d y=0$
Where $M=x y^{4}+y^{2}$ and $\left.N=2\left[x^{2} y^{3}+x y+y^{5}\right]\right]$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =x \cdot 4 y^{3}+2 y & \begin{array}{ll}
d N & \\
& =4 x y^{3}+2 y
\end{array} & \left.=4 x y^{3}(2 x)+y(1)+0\right] \\
& =4 x y^{3}+2 y
\end{array}
$$

$\therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x}$ clearly $\varepsilon q \mu^{n}(2)$ is an exact.
Nocuthe sot of empen(2) is $\int M d x+\int N d y=c$

$$
\begin{align*}
& \int\left(x y^{4}+y^{2}\right) d x+\int 2\left(x^{2} y^{3}+x y+y^{5}\right) d y=C \\
& y^{4} \int x d x+y^{2} \int(1) d x+2 \int x^{2} y^{3} d y+2 \int x y d y+2 \int y^{5} d y=C \\
& y^{4} \frac{x^{2}}{2}+y^{2} \cdot(x)+0+0+2 y^{6}-y^{6}=C \\
& \frac{1}{2}=x^{2} y^{4}+x y^{2}+\frac{y^{6}}{3}=C \\
& \frac{3 x^{2} y^{4}+6 x y^{2}+2 y^{6}}{6}=C \Rightarrow 3 x^{2} y^{4}+6 x y^{2}+2 y^{6}=6 C \\
& \Rightarrow \frac{3 x^{2} y^{4}+6 x y^{2}+2 y^{6}=C}{} \tag{1}
\end{align*}
$$

(7) $\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right) d x+\frac{1}{4}\left(x+x y^{2}\right) d y=0$

Sod- Eau' (1) is an exact form of $M d x+N d y=0$
Where $M=y+\frac{y^{3}}{3}+\frac{x^{2}}{2} \quad$ and $N=\frac{1}{4}\left(x+x y^{2}\right)$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =1+\frac{1}{\psi} \frac{\partial y^{2}+0}{} & \frac{\partial N}{\partial x} & =\frac{1}{4}\left(1+y^{2} \cdot(1)\right) \\
& =1+y^{2} & =\frac{1}{4}\left(1+y^{2}\right) \\
& \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} & &
\end{array}
$$

Hence equ nco is non exact:
This can be reduced to exact by multiplying Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =1+y^{2}-\frac{1}{4}\left(1+y^{2}\right) \\
& =1+y^{2}(1-1 / 4) \\
\Rightarrow \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{\left(1+y^{2}\right)(1-1 / 4)}{1 / 4 x\left(1+y^{2}\right)}= & \frac{4(1-1 / 4)}{x} \\
& =\frac{4-1^{x}}{3^{x}} \\
& =\frac{3^{3}}{x}
\end{aligned}
$$

Now I.F $e^{\iint f(x) d x}=e^{\int \frac{3}{x} d x}$

$$
\begin{aligned}
& =e^{3 \int \frac{1}{x} d x} \\
& =e^{3 \log x} \\
& =e^{\log _{e} x^{3}} \\
& =x^{3}
\end{aligned}
$$

from $0_{1}\left(y-x^{3}+\frac{x^{3} y^{3}}{3}+\frac{x^{5}}{2}\right) d x+\frac{1}{4}\left(x^{4}+x^{4} y^{2}\right) d x=0$

Equn (2) is an exact form of $M d x+N d y=0$
where $M=y^{3}+\frac{x^{3} y^{3}}{3}+\frac{x^{5}}{2} \quad$ and $\quad N=\frac{1}{4}\left(x^{4}+x^{4} y^{2}\right)$.

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =x^{3}(1)+\frac{x^{3}}{y} \cdot \beta y^{2}+0 & \frac{\partial N}{\partial x} & =\frac{1}{4}\left(4 x^{3}+x^{4} \cdot x^{3} y^{2}\right) \\
& =x^{3}\left(1+y^{2}\right) & & =\frac{A x^{3}}{*}\left(1+y^{2}\right) \\
& \left.\therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\right) & & =x^{3}\left(1+y^{2}\right)
\end{aligned}
$$

dearly Equ" (2) is an exact.
Now the solution of equine (2) is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(x^{3} y+\frac{x^{3} y^{3}}{3}+\frac{x^{5}}{2}\right) d x+\int \frac{1}{4}\left(x^{4}+x^{4} y^{2}\right) d y=C \\
& y \int x^{3} d x+\frac{y^{3}}{3} \cdot x^{3} d x+\frac{1}{2} \int x^{5} d x+0=C \\
& y \frac{x^{4}}{4}+\frac{y^{3}}{3} \frac{x^{4}}{4} x+\frac{1}{2} \frac{x^{6}}{6}=C \\
& \frac{x^{4} y}{4}+\frac{x^{4} y^{3}}{12}+\frac{x^{6}}{12}=C \\
& \frac{3 x^{4} y+x^{4} y^{3}+x^{6}}{12}=C \\
& 3 x^{4} y+x^{4} y^{3}+x^{6}=12 C . \\
& 3 x^{4} y+x^{4} y^{3}+x^{6}=C .
\end{aligned}
$$

(8) $\left(x \sec ^{2} y-x^{2} \cos y\right) \cdot d y=\left(\tan y-3 x^{4}\right) \cdot d x$.

Sol: $\quad\left(\tan y-3 x^{4}\right) d x-\left(x \cdot \sec ^{2} y-x^{2} \cos y\right) d y=0$
Equncc) is an exact form of $m d x+$ Nd $=0$
Where $M=\tan y-3 x^{4}$ and $N=+x^{2} \cos y-x \cdot \sec ^{2} y$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =\operatorname{srckg} \log (\sec (y y)+0 \\
& =\sec \left(\sec ^{2} y\right) & \frac{\partial N}{\partial x} & =\cos y(2 x)-\sec ^{2} y \cdot(1) \\
& =2 x \cdot \cos y-\sec ^{2} y \\
\therefore \frac{\partial M}{\partial y}+\frac{\partial N}{\partial x} & &
\end{array}
$$

clearly equine is non exact:
This can be reduced to exact by multiplying Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =\sec ^{2} y-2 x \cos y+\sec ^{2} y \\
& =2 \sec ^{2} y-2 x \cos y
\end{aligned}
$$

Equn(2) is an exact form of $M d x+N d y=0$
where $M=\frac{\tan y}{x^{2}}-3 x^{2} \quad$ and $N=\cos y-\frac{\sec ^{2} y}{x}$.

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{1}{x^{2}} \cdot \sec ^{2} y-0 \\
& =\frac{\sec ^{2} y}{x^{2}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{d M}{\partial x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=0-\sec ^{2} y \cdot\left(\frac{-1}{x^{2}}\right)
$$

$$
=\frac{\sec ^{2} y}{x^{2}}
$$

cleasily equ(l) is an exact.
Now the solution of equ"(2) is $\int N d x+\int_{N} d y=C$

$$
\begin{gathered}
\int\left(\frac{\tan y}{x^{2}}-3 x^{2}\right) d x+\int\left(\cos y-\frac{\sec ^{2} y}{x}\right) d y=c \\
\tan y \int x^{+2} d x-3 \int x^{2} d x+\int \cos y d y-\int \frac{\sec ^{2} y}{x} d y=c \\
\tan y\left(\frac{x^{-1}}{-1}\right)-\ngtr \frac{x^{3}}{3}+\sin y-0=c \\
-\frac{\tan y}{x}-x^{3}+\sin y=c \\
\frac{1}{x} \tan y+x^{3}-\sin y=c
\end{gathered}
$$

$$
\begin{align*}
& \Rightarrow \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{2 \sec ^{2} y-2 x \cos y}{-\left(x \sec ^{2} y-x^{2} \cos y\right)} \\
& =\frac{2\left(\sec ^{2} y-x \cos y\right)}{-x\left(\sec ^{2} y-x \cos y\right)} \\
& \begin{array}{l}
=\frac{-2}{x} \\
F e^{\int f f(x) d x}
\end{array} \\
& =e^{\int \frac{-2}{x} d x} \\
& =e^{-2 \log x} \\
& =\frac{1}{x^{2}} \text {. } \\
& \text { from(1), } \\
& \frac{\left(\tan y-3 x^{4}\right)}{x^{2}} d x-\frac{\left(x \sec ^{2} y-x^{2} \cos y\right)}{x^{2}} d y=0 \\
& \left(\frac{\tan y}{x^{2}}-\frac{3 x t^{2}}{x^{2}}\right)^{2} d x-\left(\frac{x \sec ^{2} y}{x t}-\frac{x^{2} \cos y}{\frac{x^{2}}{2}}\right) d y=0 \\
& \left(\frac{\tan y}{x^{2}}-3 x^{2}\right) d x-\left(\frac{\sec ^{2} y}{x}-\cos y\right) d y=0 \tag{2}
\end{align*}
$$

(9) $\left(x y e^{x / y}+y^{2}\right) d x-x^{2} e^{x / y} d y=0$.

Sols Eain(1) is an exact form of $M d x+N d y=0$
where $M=x y e^{x / y}+y^{2}$

$$
\begin{aligned}
\frac{d M}{d y} & =x\left[y \cdot e^{x / y}\left(\frac{-x}{y y}\right)+e^{x / y}(1)\right]+2 y \\
& =x\left[e^{x / y} \frac{-x}{y}+e^{x / y}\right]+x y \\
& =x \cdot e^{x / y}\left[1-\frac{x}{y}\right]+2 y
\end{aligned}
$$

$$
\text { and } N=-x^{2} e^{x / y}
$$

$$
\begin{aligned}
& N=-x \cdot\left(x^{2} \cdot e^{x / y \cdot \frac{1}{y}}+e^{x / y} \cdot 2 x\right] \\
& \frac{\partial N}{\partial x}=-(x+2]
\end{aligned}
$$

$$
=-x-e^{x / y}\left[\frac{x}{y}+2\right]
$$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Hence equ"c is non-exact.
\rightarrow This can be reduced to exact by multiplying Integrating facts.
\rightarrow clearly equn (1) is a homogeneous of degree ' 2 .'

$$
\begin{aligned}
M x+N y= & \left(x y e^{x / y}+y^{2}\right) x+\left(-x^{2} e^{x / y}\right) y \\
= & x^{2} y e^{x / y}+x y^{2}-x^{2} y e^{x / y} \\
= & x y^{2} \neq 0 \\
& M x+N y \neq 0
\end{aligned}
$$

Now I.F $=\frac{1}{M x+N y}=\frac{1}{x y^{2}}$
from 0 ,

$$
\begin{align*}
& \frac{\left(x y e^{x / y}+y^{2}\right)}{x y^{2}} d x-\frac{x^{2} e^{x / y}}{x y^{2}} d y=0 \\
& \left(\frac{x y e^{x / y}}{x y^{2}}+\frac{y^{2}}{x y^{2}}\right) d x-\frac{x+e^{x / y}}{x / y^{2}} d y=0 \\
& \left(e^{x / y}+\frac{1}{x}\right) d x-\frac{x e^{x / y}}{y^{2}} \cdot d y=0 \rightarrow \text { (2) } \tag{2}
\end{align*}
$$

Equn (2) is an exact form of $M d x+N d y=0$ where $M=\frac{e^{x}(y}{y}+\frac{1}{x}$.

$$
\frac{d M}{\partial y}=\frac{y / e^{x / y} \cdot x\left(-\frac{1}{y}\right)-e^{x / y} \cdot(1)}{y^{2}}+0
$$

$$
\begin{aligned}
&=\frac{-x / y e^{x / y}-e^{x / y}}{y^{2}} \\
&=\frac{-x / y \cdot e^{x / y}}{y^{2}}-\frac{e^{x / y}}{y^{2}} \\
&=\frac{-x e^{x / y}}{y^{3}}-\frac{e^{x / y}}{y^{2}} \\
&=\frac{-e^{x / y}}{y^{2}}\left(\frac{x}{y}+1\right) \\
& \text { and } \begin{aligned}
N & =\frac{-x \cdot e^{x / y}}{y^{2}} \\
\frac{\partial N}{\partial x} & =\frac{-1}{y^{2}}\left[x \cdot e^{x / y} \frac{1}{y}(1)+e^{x / y} \cdot(1)\right] \\
& =\frac{-1}{y^{2}}\left[\frac{x}{y} e^{x / y}+e^{x / y}\right) \\
& =\frac{-e^{x / y}}{y^{2}}\left(\frac{x}{y}+1\right) \\
\therefore \frac{\partial M}{\partial y} & \left.=\frac{\partial N}{\partial x}\right]
\end{aligned}
\end{aligned}
$$

clearly equncio is an exact:
Now the solution of equn(1) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(\frac{e^{x / y}}{y}+\frac{1}{x}\right) d x+\int \frac{-x e^{x / y}}{y^{2}} d y=c \\
\frac{1}{y} \int e^{x / y} \cdot d x+\int \frac{1}{x} d x-0=c \\
\frac{1}{y} \cdot e^{x / y} \frac{1}{y}(1)+\log x=c \\
\frac{e^{x / y}}{y^{2}}+\log x=c
\end{gathered}
$$

(10) $\left(3 x y-2 a y^{2}\right) d x+\left(x^{2}-2 a x y\right) d y=0$
sol Equnc1 is an exact form of $M d x+N d y=0$
Where $M=3 x y-2 a y^{2}$ and

$$
\frac{\partial M}{\partial y}=3 x(1)-2 a(2 y)
$$

$$
=3 x-4 a y
$$

$$
\begin{aligned}
N & =x^{2}-2 a x y \\
\frac{d N}{d x} & =2 x-2 a y(i) \\
& =2 x-2 a y
\end{aligned}
$$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

Hence equn(1) is non-exact.
This can be reduced to exact by multiplying Integrating factor.

$$
\begin{aligned}
& =3 x-4 a y-2 x+2 a y \\
& =x-2 a y \\
\Rightarrow \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =\frac{x-2 a y}{\partial y}-\frac{\partial N}{\partial x} \\
= & \frac{x-2 a}{\left.x^{2}+2 a x y\right)} \\
& =\frac{x-2 a y}{x(x-2 a y)} \\
& =\frac{1}{x} \\
& =e^{\int \frac{1}{x} d x} \\
& =e^{\log e^{x}} \\
& =x
\end{aligned}
$$

Fronner,

$$
\begin{align*}
& \frac{\left(3 x y-2 a y^{2}\right)}{x} d x+\left(\frac{x^{2}-7 a x y}{x}\right) d y=0 \\
& \left(\frac{3 x y}{x^{2}}-\frac{2 a y^{2}}{x}\right) d x+\left(\frac{x^{4}}{x}-\frac{2 a k y}{x}\right) d y=0 \\
& \left(3 y-\frac{2 a y^{2}}{x}\right) d x+(x-2 a y) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $M d x+N d y=0$.
fsomen,

$$
\begin{align*}
& \left(3 x y-2 a y^{2}\right) x \cdot d x+\left(x^{2}-2 a x y\right) x d y=0 \\
& \left(3 x^{2} y-2 a x y^{2}\right) d x+\left(x^{3}-2 a x^{2} y\right) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of Mdx $+N d y z 0$ uhere

$$
\begin{aligned}
M & =3 x^{2} y-2 a x y^{2} \\
\frac{\partial M}{\partial y} & =3 x^{2}(1)-2 a x(-2 y)
\end{aligned}
$$ and $N=x^{3}-2 a x^{2} y$

$$
\begin{aligned}
& =3 x^{2}-4 a x y \\
& \therefore \frac{\partial M}{\partial y}=\frac{d N}{\partial x}
\end{aligned}
$$

clearly equn(2) is an exact.
Now the solution of equen (2) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(3 x^{2} y-2 a x y^{2}\right) d x+\int\left(x^{3}-2 a x^{2} y\right) d y=c \\
3 y \int x^{2} d x-2 a y^{2} \int(x) d x+0=C \\
\$ y \frac{x^{3}}{3}-2 a y^{2} \frac{x^{2}}{2}=c \\
x^{3} y-a x^{2} y^{2}=c \\
x^{2} y(x-a y)=C
\end{gathered}
$$

(II) $\left(x \cdot 4 e^{x}-2 m x y^{2}\right) d x+2 m x^{2} y d y=0$.

Sol:- Equnce is an exact form of $M d x+N d y=0$
where $M=x^{4} e^{x}-2 m x y^{2}$ and $N=2 m x^{2} y$

$$
\begin{aligned}
\frac{\partial m}{\partial y}= & 0-2 m x(2 y) \\
= & -4 m x y \\
& \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{d N}{d x}=2 m y(2 x)
$$

$$
=4 m x y
$$

Hence Equnce is non-exact.
This can be reduced to exact by multiplying Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial M}-\frac{\partial N}{\partial x} & =-4 m x y-4 m x y \\
& =-8 m x y \\
\Rightarrow \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{N} & =\frac{-\sin \| x y}{\operatorname{sen} x \mid y} \\
& =\frac{-4}{x}
\end{aligned}
$$

Now

$$
\begin{aligned}
\text { IVF } & =e^{\int f(x) d x} \\
& =e^{-4 \frac{1}{x} d x} \\
& =e^{-4 \log x} \\
& =e^{\log _{(}(x)^{-4}} \\
& =x^{-4} \\
& =\frac{1}{x 4}
\end{aligned}
$$

from,

$$
\begin{align*}
& \left(\frac{x^{4} e^{x}-2 m x y^{2}}{x y}\right) d x+\left(\frac{2 m x^{2} y}{x^{y}}\right) d y=0 \\
& \left(\frac{x^{4} e^{x}}{x^{4}}-\frac{2 m x^{2} y^{2}}{x^{4} 3}\right) d x+\left(\frac{2 m x^{2} y}{x^{4} 2}\right) d y=0 \\
& \left(e^{x}-\frac{2 m y^{2}}{x^{3}}\right) d x+\left(\frac{2 m y}{x^{2}}\right) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $m d x+v d y=0$.

Where

$$
\begin{array}{rlrl}
M & =e^{x}-\frac{2 m y^{2}}{x^{3}} & \text { and } N & =\frac{2 m y}{x^{2}} \\
\frac{\partial m}{\partial y} & =0-\frac{\partial m}{x^{3}}(2 y) & \frac{\partial N}{\partial x} & =2 m y \cdot(-2) x^{-3} \\
& =\frac{-4 m y}{x^{3}} & & =\frac{-4 m y}{x^{3}} \\
& \therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

clearly Equn (2) is an exact.
Now the solution of Equinici is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(e^{x}-\frac{2 m y^{2}}{x^{3}}\right) d x+\int \frac{2 m y}{x^{2}} d y=c \\
\int e^{x} \cdot d x-2 m y^{2} \int x^{-3} d x+0=c \\
e^{x}-2 m y^{2}\left(\frac{x^{-2}}{-y}\right)=c \\
e^{x}+\frac{m y^{2}}{x^{2}}=c .
\end{gathered}
$$

(12) $y \cdot\left(2 x^{2} y+e^{x}\right) \cdot d x=\left(e^{x}+y^{3}\right) d y$.
sot:-

$$
\begin{align*}
& y \cdot\left(2 x^{2} y+e^{x}\right) d x=\left(e^{x}+y^{3}\right) d y \\
& \left(2 x^{2} y^{2}+y \cdot e^{x}\right) d x-\left(e^{x}+y^{3}\right) d y=0 \tag{1}
\end{align*}
$$

equn(1) is an exact form of $m d x+N d y=0$
Where $M=2 x^{2} y^{2}+y \cdot e^{x}$ and $N=-\left(e^{x}+y^{3}\right)$

$$
\begin{aligned}
\frac{\partial m}{\partial y} & =2 x^{2} \cdot(2 y)+e^{x}(1) \\
& =4 x^{2} y+e^{x} \\
& \therefore \frac{\partial m}{\partial y}+\frac{\partial N}{\partial x}
\end{aligned}
$$

Hence equine is non-exact.
This can be seduced to exact by multiplying Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =4 x^{2} y+e^{x}-\left(-e^{x}\right) \\
& =4 x^{2} y+e^{x}+e^{x} \\
& =4 x^{2} y+2 e^{x}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{M} & =\frac{4 x^{2} y+2 e^{x}}{2 x^{2} y^{2}+y \cdot e^{x}} \\
& =\frac{2\left(2 x^{2} y+e^{x}\right)}{y\left(2 x^{2} y+e^{x}\right)} \\
& =\frac{2}{y}
\end{aligned}
$$

Now

$$
\begin{aligned}
&=\frac{2}{y} \\
& I \cdot F=e^{-\int g(y) d y}=-e^{\int \frac{2}{y} d y} \\
&=e^{-2 \cdot \log y} \\
&=e^{\log _{e}(y)^{-2}} \\
&=\frac{1}{y^{2}}
\end{aligned}
$$

from(1),

$$
\begin{align*}
& \frac{\left(2 x^{2} y^{2}+y-e^{x}\right)}{y^{2}} d x-\frac{\left(e^{x}+y^{3}\right)}{y^{2}} d y=0 \\
& \left(\frac{2 x^{2} y^{x}}{y^{2}}+\frac{y^{\prime}-e^{x}}{y^{2}}\right) d x-\left(\frac{e^{x}}{y^{2}}+\frac{y^{3}}{y^{2}}\right) d y=0 \\
& \left(2 x^{2}+\frac{e^{x}}{y}\right) d x-\left(\frac{e^{x}}{y^{2}}+y\right) d y=0 \rightarrow \tag{2}
\end{align*}
$$

Equn (2) is an exact form of $m d x+N d y=0$ Whese $M=2 x^{2}+\frac{e^{x}}{y} \quad$ and $\quad N=-\left(\frac{e^{x}}{y^{2}}+y\right)$

$$
\begin{array}{rlrl}
\frac{\partial M}{\partial y} & =0+e^{x} \cdot \frac{-1}{y^{2}} & \frac{\partial N}{\partial x} & =-\left(\frac{1}{y^{2}} e^{x}+0\right) \\
& =\frac{-e^{x}}{y^{2}} & =\frac{-e^{x}}{y^{2}} \\
& -\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} &
\end{array}
$$

cleatly Equin(2) is an exact.
Now the $80 l^{n}$ of Equn? is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(2 x^{2}+\frac{e^{x}}{y}\right) d x+\int-\left(\frac{e^{x}}{y^{2}}+y\right) d y=c \\
& 2 \int x^{2} d x+\frac{1}{y} \int e^{x} d x-\int \frac{e x}{y^{2}} d y-\int y d y=c \\
& 2 \frac{x^{3}}{3}+\frac{1}{y} e^{x}-0-\frac{y^{2}}{2}=c \\
& \frac{2 x^{3}}{3}+\frac{e^{x}}{y}-\frac{y^{2}}{2}=c .
\end{aligned}
$$

(15) $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$

Solv- Equn(1) is an exact form of $M d x+N d y=0$
where

$$
\begin{array}{rlrl}
M & =3 x^{2} y^{4}+2 x y & \text { and } N & =2 x^{3} y^{3}-x^{2} \\
\frac{\partial M}{\partial y} & =3 x^{2} \cdot 4 y^{3}+2 x & \begin{aligned}
\frac{d N}{\partial x} & =2 y^{3} 3 x^{2}-2 x \\
& =12 x^{2} y^{3}+2 x
\end{aligned} & =6 x^{2} y^{3}-2 x . \\
\therefore \frac{\partial m}{\partial y} \neq \frac{\partial N}{\partial x}
\end{array} \quad .
$$

Hence Equin(1) is non-exact.
Thes can be reduced to eract by multiplying an Integrating factor.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=12 x^{2} y^{3}+2 x-6 x^{2} y^{3}+2 x \\
& =6 x^{2} y^{3}+4 x \text {. } \\
& =2\left(3 x^{2} y^{3}+2 x\right) \text {. } \\
& \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{M}=\frac{2\left(3 x^{2} y^{3}+2 x\right)}{3 x^{2} y^{4}+2 x y}=\frac{2\left(3 x^{2} y^{3}+(2 x)\right.}{y\left(3 x^{2} y^{3}+2 x\right)} \\
& =\frac{2}{4} \\
& \text { I.F } \\
& e^{-\int f(y) d y}=e^{-\int \frac{2}{y} d y} \\
& =e^{-2 \cdot \log g} \\
& =e^{\log (y)^{2}} \\
& =\frac{1}{y^{2}} \text {. }
\end{aligned}
$$

from (1),

$$
\begin{align*}
& \left(\frac{3 x^{2} y^{4}+2 x y}{y^{2}}\right) d x+\left(\frac{2 x^{3} y^{3}-x^{2}}{y^{2}}\right) d y=0 \\
& \left(\frac{3 x^{2} y^{4}}{y^{2}}+\frac{2 x y^{2}}{y^{2}}\right) d x+\left(\frac{2 x^{3} y^{2}}{y^{x}}-\frac{x^{2}}{y^{2}}\right) d y=0 \\
& \left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\left(\frac{2 x^{3} y}{}-\frac{x^{2}}{y^{2}}\right) d y=0 \tag{2}
\end{align*}
$$

Qun(2) is an evact form of $m d x+N d y=0$
Whese $M=3 x^{2} y^{2}+\frac{2 x}{y} \quad$ and $\quad N=2 x^{3} y-\frac{x^{2}}{y^{2}}$

$$
\begin{aligned}
\frac{\partial m}{\partial y} & =3 x^{2}(2 y)+2 x\left(\frac{-1}{y^{2}}\right) & \frac{d N}{d x} & =2 y\left(3 x^{2}\right)-\frac{1}{y^{2}}(-2 x) \\
& =6 x^{2} y-\frac{2 x}{y^{2}} & & =6 x^{2} y-\frac{2 x}{y^{2}}
\end{aligned}
$$

$$
\therefore \frac{\partial M}{d y}=\frac{\partial N}{\partial x}
$$

Clearly Eau ${ }^{(2)}$ is an exact.
Now the sol^{n} of $\varepsilon q u^{n}$ (2) is $\int m d x+\int N d y=C$

$$
\begin{gather*}
\int\left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\int\left(2 x^{3} y-\frac{x^{2}}{y^{2}}\right) d y=C \\
3 y^{2} \int x^{2} d x+\frac{2}{y} \int x d x+0=C \\
x^{2} \frac{x^{3}}{x^{3}}+\frac{2}{y} \cdot \frac{x^{2}}{2}=C \\
x^{3} y^{2}+-x^{2} \frac{1}{y}=C . \tag{i}
\end{gather*}
$$

(16) $y \log y d x+(x-\log y) d y=0$

Sol:- Equn(c) is an exact form of $m d x+N d y=0$ where

$$
\begin{aligned}
& M=y \log y \quad \text { and } \quad N=x-\log y \\
& \frac{d m}{d y}=y \cdot \frac{1}{y}+\log _{y} \cdot \text { (1) } \\
& =1+\log y \\
& \frac{d N}{\partial x}=1-0 \\
& =1 \text {. } \\
& \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
\end{aligned}
$$

Hence squat) is non-exact.
This can be reduced to exact by multiplying an Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =X+\log y-X \\
& =\log y, \\
\Rightarrow \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{M} & =\frac{\log y}{y \log y}=\frac{1}{y}
\end{aligned}
$$

Now I.f $e^{-\int g(y) d y}=e^{-\int \frac{1}{y} d y}$

$$
\begin{aligned}
& =e^{-\log y} \\
& =e^{\log (y)^{-1}} \\
& =y^{-1} \\
& =\frac{1}{y}
\end{aligned}
$$

from (1), $\quad \frac{y^{\prime} \log y}{y} d x+\left(\frac{x-\log y}{y}\right) d y=0$.

$$
\begin{equation*}
\log y \cdot d x+\left(\frac{x}{y}-\frac{\log y}{y}\right) d y=0 \tag{2}
\end{equation*}
$$

Equn(2). is an exact form of $m d x+N d y=0$
where $M=\log y$ and

$$
\begin{aligned}
& \frac{\partial m}{\partial y}=\frac{1}{y y} . \\
& \therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
N & =\frac{x}{y}-\frac{\log y}{y} \\
\frac{d N}{d x} & =\frac{1}{y}(1)-0 \\
& =\frac{1}{y}
\end{aligned}
$$

Clearly equh(2) is an exact.
Now the solve of Equin(2) is find $x+\int N d y=C$.

$$
\begin{array}{ll}
\int \log y \cdot d x+\int\left(\frac{x}{y}-\frac{\log y}{y}\right) d y=c \\
\log y \int(x) d x+\int \frac{x}{y} d y-\int \frac{\log y}{y} \cdot d y=c & \\
\log y \cdot(x)+0-\int t \cdot d t=c & \log y=t \\
x \cdot \log y-\frac{t^{2}}{2}=c & \frac{1}{y} d y=d t . \\
x \cdot \log y-\frac{(\log y)^{2}}{2}=c . &
\end{array}
$$

(3) $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$.

Sol:- Equn (1) an exact form of $M d x+N d y=0$
Where $M=x^{2}+y^{2}+x$ and $N=x y$

$$
\begin{aligned}
\frac{d M}{d y} & =0+2 y+0 \\
& =2 y \\
& -\frac{d M}{d y}+\frac{d N}{d x}
\end{aligned}
$$

$$
\frac{d w}{d x}=y \cdot(1)
$$

$$
=4
$$

Hence equn (1) is non-exact.
This can be reduced to exact by mutiplying. an Integrating factor.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=2 y-y \\
\Rightarrow & =y . \\
\rightarrow & \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{y}{x y}=\frac{1}{x} .
\end{aligned}
$$

Now I.F $e^{\int f(x) d x}=e^{\int \frac{1}{x} d x}$

$$
\begin{aligned}
& =e^{\log _{e} x} \\
& =x
\end{aligned}
$$

fronce,

$$
\begin{align*}
& \frac{x^{2}+y^{2}+x}{x} \cdot d x+\frac{x^{\prime} y}{x^{2}} \cdot d y=0 \tag{2}\\
& \left(\frac{x^{4}}{x}+\frac{y^{2}}{x}+\frac{x^{2}}{x}\right) d x /+y \cdot d y=0 \\
& \left(x+\frac{y^{2}}{x}+1\right) d x /+y \cdot d y=0
\end{align*}
$$

Equn (2) is an expct form of $M \cdot d x+N d y=0$
where

$$
\frac{22,4,3}{1,2,3}
$$

$$
\frac{d m}{\partial y}=0+\frac{x}{x}(2 y)+0
$$

$$
=\frac{2 y}{x}
$$

from (1),

$$
\begin{align*}
& x\left(x^{2}+y^{2}+x\right) d x+x(x y) d y=0 \\
& \left(x^{3}+x y^{2}+x^{2}\right) d x+x^{2} y d y=0 \tag{2}
\end{align*}
$$

Equn (2) is an exact form of $M d x+N d y=0$
Where

$$
\begin{array}{rlrl}
M & =x^{3}+x y^{2}+x^{2} & \text { and } & N \\
\frac{\partial m}{\partial y} & =x^{2} y \\
& =2 x y & \frac{\partial N}{\partial x} & =y \cdot(2 x) \\
& =2 x y \\
& \therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x} & &
\end{array}
$$

clearly Equn(2) is an exact.
Now the solun of equ'(2) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(x^{3}+x y^{2}+x^{2}\right) d x+\int\left(x^{2} y\right) d y=C \\
\int x^{3} d x+y^{2} \int x d x+\int x^{2} d x+0=c \\
\frac{x^{4}}{4}+y^{2} \cdot \frac{x^{2}}{2}+\frac{x^{3}}{3}=c \\
\frac{3 x^{4}+6 x^{2} y^{2}+4 x^{3}}{12}=c \\
3 x^{4}+6 x^{2} y^{2}+4 x^{3}=12 c \\
3 x^{4}+6 x^{2} y^{2}+4 x^{3}=c
\end{gathered}
$$

$$
\begin{equation*}
\text { (4) } \cdot\left(x^{2}+y^{2}+1\right) d x-2 x y d y=0 \text {. } \tag{1}
\end{equation*}
$$

Sol:- Equn(1) is an exact form of $M d x+N d y=0$.
Where $M=x^{2}+y^{2}+1$ and $N=-2 x y$

$$
\begin{aligned}
\frac{d m}{\partial y} & =0+2 y+0 \\
& =2 y \\
& \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
\end{aligned}
$$

$$
\frac{d N}{d x}=-2 y \cdot(1)
$$

$$
=-2 y
$$

Hence equn(1) is non-exact.
This can be reduced to exact by multiplying , an Integrating factor.

$$
\begin{aligned}
\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x} & =2 y-(-2 y)=2 y+2 y=4 y \\
\Rightarrow \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{4 y^{2}}{-\partial x y} & =\frac{-2}{x} \\
\text { Now I.F } e^{\int f(x) d x} & =e^{\int \frac{-2}{x} d x} \\
& =e^{-2 \log x} \\
& =e^{\log _{e}(x)^{-2}} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

from (1),

$$
\begin{align*}
& \frac{x^{2}+y^{2}+1}{x^{2}}-d x-\frac{2 x y}{x+} \cdot d y=0 \\
& \left(\frac{x^{2}}{x^{2}}+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}\right) d x-\frac{2 y}{x} d y=0 \\
& \left(1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}\right) d x-\frac{2 y}{x} d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of. $M d x+N d y=0$
Where $M=1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}} \quad$ and $\quad N=\frac{-2 y}{x}$

$$
\begin{aligned}
\frac{\partial m}{\partial y} & =0+\frac{1}{x^{2}}(2 y)+0 \\
& =\frac{2 y}{x^{2}} \\
& \therefore \frac{d M}{\partial y}=\frac{d N}{d x}
\end{aligned}
$$

$$
\frac{\partial N}{\partial x}=-2 y\left(\frac{-1}{x^{2}}\right)
$$

$$
=\frac{2 y}{x^{2}}
$$

clearly sequin (2) is an exact.

Now the solun of Equ(2) is $\int M d x+\int N d y=C$

$$
\begin{gather*}
\int\left(1+\frac{y^{2}}{x^{2}}+\frac{1}{x^{2}}\right) d x+\int \frac{-2 y}{x} \cdot d y=C \\
\int(1) d x+y^{2} \int x^{-2} d x+\int x^{-2} d x-0=C . \\
x+y^{2}-\frac{x^{-1}}{-1}+\frac{x^{-1}}{-1}=C \\
x-\frac{y^{2}}{x}-\frac{1}{x}=C . \\
\frac{x^{2}-y^{2}-1}{x}=C \\
\frac{1}{x}\left(x^{2}-y^{2}-1\right)=C . \tag{1}
\end{gather*}
$$

(5) $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.

Sol:- Equno is an Exact form of $M d x+N d y=0$ Where $M=x^{2}+y^{2}+2 x$ and $N=2 y$

$$
\begin{aligned}
\frac{\partial m}{\partial y} & =0+2 y+0 \\
& =2 y \\
& \therefore \frac{d m}{\partial y} \neq \frac{d N}{d x}
\end{aligned}
$$

$$
\frac{d N}{d x}=0
$$

$$
=0
$$

Hence equn(1) is non-exact.
This can be reduced to exact by multiplying an Integrating factor.

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =2 y-0
\end{aligned}=2 y . ~=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{2 y}{\partial y}=1 .
$$

from (1),

$$
\begin{aligned}
& e^{x}\left(x^{2}+y^{2}+2 x\right) d x+2 y \cdot e^{x} d y=0 \\
& \left(e^{x} x^{2}+e^{x} y^{2}+2 x \cdot e^{x}\right) d x+2 y e^{x} \cdot d y=0
\end{aligned}
$$

equn(2) is an exact form of $m d x+N d y=0$
Where $M=e^{x} x^{2}+e^{x} \cdot y^{2}+2 x \cdot e^{x}$

$$
\begin{aligned}
\frac{d m}{\partial y} & =e^{2}\left(2 x+x^{2} e^{x}+0+e^{x} \cdot(2 y)+0\right. \\
& =e^{x} \cdot 2 y
\end{aligned}
$$

$$
\text { and } \begin{aligned}
N & =2 y \cdot e^{x} \\
\frac{d N}{d x} & =2 y\left(e^{x}\right) \\
& =2 y \cdot e^{x} \\
\therefore \frac{d M}{d y} & =\frac{d N}{d x}
\end{aligned}
$$

cearly equn (2) is an Exact.
Now the solu' of equin (2) is $\int M d x+\int N d y=C$

$$
\begin{array}{cc}
\int\left(e^{x} \cdot x^{2}+e^{x} y^{2}+2 x-e^{x}\right) d x+\cdot \int 2 y e^{x} \cdot d y=c . \\
\int e^{x} \cdot x^{2} d x+y^{f} \int e^{x} \cdot d x+2 \cdot \int x-e^{x} d x+0=c & \\
x^{2}-e^{x}-2 x-e^{x}+2 \cdot e^{x}+y^{2} \cdot e^{x}+2 e^{x} \cdot(x-1)=c & +x^{2} \\
x^{2} e^{x}-2 x-e^{x}+2 e^{x}+y^{2}-e^{x}+2 x \cdot e^{x}-2 \cdot e^{x}=c & -2 x e^{x} \\
x^{2}-e^{x}+y^{2}-e^{x}=c & -0>e^{x} \\
e^{x}\left(x^{2}+y^{2}\right)=c
\end{array}
$$

(6) $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$

Sol:- Equno is an exact form of $M d x+N d y=0$
where $M=y^{4}+2 y \quad$ and $N=x y^{3}+2 y^{4}-4 x$

$$
\begin{array}{rlrl}
\frac{\partial m}{\partial y} & =4 y^{3}+2 \\
& =2\left(2 y^{3}+1\right) & \frac{\partial N}{\partial x} & =y^{3}(1)+0-4 \\
& =y^{3}-4 \\
& \therefore \frac{\partial m}{\partial y} \neq \frac{\partial N}{\partial x} & &
\end{array}
$$

Hence equn (1) is non-exact.
This can be seduced to ereact by multiplying. an Integeating factori.

$$
\begin{aligned}
\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x} & =4 y^{3}+2-\left(y^{3}-4\right) \\
& =4 y^{3}+2-y^{3}+y \\
& =3 y^{3}+6 . \\
\Rightarrow \frac{\frac{\partial m}{\partial y}-\frac{d N}{\partial x}}{M} & =\frac{3 y^{3}+6}{y^{4}+2 y}=\frac{3\left(y^{3}+2\right)}{y\left(y^{3}+2\right)}=\frac{3}{-y}
\end{aligned}
$$

Now I.F $e^{-\int g(y) d y}=e^{-\int \frac{3}{y} d y}$

$$
\begin{aligned}
& =e^{-3 \log y} \\
& =e^{\log _{e}(y)^{-3}} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

fromal,

$$
\begin{align*}
& \left(\frac{y^{4}+2 y}{y^{3}}\right) d x+\left(\frac{x y^{3}+2 y^{4}}{y^{3}}-4 x\right. \\
& \left(\frac{y^{\prime} y^{\prime}}{y^{3}}+\frac{2 y^{3}}{y^{3}}\right) d y=0 \\
& \left(y+\frac{2}{y^{2}}\right) d x+\left(x+2 y-\frac{4 x}{y^{3}}+\frac{2 y^{3}}{y^{3}}-\frac{4 x}{y^{3}}\right) d y=0 \tag{2}
\end{align*}
$$

equn(2) is an exact form of $M d x+N d y=0$
where $M=y+\frac{2}{y^{2}} \quad$ and $\quad N=x+2 y-\frac{4 x}{y^{3}}$

$$
\begin{array}{rlrl}
\frac{\partial m}{\partial y} & =1+2 \cdot(-2) y^{-3} & \frac{\partial N}{\partial x} & =1+0-\frac{4}{y^{3}}(1) \\
& =1-\frac{y}{y^{3}} & & =1-\frac{4}{y^{3}} \\
& \therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x}
\end{array}
$$

clearly equn \&s an exact.
Now the solun of equ') (2) is $\int M d x+\int N d y=C$

$$
\begin{gathered}
\int\left(y+\frac{2}{y^{2}}\right) d x+\int\left(x+2 y-\frac{4 x}{y^{3}}\right) d y=c \\
y \int(1) d x+\frac{2}{y^{2}} \cdot \int(1) d x+\int x \cdot d y+2 \int y d y-\int \frac{4 x}{y^{3}} \cdot d y=c \\
y(x)+\frac{2}{y^{2}} \cdot(x)+0+2 \cdot\left(\frac{y^{2}}{2}\right)-0=c \\
x y+\frac{2 x}{y^{2}}+y^{2}=c
\end{gathered}
$$

(13) $y d x-x d y+\log x \cdot d x=0$.

Sol:-

$$
\begin{equation*}
(y+\log x) d x-x d y=0 \tag{1}
\end{equation*}
$$

Equn(1) is an exact form of $M d x+N d y=0$
where $M=y+\log x$ and $N=-x$

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =1+0 & \frac{\partial N}{\partial x} & =-(1) \\
& =1 & & =-1
\end{aligned}
$$

$$
\therefore \frac{\partial m}{\partial y} \neq \frac{\partial N}{\partial x} .
$$

Hence Equn(1) is non- exact.
This can be reduced to exact by multiplying an Integrating factor.

$$
\begin{aligned}
& \frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}=1-(-1)=1+1=2 \\
\Rightarrow & \frac{\frac{\partial m}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{2}{-x}=\frac{-2}{x}
\end{aligned}
$$

Now I.F $e^{\int f(x) d x}=e^{\int \frac{-2}{x} d x}$

$$
\begin{aligned}
& =e^{-2 \int \frac{1}{x} d x} \\
& =e^{-2 \log x} \\
& =e^{\log (x)^{-2}} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

from (1),

$$
\begin{align*}
& \left(\frac{y+\log x}{x^{2}}\right) d x-\left(\frac{x}{x^{7}}\right) d y=0 \\
& \left(\frac{y}{x^{2}}+\frac{\log x}{x^{2}}\right) d x-\left(\frac{1}{x}\right) d y=0 \tag{2}
\end{align*}
$$

Eqn(2) is an exact form of $M d x+N d y=0$
Where $M=\frac{y}{x^{2}}+\frac{\log x}{x^{2}} \quad$ and $N=\frac{-1}{x}$

$$
\begin{array}{rlrl}
\frac{\partial m}{\partial y} & =\frac{1}{x^{2}}(1)+0 & \frac{\partial N}{\partial x} & =(-1) \frac{-1}{x^{2}} \\
& =\frac{1}{x^{2}} & =\frac{1}{x^{2}} \\
& \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} &
\end{array}
$$

clearly sEquin (2) is an Exact.
Now the solun of equ(2) is $\int M d x+\int N d y=C$

$$
\begin{aligned}
& \int\left(\frac{y}{x^{2}}+\frac{\log x}{x^{2}}\right) d x+\int\left(\frac{-1}{x}\right) d y=c \\
& y \int x^{-2} d x+\int \log x \cdot \frac{1}{x^{2}} d x+-0=c . \\
& y \cdot\left(\frac{x^{-1}}{-1}\right)+\int \log x \cdot x^{-2} \cdot d x=c .
\end{aligned}
$$

Integration by pasts.

$$
\begin{aligned}
& \underset{\log x}{\frac{D}{x}} \rightarrow \frac{I}{x^{-2}} \\
& \frac{x^{-1}}{-1}=\frac{-1}{x} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-1}{x y}+\left[\log x \cdot\left(\frac{-1}{x}\right)-\int\left(\frac{1}{x}\right)\left(\frac{1}{x}\right) d x\right] \pm C \\
& \frac{-1}{x y}-\frac{\log x}{x}+\int x^{-2} d x=C \\
& \frac{-1}{x y}-\frac{\log x}{x}+\frac{x^{-1}}{-1}=C \\
& \quad \frac{-1}{x y}-\frac{\log x}{x}-\frac{1}{x}=C \\
& \quad \frac{-1}{x}\left[\frac{1}{y}+\log x+1\right]=C \\
& \quad \frac{-1}{x}\left[\frac{1+y \cdot \log x+y}{y}\right]=C \\
& \quad \frac{-1}{x y}[1+y+y \cdot \log x]=C .
\end{aligned}
$$

(14) $(2 x \log x-x y) d y+2 y d x=0$.
colv $2 y \cdot d x+(2 x \log x-x y)^{d y} y=0$ (1)
Sol:- Equnto is an exact form of $m d x+N d y=0$
Whese $N=2 x \cdot \log x-x y$ and $N=2 y$

$$
\begin{aligned}
\frac{\partial N}{\partial X} & =Q-x \cdot(1) \\
& =-x
\end{aligned}
$$

$$
\therefore \frac{d m}{d y} \neq \frac{d N}{d x}
$$

Hence equin(1) is non-exact.
Thes can be redceced to exact by multiplying an Integlateng factor

$$
\begin{aligned}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x} & =-x-0=-x \\
\Rightarrow & \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{-x}{2 y}
\end{aligned}
$$

where $M=2 y$ and $N=2 x \log x-x y$

$$
\begin{array}{rlrl}
\frac{d M}{d y}=2 \cdot(1) \\
& =2
\end{array} \quad \begin{aligned}
\frac{d N}{\partial x} & =2 \cdot\left(x-\frac{1}{x}+\log x(1)\right]-y(1) \\
& =2(1+\log x)-y
\end{aligned}
$$

Hence equ'(1) is non-exact..
Thiscan be reduced to exact by multiplying. an Jutegrating factor

$$
\begin{aligned}
\frac{d m}{d y}-\frac{d n}{d x} & =2-\left(2(1+\log x)-y^{3}\right) \\
& =\not x-2 x+2 \log x+y \\
& =y-2 \log x \\
\Rightarrow \frac{\frac{d m}{\partial y}-\frac{d N}{d x}}{N} & =\frac{y-2 \log x}{2 x \log x-x y}=\frac{-(2 \log x-y)}{x(2 \log y-y)}=\frac{-1}{x} .
\end{aligned}
$$

Now. If $e^{\int f(x) d x}=e^{\int \frac{-1}{x} d x}$

$$
\begin{aligned}
& =e^{-\log x} \\
& =e^{\log _{g}(x)^{-1}} \\
& =\frac{1}{x}
\end{aligned}
$$

from (1),

$$
\begin{align*}
& \left(\frac{2 y}{x}\right) d x+\left(\frac{2 x \log x-x y}{x}\right) d y=0 \\
& \left(\frac{2 y}{x}\right) d x+\left(\frac{2 x \log x}{x}-\frac{x y}{x y}\right) d y=0 \\
& \left(\frac{2 y}{x}\right) d x+(2 \log x-y) d y=0 \tag{2}
\end{align*}
$$

Equn(2) is an exact form of $M d x+N d y=0$
where $M=\frac{2 y}{x} \quad$ and $N=2 \log x-y$

$$
\begin{array}{rlrl}
\frac{\partial m}{\partial y} & =\frac{2}{x}(1) & \frac{\partial N}{\partial x} & =2 \cdot\left(\frac{1}{x}\right)-0 \\
& =\frac{2}{x} & =\frac{2}{x} \\
& \therefore \frac{\partial m}{\partial y}=\frac{\partial N}{\partial x} &
\end{array}
$$

clearly sEquin (2) is an exact.
Now the solan of equen (2) is $f_{n} d x+S_{n} d y=C$

$$
\begin{gathered}
\int\left(\frac{2 y}{x}\right) d x+\int(2 \log x-y) d y=c \\
2 y \int \frac{1}{x} d x+\int 2 \log x \cdot d y-\int y d y=c \\
2 y \cdot \log x+0-\frac{y^{2}}{2}=c \\
2 y \log x-\frac{y^{2}}{2}=c \\
\frac{4 y \cdot \log x-y^{2}}{2}=c \\
4 y \log x-y^{2}=2 c \\
4 y \log x-y^{2}=c
\end{gathered}
$$

Thursday
$26 / 09119$
Inspection Method.
(3) $y\left(2 x y+e^{x}\right) d x=e^{x} \cdot d y$

Sol:

$$
\text { Sol:- } \begin{aligned}
& \left(2 x y^{2}+y e^{x}\right) \cdot d x=e^{x} d y \\
& 2 x y^{2} d x+y e^{x} d x=e^{x} d y \\
& 2 x y^{2} d x+y e^{x} d x-e^{x} d y=0 \\
& \frac{2 x y^{2}}{y^{2}} d x+\frac{y e^{x} d x-e^{x} d y}{y^{2}}=0 \\
& 2 x d x+d\left(\frac{e^{x}}{y}\right)=0 \\
& 2 \int 2 d x+\int d\left(\frac{e x}{y}\right)=c \\
& 2\left(\frac{x^{2}}{3}\right)+\frac{e^{x}}{y}=c \\
& x^{2}+\frac{e^{y}}{y}=c \\
& \text { (4) }(y \log y-2 x y) d x+(x+y) d y=0
\end{aligned}
$$

Sol:-

$$
\begin{gathered}
y \log y d x-2 x y d x+x d y+y d y=0 . \\
y \log y d x+y d y+x d y-2 x y d x=0 . \\
y \log y+x d y-2 x y d x+y d y=0 \\
\frac{y \log y d x}{y}+\frac{x}{y} d y-\frac{2 x y}{y} d x+\frac{y}{y} d y=0 \\
\log y d x+\frac{1}{y}-x d y-2 x d x+d y=0 \\
d(\log y \cdot x)-2 x d x+d y=0 \\
\int d(\log y \cdot x)-2 \int x d x+\int(1) d y=c \\
\log y \cdot x-2 \cdot \frac{x^{2}}{y}+y=c \\
x \cdot \log y-x^{2}+y=c .
\end{gathered}
$$

(7) $x d y-y d x=\left(4 x^{2}+y^{2}\right) d y$

Sol.

$$
\begin{aligned}
& x d y-y d x=4 x^{2} d y+y^{2} d y \\
& x d y-y d x-4 x^{2} d y+y^{2} d y=0
\end{aligned}
$$

(9) $\left(x+y^{\prime}\right)^{2}=\left(x \cdot \frac{d y}{d x}+y\right)=x y\left(1+\frac{d y}{d x}\right)$
soly-

$$
\begin{aligned}
&(x+y)^{2}\left(\frac{x d y+y d x}{d x}\right)=x y\left(\frac{f(x+d y}{d x}\right) \\
&(x+y)^{2} \cdot(x d y+y d x)=x y(d x+d y) \\
& \frac{x d y+y d x}{x y}=\frac{d x+d y}{(x+y)^{2}} \\
& d(\log (x y))=-\left(\frac{-1}{\left.(x+y)^{2}\right)(d x+d y)}\right. \\
& d(\log (x, y))=-d\left(\frac{1}{x+y}\right) \\
& \int d(\log (x \cdot y))+\int d\left(\frac{1}{x+y}\right)=c \\
& \log (x \cdot y)+\frac{1}{x+y}=c .
\end{aligned}
$$

(7) $x d y-y d x=\left(y x^{2}+y^{2}\right) d y$

Soly

$$
\begin{aligned}
& x d y-y d x=\left((2 x)^{2}+y^{2}\right) d y \\
& \frac{x d y-y d x}{(2 x)^{2}+y^{2}}=d y \\
& \text { 直 } \frac{1}{2} d\left(\tan ^{-1}\left(\frac{y}{2 x}\right)\right)=d y \\
& \frac{1}{2} d\left(\tan ^{-1}\left(\frac{y}{2 x}\right)\right)-d y=0 \text {. } \\
& \frac{1}{2} \int d\left(\tan ^{-1}\left(\frac{y}{2 x}\right)\right)-\int(1) d y=C \\
& \frac{1}{2} \tan ^{-1}\left(\frac{y}{2 x}\right)-y=c \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{2 x \cdot d y-y \cdot 2 d x}{(2 x)^{2}}\right]} \\
& =\frac{2 \cdot(x d y-y d x)}{\left(1+\frac{y^{2}}{(2 x)^{2}}\right)(2 x)^{2}} \\
& =\frac{2(x d y-y d x)}{\frac{2 x)^{2}+y^{2}}{(2 x)^{2}}(2 x)^{2}} \\
& \frac{1}{2} d\left(\tan ^{-1}\left(\frac{y}{2 x}\right)\right)=\frac{x d y-y d y}{(2 x)^{2}+y^{2}}
\end{aligned}
$$

(10). $x d y-y d x=x \sqrt{x^{2}-y^{2}} d x$

Sol:-

$$
\begin{aligned}
& x d y-y d x=x \sqrt{x^{2}\left(1-\frac{y^{2}}{x^{2}}\right)} d x \\
& x d y-y d x=x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}} d x \\
& \frac{x d y-y d x}{x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}}}=d x \\
& d\left(\sin ^{-1}\left(\frac{y}{x}\right)-d x=0 .\right. \\
& \int d\left(\sin ^{-1}\left(\frac{y}{x}\right)\right)-\int(1) d x=c . \\
& \sin ^{-1}\left(\frac{y}{x}\right)-x=c .
\end{aligned}
$$

(5) $\cdot x d y-y d x=x y^{2} \cdot d x$
sol: $-(y d x-x d y)=x y^{2} d x$

$$
\begin{gathered}
\frac{y d x-x d y}{y^{2}}=-x \cdot d x . \\
d\left(\frac{x}{y}\right)+x \cdot d x=0 \\
\int d\left(\frac{x}{y}\right)+\int x \cdot d x=c \\
\frac{x}{y}+\frac{x^{2}}{2}=c .
\end{gathered}
$$

(6) $x d y=\left(x^{2} y^{2}-y\right) d x$.

Solv-

$$
\begin{aligned}
& x d y=x^{2} y^{2} d x-y d x . \\
& x d y+y d x=x^{2} y^{2} d x \\
& x d y+y d x=(x y)^{2} d x \\
& \frac{x d y+y d x}{(x y)^{2}}=d x \\
& -d\left(\frac{1}{x y}\right)=d x \\
& d x+d\left(\frac{1}{x y}\right)=0 \\
& \int(1) d x+\int d\left(\frac{1}{x y}\right)=C \\
& x+\frac{1}{x y}=C
\end{aligned}
$$

(8) $\left(y+y^{2} \cdot \cos x\right) d x-\left(x-y^{3}\right) d y=0$

Solv- $\quad y \cdot d x+y^{2} \cos x d x-x d y+y^{3} d y=0$.

$$
\begin{gathered}
y d x-x d y+y^{3} d y=-y^{2} \cos x d x \\
\frac{y d x-x d y}{y^{2}}+\frac{y^{3} d y}{y^{2}}=-\cos x d y \\
d\left(\frac{y}{y}\right)+y d y+\cos x d x=0 . \\
\int d\left(\frac{x}{y}\right)+\int y d y+\int \cos x d x=C \\
\frac{x}{y}+\frac{y^{2}}{2}+\sin x=c .
\end{gathered}
$$

(II) $\cdot x d x+y d y-a^{2} d\left(\operatorname{Tan}^{-1}\left(\frac{y}{x}\right)\right)=0$,

Sol:-

$$
\begin{array}{r}
x d x+y d y-a^{2} d\left(\tan ^{-1}\left(\frac{y}{x}\right)\right)=0 \\
\int x d x+\int y d y-a^{2} \int d\left(\tan ^{-1}\left(\frac{y}{x}\right)\right)=c \\
\frac{x^{2}}{2}+\frac{y^{2}}{2}-a^{2} \tan ^{-1}\left(\frac{y}{x}\right)=c
\end{array}
$$

APPLCFTTINS of FIRST ORDER
(5) $y^{2}=\frac{x^{3}}{a-x}$. (orthogonal trajectory)

Sol:-

$$
\begin{align*}
& y^{2}=\frac{x^{3}}{a-x} \\
& \text { Diff } y^{2}(a-x)=x^{3} \rightarrow(1) \tag{1}\\
& \frac{d}{d x}\left(y^{2}(a-x)\right)=\frac{d}{d x}\left(x^{3}\right) \\
& y^{2} \cdot(a-1)+(a-x) 2 y \cdot \frac{d y}{d x}=3 x^{2} \\
& -y^{2}+(a-x) 2 y \frac{d y}{d x}=3 x^{2} \\
& 2 y \cdot \frac{d y}{d x}(a-x)-y^{2}=3 x^{2} \\
& 2 y \cdot \frac{d y}{d x}(a-x)=3 x^{2}+y^{2} \\
& 2 y y^{\prime} \cdot(a-x)=3 x^{2}+y^{2} \\
& a-x=\frac{3 x^{2}+y^{2}}{2 y y^{\prime}} \\
& \quad a=\frac{3 x^{2}+y^{2}}{2 y y^{\prime}}+x
\end{align*}
$$

from (1),

$$
\begin{align*}
y^{2}\left(\frac{3 x^{2}+y^{2}}{2 y y^{1}}\right) & =x^{3} \\
y^{4}\left(3 x^{2}+y^{2}\right) & =2 y y^{1} x^{3} \\
3 x^{2} y+y^{3} & =2 \frac{d y}{d x} x^{3} . \tag{2}
\end{align*}
$$

Replace $\frac{d y}{d x}-\frac{d x}{d y}$ by $\frac{d y}{d x}$.

$$
\begin{align*}
& 3 x^{2} y+y^{3}=2-\frac{d x}{d y} x^{3} \\
& 3 x^{2} y+y^{3}=-2 \cdot \frac{d x}{d y} x^{3} \\
& -2 x^{3} \frac{d x}{d y}=3 x^{2} y+y^{3} \tag{3}\\
& -2 x^{3} \cdot d x=\left(3 x^{2} y+y^{3}\right) d y \\
& \left(3 x^{2} y+y^{3}\right) d y+2 x^{3} d x=0
\end{align*}
$$

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{-\left(3 x^{2} y+y^{3}\right)}{2 x^{3}} \\
& \begin{array}{l}
\frac{d x}{d y}=\frac{-3 x^{2} y}{2 x^{3}}-\frac{y^{3}}{2 x^{3}} \\
\frac{d x}{d y}=-\frac{3 y}{3 x}-\frac{y^{3}}{2 x^{3}} \\
\frac{d x}{d y}+\left(\frac{3}{2 x}\right) y=\frac{-y^{3}}{8} \cdot x^{-3} .
\end{array} \\
& \text { (Bernoulli:s) } \\
& \text { put } y=v x \Rightarrow v=\frac{y}{x} \\
& d y=x d W \text {. } \\
& \frac{+d x}{x \cdot d v}=\frac{-\left(3 x^{2}(v x)^{2}+(v x)^{3}\right)}{2 x^{3}} \\
& \frac{d x}{x \cdot d v}=\frac{-\left(3 x^{3} v^{2}+v^{3} x^{3}\right)}{2 x^{3}} \\
& \frac{1}{x} \cdot \frac{d x}{d v}=\frac{-x x^{2}\left(3 v^{4}+v^{3}\right)}{2 x^{3}} \\
& \frac{-2}{x} \cdot d x=\left(3 v^{2}+v^{3}\right) d v \\
& -2 \int \frac{1}{x} d x=3 \int v^{2} d v+\int v^{3} d x \\
& -2 \log x=3\left(\frac{v^{2}}{2}\right)+\left(\frac{v^{4}}{4}\right)+c \\
& -2 \log x=\frac{3}{2}\left(v^{2}\right)+\frac{1}{4}(v)+c \\
& -2 \log x=\frac{3}{2}\left(\frac{y^{2}}{x^{2}}\right)+\frac{1}{4}\left(\frac{y}{x}\right)^{4}+c \text {. }
\end{aligned}
$$

(6) $y=\frac{x^{3}-a^{3}}{3 x}$

Sol:-

$$
\begin{equation*}
3 x y=x^{3}-a^{3} \tag{1}
\end{equation*}
$$

Diffequ' (1) w. \&. to ' x '.

$$
\begin{align*}
3\left[x \cdot \frac{d y}{d x}+y \cdot \frac{d x}{d x}\right] & =3 x^{2}-0 \\
\beta\left[x \cdot \frac{d y}{d x}+y \cdot\right. & =\$ x^{2} \\
x \cdot \frac{d y}{d x}+y- & =x^{2} \tag{2}
\end{align*}
$$

Replace $-\frac{d x}{d y}$ by $\frac{d y}{d x}$

$$
\begin{aligned}
& x-\left(-\frac{d x}{d y}\right)+y=x^{2} \\
& y-\frac{d x}{d y}(x)=x^{2} \\
& y-\frac{d x}{d y} \cdot x=x^{2} \\
& x \frac{d x}{d y}=y-x^{2} \\
& x d x=\left(y-x^{2}\right) d y \\
& x d x-\left(y-x^{2}\right) d y=0 . \\
& \text { and } N=-\left(y-x^{2}\right) \\
& M=x .=-(0-2 x) \\
& \frac{\partial N}{\partial y}=0 \quad 2 x . \\
&\left.\frac{\partial m}{\partial y} \neq \frac{\partial N}{d x}\right)
\end{aligned}
$$

Hence sequin (2) is non exact.
This can be seduced to exact by muttplying an integrating factor.

$$
\begin{aligned}
& \text {. } \frac{\partial m}{\partial y}-\frac{\partial v}{\partial x}=0-2 x=-2 x \quad \Rightarrow \frac{\partial M}{\partial y}-\frac{\partial v}{d x}=\frac{-2 x}{\partial x}=-2 \\
& \begin{aligned}
& \text { InF } e^{\left.-\int(g)(y) d y\right)}=e^{2 / x} d y \\
&=e^{2} \\
& e^{2 y \cdot}\left[\frac{x}{2} \cdot d x\right. \\
&\left.=\frac{\left(y-x^{2}\right)}{, j} d y\right]=0
\end{aligned} \\
& e^{2 y} \int x \cdot d x-\int e^{2 y} d y+\int \frac{x^{2}}{e^{2 y}} d y=0 \\
& e^{2 y}\left(\frac{x^{2}}{2}\right)-\left[\frac{e^{2 y}}{2} \cdot y-\frac{e^{2 y}}{4}\right]+0=0 \\
& \frac{1}{2} \cdot x^{2} \cdot e^{2 y}-\left[\frac{e^{2 y}}{2} \cdot y-\frac{1}{4} \cdot e^{2 y}\right]=0 \\
& \frac{1}{2} e^{2 y}\left(x^{2}-x^{2}-y+\frac{1}{2}\right)=0 \\
& \frac{1}{2} e^{2 y}\left(x^{2}-y+1 / 2\right)=0 .
\end{aligned}
$$

(7) $y^{2}=a x^{3}$.
golv- difs. equno wis to ' x^{\prime}

$$
\begin{aligned}
& 2 y \cdot \frac{d y}{d x}=a \cdot 3 x^{2} \\
& 2 y \cdot \frac{d y}{d x}=3 a x^{2} \\
& 2 y \cdot \frac{d y}{d x}=3 a x^{2} \\
& a=\frac{2 y}{3 x^{2}} \cdot \frac{d y}{d x} . \\
& a=\frac{2 y y^{\prime}}{3 x^{2}}
\end{aligned}
$$

from(1),

$$
\begin{aligned}
y^{*} & =\left(\frac{2 y y^{\prime}}{3 y^{\prime}}\right) x \phi \\
y & =\frac{2 y^{\prime} y x}{3} \\
3 y & =2 x y^{\prime} \\
3 y & =2 \cdot x \frac{d y}{d x}
\end{aligned}
$$

Replace $+\frac{d y}{d x}=-\frac{d x}{d y}$

$$
\begin{align*}
& 3 y=2 x \cdot\left(-\frac{d x}{d y}\right) \\
& 3 y-2 x \cdot \frac{d x}{d y}=0 \\
& 2 x \cdot d x=3 y d y \\
& \frac{2 x^{2}}{x}=3 \frac{y^{2}}{2}+c \\
& x^{2}=\frac{y^{2}}{2}+c \tag{1}
\end{align*}
$$

(8). $y=c(\sec x+\tan x)$

Sol:- differentiate with respect to ' x '

$$
\begin{aligned}
\frac{d y}{d x} & =c\left(\sec x \cdot \tan x+\sec ^{2} x\right) \\
y^{\prime} & =c\left(\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}+\frac{1}{\cos ^{2} x}\right) \\
y^{\prime} & =c\left(\frac{\sin x+1}{\cos ^{2} x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=c\left(\frac{\sin x+1}{1-\sin ^{2} x}\right) \\
& y^{\prime}=c\left(\frac{\sin x+1}{(1+\sin x)(1-\sin x)}\right) \\
& y^{\prime}=\frac{c}{1-\sin x} \\
& c=(1-\sin x) y^{\prime}
\end{aligned}
$$

fromel

$$
\begin{aligned}
& y=(1-\sin x) y^{\prime}(\sec x+\tan x) \\
& y=y^{\prime}(1-\sin x)\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right) \\
& y=y^{\prime}(1-\sin x)\left(\frac{1+\sin x}{\cos x}\right) \\
& y=y^{\prime}\left(\frac{1-\sin ^{2} x}{\cos x}\right) \\
& y=y^{\prime}\left(\frac{\cos t x}{\cos x}\right) \\
& y=y^{\prime} \cos x \text {. } \\
& y=\frac{d y}{d x} \cdot \cos x \Rightarrow \text { Replace } \frac{d y}{d x}=-\frac{d x}{d y} \\
& \frac{1}{\cos x} \cdot d x=\frac{1}{y} \cdot d y \quad y=\frac{-d x}{d y} \cdot \cos x . \\
& \int \sec x d x=\int \frac{1}{y} d y \\
& y d y=-\cos x d x \\
& \log (\sec x+\tan x)=\log y+\log c \\
& \log (\sec x+\tan x)=\log .(c \cdot y) \\
& \int y d y=-\int \cos x \cdot d x \\
& \frac{y^{2}}{2}=-\sin x+c \\
& \frac{y^{2}}{2}+\sin x=c
\end{aligned}
$$

(3) Find the particular no of orthogonal trajectories $x^{2}+c y^{2}=1$ passing through the point $(2,1)$.
Solo. $\quad x^{2}+c y^{2}=1$
diff w. r. to ' x '

$$
\begin{aligned}
& 2 x+c-2 y \frac{d y}{d x}=0 \\
& 2 x=-\$ c y \cdot \frac{d y}{d x} \\
& x=-c y \frac{d y}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& x=-c y \cdot y^{\prime} \\
& c=\frac{-x}{y y^{\prime}}
\end{aligned}
$$

from (1),

$$
\begin{gathered}
x^{2}+\left(\frac{-x}{y^{\prime} y^{\prime}}\right) y^{\prime}=1 \\
x^{2}+-\frac{x y}{y^{\prime}}=1 \\
x^{2}=1+\frac{x y}{y^{\prime}} \\
x^{2}-1=x y \cdot \frac{1}{y^{\prime}}
\end{gathered}
$$

Replace $\frac{d y}{d x}=-\frac{d x}{d y}$

$$
\begin{aligned}
& x^{2}-1=x y-\frac{d 1}{-\frac{d x}{d y}} \\
& x^{2}-1=x y\left(-\frac{d y}{d x}\right) \\
& \frac{x^{2}-1}{x} \cdot d x=-y-d y \\
& \left(\frac{x^{7}}{x^{2}}-\frac{1}{x}\right) d x=-y \cdot d y \\
& \int x \cdot d x-\int \frac{1}{x} \cdot d x=-\int y d y \\
& \frac{x^{2}}{2}-\frac{\log }{2} x=-\frac{y^{2}}{2}+c \\
& \frac{x^{2}}{2}-\log x=-\frac{y^{2}}{2}+c \\
& \frac{x^{2}}{2}+\frac{y^{2}}{2}-\log x=c . \\
& \frac{x^{2}}{2}+\frac{y^{2}}{2}=x \log x+c
\end{aligned}
$$

Given that:
the curve passes through the point $(2,1)$

$$
\begin{aligned}
& \frac{(2)^{4}}{4}+\frac{(1)^{2}}{2}=\log 2+c \\
& 2+\frac{1}{2}=\log 2+c \\
& \frac{.5}{2}=0.301+c
\end{aligned}
$$

$$
\begin{aligned}
2.5 & =0.301+c \\
c & =2.5-0.301 \\
c & =2.199
\end{aligned}
$$

-Approximately $\quad c=2.2$
(9) $\cdot x^{2}+y^{2}+2 g x+c=0$ where ' g ' is the parameter.

Sol:-

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+c=0 \tag{1}
\end{equation*}
$$

diff. w \& to ' x '.

$$
\begin{array}{r}
2 x+2 y \cdot \frac{d y}{d x}+2 g+0=0 \\
x+y \frac{d y}{d x}+y=0 \\
x+y \cdot y^{\prime}+y=0 \\
g=-\left(x+y y^{\prime}\right)
\end{array}
$$

from (1),

$$
\begin{gather*}
x^{2}+y^{2}+2\left(-\left(x+y y^{\prime}\right)\right) x+c=0 \tag{2}\\
-x^{2}+y^{2}-2 x^{2}-2 x y y^{\prime}+c=0 \\
-x^{2}-2 x y y^{\prime}+c=0 \\
c=x^{2}-y^{2}+2 x y y^{\prime}
\end{gather*}
$$

from (2)
$2 x+2 y y^{\prime}+2(2 x)$.

$$
\begin{aligned}
& x^{2}+y^{\prime}-2 x-2 y y^{\prime}+x^{2}-y^{2}+2 x y y^{\prime}=0 \\
& 2 x^{2}-2 x-2 y y^{\prime}+2 x y^{\prime}=0 \\
& 2 x^{2}-2 x-2 y \frac{d y}{d x}+2 x y \frac{d y}{d x}=0
\end{aligned}
$$

Replace $\frac{d y}{d x}=\frac{-d x}{d y}$

$$
\begin{aligned}
& 2 x^{2}-2 x+2 y \frac{d x}{d y}-2 x y \frac{d x}{d y}=0 \\
& 2 x^{2}-2 x+(2 y-2 x y) \frac{d x}{d y}=0 \\
& \$\left(x^{2}-x\right)-\phi=-\nless(y-x y) \frac{d x}{d y} \\
& x^{2}-x=-y(1-x) \frac{d x}{d y} \\
& x(x-1)=y(x-1) \frac{d x}{d y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{y} \cdot d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\log y & =\log x+\log c \\
\log y & =\log (c \cdot x) \\
y & =c \cdot x
\end{aligned}
$$

(10) $y^{2}=4 a x$
sol.

$$
\begin{gathered}
y^{2}-4 a x=0 \rightarrow \text { (1) } \\
\text { difd. } w \cdot \text { a.t0 } x^{\prime} \\
2 y y^{\prime}-4 a=0 . \\
x^{2} a=k y \cdot y^{\prime} \\
a=\frac{y y^{\prime}}{2} .
\end{gathered}
$$

frome 1 ,

$$
\begin{gathered}
y^{2}-y^{k} x \cdot\left(\frac{y y^{\prime}}{x}\right)=0 \\
y^{2}-2 x y \cdot y^{\prime}=0 . \\
y^{2}-2 x y \cdot \frac{d y}{d x}=0 \\
\text { Replace } \frac{d y}{d x}=\frac{-d x}{d y} \\
y^{2}+2 x y \cdot \frac{d x}{d y}=0 . \\
y^{Y}=-2 x y \cdot \frac{d x}{d y} \\
y \cdot d y=-2 x \cdot d x . \\
\int y d y=-2 \int x \cdot d x \\
\frac{y^{2}}{2}=-\left(x-\frac{x^{2}}{2}+c .\right. \\
\frac{x^{2}}{2}+\frac{y^{2}}{2}=c .
\end{gathered}
$$

(1). $x y=c$.

Sot: $\quad x y-c=0 \rightarrow$ (1)
diff. w. r to ' x '

$$
\begin{gathered}
{\left[x \cdot \frac{d y}{d x}+y(1)\right]-0=0 .} \\
x y^{\prime}+y=0
\end{gathered}
$$

Replace $\frac{d y}{d x}=-\frac{d x}{d y}$

$$
\begin{aligned}
x \cdot\left(-\frac{d x}{d y}\right)+y & =0 . \\
f x \cdot d x & =f y \cdot d y . \\
\int x \cdot d x & =\int y d y \\
\frac{x^{2}}{2} & =\frac{y^{2}}{2}+c . \\
\frac{x^{2}}{2}-\frac{y^{2}}{2} & =c .
\end{aligned}
$$

(2) $\cdot e^{x}+e^{-y}=c$.

Sol:- $e^{x}+e^{-y}-c=0 \rightarrow$ (1)
diff w. - to ' x '

$$
\begin{gathered}
e^{x}+e^{-y} \cdot\left(-\frac{d y}{d x}\right)-0=0 . \\
e^{x}-e^{-y} \cdot \frac{d y}{d x}=0
\end{gathered}
$$

Replace $\frac{d y}{d x}=-\frac{d x}{d y}$

$$
\begin{aligned}
& e^{x}+e^{-y} \frac{d x}{d y}=0 \\
& e^{x}=-e^{-y} \cdot \frac{d x}{d y} \\
& \frac{1}{e^{-y}} d y=-\frac{1}{e^{x}} \cdot d x \\
& e^{-y} \cdot d y=-e^{-x} d x \\
& \int e^{-y} d y=-\int e^{-x} d x \\
& e^{-y}(-1
\end{aligned}=-e^{-x} \cdot(-1+c)
$$

(i) $x^{2}+y^{2}=c^{2}$.

Sol:-

$$
x^{2}+y^{2}-c^{2}=0 \rightarrow(1)
$$

disferenteate - co. 9. to ' x '

$$
\begin{gathered}
2 x+2 y \frac{d y}{d x}-0=0 \\
x+y \cdot \frac{d y}{d x}=0
\end{gathered}
$$

Replace $\frac{d y}{d x}=-\frac{d x}{d y}$

$$
\begin{aligned}
& x-y \cdot \frac{d x}{d y}=0 \\
& x=y \frac{d x}{d y} \\
&-\operatorname{ty} d y=\frac{1}{x} d x \\
& \int \frac{1}{y} d y=\int \frac{1}{x} d x \\
& \log y=\log x+\log c \\
& \operatorname{ldg} y=\log (c \cdot x) \\
& y=c x
\end{aligned}
$$

Tuesday
$01 / 10 / 2019$
(1) $r=a(1+\cos \theta)$

Sol- $r=a+a \cos \theta \rightarrow(1)$
diff. w. s. to ' θ '.

$$
\begin{aligned}
& \frac{d r}{d \theta}=0+a \cdot(-\sin \theta) \\
& \frac{d r}{d \theta}=-a \sin \theta \Rightarrow a=\frac{-1}{\sin \theta} \cdot \frac{d r}{d \theta}
\end{aligned}
$$

Replace $\frac{d x}{d x}=\gamma y^{\gamma} \frac{d \theta}{d \gamma}$
from (1),

$$
\begin{aligned}
& r=\frac{-1}{\sin \theta} \frac{d r}{d \theta}(1+\cos \theta) \\
& r=-\frac{1}{\sin \theta} \frac{d r}{d \theta}-\cot \theta \cdot \frac{d r}{d \theta}
\end{aligned}
$$

Replace $\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}$

$$
\begin{aligned}
& r=-\operatorname{cosec} \theta \cdot\left(-r^{2} \frac{d \theta}{d r}\right)-\cot \theta\left(-r^{2} \frac{d \theta}{d r}\right) \\
& \gamma=r+\left[\operatorname{cosec} \theta \cdot \frac{d \theta}{d r}+\cot \theta \cdot \frac{d \theta}{d r}\right] \\
& \frac{1}{r}=(\operatorname{cosec} \theta+\cot \theta) \frac{d \theta}{d r} \\
& \frac{1}{r} d r=(\operatorname{cosec} \theta+\cot \theta) d \theta \\
& \int \frac{1}{r} d r=\int \operatorname{cosec} \theta d \theta+\int \cot \theta \cdot d \theta \\
& \operatorname{dog} r=\log (\operatorname{cosec} \theta-\cot \theta)+\log (8 \ln \theta)+\log c . \\
& \log r=\log [(\operatorname{cosec} \theta-\cot \theta)(\sin \theta) \cdot c]
\end{aligned}
$$

$$
\begin{aligned}
& r=(\operatorname{cosec} \theta \cdot \operatorname{sen} \theta-\cot \theta \cdot \sin \theta) c \\
& r=\left(\frac{1}{\sin \theta} \cdot \operatorname{sen} \theta-\frac{\cos \theta}{\operatorname{sen} \theta} \sin \theta \cdot c\right. \\
& r=(1-\cos \theta) c .
\end{aligned}
$$

(2). $r^{n} \sin n \theta=a^{n}$.

Sol:-

$$
\begin{aligned}
& \log (r n \cdot \sin n \theta)=\log a n \\
& \log r^{n}+\log \sin n \theta=n \cdot \log a . \\
& n \cdot \log \gamma+\log \sin n \theta=n \cdot \log a \\
& \text { diff. w. r. to ' } \theta \text { ' } \\
& n \cdot \frac{1}{r} \cdot \frac{d r}{d \theta}+\frac{1}{\sin n \theta} \cdot(\cos n \theta) n=0 . \\
& \frac{D}{r} \frac{d r}{d \theta}=-\not x \cdot \operatorname{cotn} \theta \\
& \frac{1}{r} \frac{d r}{d \theta}=-\operatorname{cotn} \theta \text {. } \\
& \text { Replace } \frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r} \\
& \frac{1}{\not r}(-r \nmid) \frac{d \theta}{d r}=f \operatorname{cotn} \theta \\
& r \cdot \frac{d \theta}{d r}=\cot \cdot n \theta \text {. } \\
& \frac{1}{\operatorname{coth} \theta} d \theta=\frac{1}{r} d r \\
& \int \tan n \theta d \theta=\int \frac{1}{r} d r \\
& \frac{\log (\sec n \theta)}{n}=\log r+\log c \\
& \frac{1}{n} \cdot \log (\sec n \theta)=\log (r-c) . \\
& \operatorname{ldg}(\sec n \theta)^{1 / n}=\operatorname{ldg}(c-r) . \\
& (\sec n \theta)^{1 / n}=c \cdot \gamma \\
& \sec \theta=(c r)^{n} \\
& \sec \theta=c \cdot r \eta \text {. }
\end{aligned}
$$

(3) $r^{2}=a^{2}(\cos 2 \theta)$
sol:-

$$
\begin{aligned}
& \log r^{2}=\log \left(a^{2} \cdot \cos 2 \theta\right) \\
& 2 \log r=\log a^{2}+\log \cos 2 \theta \\
& d \operatorname{lig} \delta \cdot(u) \cdot t 0 \\
& 2 \cdot \frac{1}{r} \cdot \frac{d r}{d \theta}=0+\frac{1}{\cos 2 \theta}(-\sin 2 \theta) 2 \\
& \text { L } \cdot \frac{1}{r} \frac{d r}{d \theta}=-(\tan 2 \theta) \neq \\
& \text { Replace } \frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r} \\
& \frac{1}{y}\left(+r^{1} \frac{d \theta}{d r}\right)=-\tan 2 \theta \\
& \frac{1}{\operatorname{ran} 2 \theta} \cdot d \theta=\frac{1}{r} \cdot d r \\
& \int \cot 2 \theta \cdot d \theta=\int \frac{1}{r} d r \\
& \frac{\log (\sin 2 \theta)}{2}=\log r+\log c \\
& \frac{1}{2} \log (\sin 2 \theta)=\log (c \cdot r) \\
& \operatorname{l\phi } g(\sin 2 \theta)^{1 / 2}=\log (c \cdot r) \\
& \sin 2 \theta=(c r)^{2} \\
& \operatorname{sen} 2 \theta=c \cdot r^{2}
\end{aligned}
$$

(4) $r^{n}=a \sin n \theta$.
sol:-

$$
\begin{aligned}
& \log r^{n}=\log (a \sin n) \\
& n \cdot \log r=\log a+\log \sin n \theta \text {. } \\
& \text { diff. w. } r \text {-to ' } \theta \text { '. } \\
& n \cdot \frac{1}{r} \cdot \frac{d r}{d \theta}=0+\frac{1}{\sin n \theta}(\cos n \theta) n \\
& \left.\not x-\frac{1}{r} \frac{d r}{d \theta}=\cot n \theta \cdot \right\rvert\, x \\
& \text { Replace } \frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r} \text {. } \\
& \frac{1}{\not r}\left(-r f \frac{d \theta}{d r}\right)=\cot n \theta \text {. } \\
& -\frac{1}{\operatorname{cotn} \theta} d \theta=\cdot \frac{1}{r} d r \\
& -\int \tan \cos \theta d \theta=\int \frac{1}{r} d r
\end{aligned}
$$

$$
\begin{aligned}
\frac{-\log (\sec \cdot n \theta)}{n} & =\log r+\log c \\
\frac{-1}{n} \log (\sec n \theta) & =\log (c \cdot r) \\
\log (\sec n \theta)^{-1 / n} & =\log g(c \cdot r) \\
\sec n \theta & =(c r)^{-n} \\
\sec n \theta & =c^{-n} \cdot r^{-n} \\
\sec n \theta & =\frac{1}{c^{n} \cdot r} \\
c \cdot \sec n \theta & =\frac{1}{r^{n}} .
\end{aligned}
$$

(5) $\gamma=\frac{2 a}{1+\cos \theta}$
sol:-

$$
\begin{aligned}
& r(1+\cos \theta)=2 a \\
& (r+r \cdot \cos \theta) \\
& \text { diff-cor.to ' } \theta^{\prime} \\
& \frac{d r}{d \theta}+\left[r \cdot(-\sin \theta)+\cos \frac{d r}{d \theta}\right]=0 \\
& \frac{d r}{d \theta}-r \sin \theta+\cos \theta \frac{d r}{d \theta}=0 \\
& \quad(1+\cos \theta) \frac{d r}{d \theta}-r \sin \theta=0
\end{aligned}
$$

Replace $\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}$

$$
\begin{aligned}
& (1+\cos \theta)\left(-r \nmid \frac{d \theta}{d r}\right)=\not x \operatorname{sen} \theta \text {. } \\
& -\frac{1+\cos \theta}{\sin \theta} d \theta=\frac{1}{r} d r \text {. } \\
& -\left(\operatorname{cosec} \theta+\cot 0^{\circ}\right) d \theta=\frac{1}{r} d r \\
& -\int \operatorname{cosec} \theta d \theta-\int \cot \theta \cdot d \theta=\int \frac{1}{r} d r \\
& -\log (\operatorname{cosec} \theta-\cot \theta)-\log (\sin \theta)=\log r+\log c . \\
& -\left[\log \frac{(\operatorname{cosec} \theta-\cot \theta)}{\sin \theta}(\operatorname{sen} \theta)=\log r+\log c\right. \\
& \log \left(\frac{\operatorname{cosec} \theta-\cot \theta}{\operatorname{sen} \theta}\right)^{-1} \frac{1}{\sin \theta}=\log (r \cdot c) \\
& \frac{1}{(\sin \theta)} \frac{\operatorname{sen} \theta 1}{(\operatorname{cosec} \theta-\cot \theta)}=c \cdot r \text {. } \\
& \frac{1}{\sin \theta} \cdot \frac{1}{\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}}=c r \text {. } \\
& \left(\frac{1}{\operatorname{sen} \theta}\right) \frac{1}{\frac{1-\operatorname{cose} \theta}{1 \ln \theta}}=c r \text {. }
\end{aligned}
$$

$$
c \gamma=\frac{1}{1-\cos \theta}
$$

(or)

$$
\begin{aligned}
& \frac{1}{c r}=1-\cos \theta \\
& \frac{1}{r}=c(1-\cos \theta)
\end{aligned}
$$

(6)

Sol:-

$$
\begin{aligned}
& \gamma=a(1-\cos \theta) \\
& r=a(1-\cos \theta) \\
& \text { diff }-\omega \cdot r \cdot \theta^{\prime} \theta \\
& \frac{d r}{d \theta}=a(0-(-\sin \theta)) \\
& \frac{d r}{d \theta}=a \cdot \sin \theta \\
& a=\frac{1}{\sin \theta}-\frac{d r}{d \theta}
\end{aligned}
$$

from (1),

$$
\begin{aligned}
& r=\frac{1}{\sin \theta} \cdot \frac{d r}{d \theta}(1-\cos \theta) \\
& \text { Replacedr} \\
& d \theta=-r^{2} \frac{d \theta}{d r} \\
& r=\frac{1}{\sin \theta} \cdot(-r \theta) \frac{d \theta}{d r}(1-\cos \theta) \\
& \frac{1}{r} d r=\frac{-(1-\cos \theta)}{\sin \theta} d \theta \\
&-\frac{1}{r} d r=(\operatorname{cosec} \theta-\cot \theta) d \theta \\
&-\int \frac{1}{r} d r=\int \operatorname{cosec} \theta d \theta-\int \cot \theta d \theta \\
&-\log r=\log (\operatorname{cosec} \theta-\cot \theta)-\log (\sin \theta)+\log c \\
&-\log r-\log c=\log \left(\frac{\operatorname{cosec} \theta-\cot \theta}{\operatorname{sen} \theta}\right) \\
&-[\log (c \cdot r)]=\log (\operatorname{cosec} \theta-\operatorname{cosec} 2 \theta \cdot \cos \theta) \\
&\log (c) r)^{-1}=\operatorname{ldg} \operatorname{cosec}^{2} \theta(1-\cos \theta) \\
& \frac{1}{(r}=\operatorname{cosec} 2 \theta(1-\cos \theta) \\
& \quad \frac{1}{r}=c \cdot \operatorname{cosec}^{2} \theta(1-\cos \theta)
\end{aligned}
$$

(7) $r=a\left(1+\sin ^{2} \theta\right)$
sol:-

$$
\begin{aligned}
& r=a\left(1-+\sin ^{2} \theta\right) \rightarrow \theta \\
& \text { diff } \cdot \omega \cdot r \cdot \text { to } \theta \text { ' } \\
& \frac{d r}{d \theta}=a(0+2 \sin \theta \cdot \cos \theta) \\
& \frac{d r}{d \theta}=a+2 a \cdot \sin \theta \cdot \cos \theta \\
& \frac{d r}{d \theta}=a \cdot \sin 2 \theta \\
& a=\frac{1}{\operatorname{sen} 2 \theta} \cdot \frac{d r}{d \theta}
\end{aligned}
$$

from,

$$
r=\frac{1}{\sin 2 \theta} \cdot \frac{d r}{d \theta}(1+\sin \theta)
$$

Replace $\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}$

$$
\begin{aligned}
& \gamma=\frac{1}{\sin 2 \theta}(-\gamma \neq) \frac{d \theta}{d \gamma}\left(1+\sin ^{2} \theta\right) \\
& \frac{1}{\gamma} d r=-\left(\frac{1+\sin 2 \theta}{\sin 2 \theta}\right) d \theta \\
& -\frac{1}{r} d r=\left(-\frac{1}{\sin 2 \theta}+\frac{\operatorname{sen} f \theta}{2 \operatorname{sig} \theta \cos \theta}\right) d \theta \\
& -\frac{1}{r} d r=\left(\operatorname{cosec} 2 \theta+\frac{1}{2} \tan \theta\right) \cdot d \theta \\
& -\int \frac{1}{\gamma} d r=\int \operatorname{cosec} 2 \theta d \theta+\frac{1}{2} \int \tan \theta d \theta \\
& -\log r=\frac{\log (\operatorname{cosec} 2 \theta-\cot 2 \theta)}{2}+\frac{1}{2} \log (\sec \theta)+\log c \\
& -\log r-\log c=\frac{1}{2}[\log \cdot(\operatorname{cosec} 2 \theta-\cot 2 \theta)((\sec \theta)] . \\
& -2[\log r+\log c]=\log [(\operatorname{cosec} 2 \theta-\cot 2 \theta)(\sec \theta)] \\
& -2 \log (\gamma C)=\log (\operatorname{cosec} 2 \theta-\cot 2 \theta)(\sec \theta) \\
& \log (\gamma-c)^{-2}=\lg [(\operatorname{cosec} 2 \theta-\cot 2 \theta)[\sec \theta)] \\
& \frac{1}{\gamma^{2} c^{2}}=\left(\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}\right) \sec \theta: \\
& \frac{1}{\gamma^{2} c}=\left(\frac{1-\cos 2 \theta}{\operatorname{sen} 2 \theta}\right) \cdot \sec \theta . \\
& \frac{1}{r^{2}-c}=\frac{2 / \sin t \theta}{2 \sin \theta \cdot \cos \theta} \cdot \frac{1}{\cos \theta} . \\
& \frac{1}{\gamma^{2}}=c \cdot \sec \theta \cdot \tan \theta .
\end{aligned}
$$

(8) $r^{2}=a^{2} \sin 2 \theta$

Sol:-

$$
\begin{aligned}
\log r^{2} & =\log \left(a^{2} \cdot \operatorname{sen} 2 \theta\right) \\
2 \log r & =\log a^{2}+\log \sin 2 \theta \\
2 \log r & =2 \cdot \log a+\log \operatorname{sen} 2 \theta \\
d i f f & \omega \cdot a \cdot t o \theta^{\prime} \\
2 \cdot \frac{1}{r} \cdot \frac{d r}{d \theta} & =0+\frac{1}{\operatorname{sen} 2 \theta}(\cos 2 \theta) 2 . \\
\$ \cdot \frac{1}{r} \cdot \frac{d r}{d \theta} & =\cot 2 \theta \cdot \phi
\end{aligned}
$$

Replace $\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}$

$$
\begin{aligned}
\frac{1}{\gamma}(-r) \frac{d \theta}{d r} & =\cot 2 \theta \\
-\frac{1}{\cot 2 \theta} \cdot d \theta & =\frac{1}{r} d r \\
-\int \tan 2 \theta \cdot d \theta & =\int \frac{1}{r} d r \\
-\frac{\log (\sec 2 \theta)}{2} & =\log r+\log c \\
-\frac{1}{2} \log (\sec 2 \theta) & =\log r+\log c \\
\log (\sec 2 \theta)^{-1 / 2} & =\log / g(\operatorname{cc}-r) \\
\sec 2 \theta & =(\operatorname{cr} r)^{-2} \\
\sec 2 \theta & =\frac{1}{c^{2} r^{2}} \\
c \cdot \sec 2 \theta & =\frac{1}{r^{2}}
\end{aligned}
$$

(9) $r=a \cdot \cos ^{2} \theta$.

Solv $r=a \cdot \cos ^{2} \theta$.
diff. w. r. to ' σ '

$$
\begin{aligned}
\frac{d r}{d \theta} & =a \cdot 2 \cos \theta \cdot(-\sin \theta) \\
\frac{d r}{d \theta} & =a \cdot-(\sin 2 \theta) \\
a & =\frac{-1}{\sin 2 \theta} \cdot \frac{d r}{d \theta} .
\end{aligned}
$$

from (1),

$$
r=\frac{-1}{\sin 2 \theta} \frac{d r}{d \theta} \cdot \cos ^{2} \theta
$$

Replace $\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}$

$$
\begin{aligned}
& \gamma=\frac{-1}{\operatorname{sen} 2 \theta} \cdot(-r) \frac{d \theta}{d r}\left(\cos ^{2} \theta\right) \\
& \frac{1}{r} d r=\frac{\cos ^{2} \theta}{\sin 2 \theta} d \theta \\
& \frac{1}{r} d r=\frac{\cos \theta}{2 \operatorname{sen} \theta-\operatorname{cose}} d \theta \\
& \frac{1}{r} d r=\frac{1}{2} \cot \theta d \theta \\
& \int \frac{1}{r} d r=\frac{1}{2} \int \cot \theta d \theta \\
& \left.\log r=\frac{1}{2} \log \cdot \ln \theta\right)+\log c \\
& \log r-\log c=\frac{1}{2} \log (\sin \theta) \\
& 2 \log \left(\frac{r}{c}\right)=\log (\operatorname{sen} \theta) \\
& \operatorname{l\phi g} \frac{r^{2}}{c^{2}}=\operatorname{ldg}(\operatorname{sen} \theta) \\
& \\
& r^{2}=c-\sin \theta .
\end{aligned}
$$

(10) $r=2 a(\sin \theta+\cos \theta)$

Sol:-

$$
r=2 a(\sin \theta+\cos \theta) \rightarrow \text { (1) }
$$

diff. ω a. to ' θ '.

$$
\begin{aligned}
\frac{d r}{d \theta} & =2 a \cdot(\cos \theta-\sin \theta) \\
2 a & =\frac{1}{\cos \theta-\sin \theta} \cdot \frac{d r}{d \theta}
\end{aligned}
$$

from,

$$
\begin{aligned}
& r=\frac{1}{\cos \theta-\sin \theta} \cdot \frac{d r}{d \theta}(\sin \theta+\cos \theta) \\
& \text { Replace } \frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r} \text {. } \\
& \gamma=\frac{1}{\cos \theta-\sin \theta}(-r f) \frac{d \theta}{d r}(\sin \theta+\cos \theta) \\
& \frac{1}{r} d r=\frac{f(\sin \theta+\cos \theta)}{f(-\cos \theta+\sin \theta)} d \theta \\
& \int \frac{1}{r} d r=\int \frac{\sin \theta+\cos \theta}{-\cos \theta+\sin \theta} \cdot d \theta \text {. } \\
& \log r=\log (\operatorname{sen} \theta-\cos \theta)+\log c \text {. } \\
& \log r=\log (\operatorname{sen} \theta-\cos \theta) \cdot c \\
& r=c \cdot(\operatorname{sen} \theta-\cos \theta) \text {. }
\end{aligned}
$$

$10 / 10$ Law of Natural Prexy: Growth:
(4) In a certain culture of bacteria, the rate of increases is proportional to the number present.
(a) If it is found that the number doubles in u hrs, How many may expected at the end of 12 hrs .
sol:-
We have, $\quad y=c \cdot e^{k t}$
Initially $t=0$ and $y=y_{0}$
from 0 ,

$$
\begin{align*}
y_{0} & =c \cdot e^{k(0)} \\
& =c \cdot e^{0} \\
y_{0} & =c(1) \\
c & =y_{0} \\
y & =y_{0} e^{k t} \tag{2}
\end{align*}
$$

$t=4 \mathrm{hrs}$ and $y=2 y_{0}$

$$
\begin{align*}
& 2 y_{0}=y / e^{k(4)} \\
& e^{4 k}=2 . \\
& u k=\log 2 . \\
& k=\frac{1}{4} \cdot \log 2 \\
& k=0.17329 . \\
& y=y_{0} e^{(0.17329) t} \tag{3}
\end{align*}
$$

And also $t=12, y=$?

$$
\begin{aligned}
& y=y_{0} e^{(0.17329) 12} \\
& y=y_{0}(8.0003076) \\
& y=8 y_{0}
\end{aligned}
$$

Sol
We have $y=c e^{k t} \rightarrow$ (1)
Initially $t=0$ and $y=y_{0}$
from 1 ,

$$
\begin{align*}
y_{0} & \left.=c \cdot e^{k / 0}\right) \\
& =c \cdot e^{0} \\
y_{0} & =c(u \\
\Rightarrow c & =y_{0} \\
y & =y_{0} e^{k t} \tag{2}
\end{align*}
$$

$t=5 \mathrm{hrs}$ and $y^{\prime}=3 y_{0}$.

$$
\begin{align*}
3 y_{0} & =y_{0} e^{k(5)} \\
e^{5 k} & =3 \\
5 k & =\log 3 \\
k & =\frac{1}{5} \cdot \log 3 \\
k & =0.21972 \\
y & =y_{0} \cdot e^{(0.21972) t} \tag{3}
\end{align*}
$$

(a)

And also $t=10 \mathrm{hrs}$ and $y=$?

$$
\begin{aligned}
& y=y_{0} e^{(0.21972) 10} \\
& y=y_{0}(8.999778807) \\
& y=9 y_{0}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t=2 \text { and } \quad y=10 y_{0} \\
& 10 y_{0}=y / e^{(0.21972) k} \\
& (0.21972) k \\
& e^{(0.21972) t}=10 \\
& t=\frac{1}{0.21972} \log 10 \\
& t=10.4796335 \\
& t=10.48 . \\
& \text { hrs. } \\
& t=11 \text { marta }
\end{aligned}
$$

(10) The rate of at which the bacteria multiply is proportional to the instataneous number present. If the original number doubles in 2 hrs . In how many hours will it triple.

Sold We have $y=c e^{K t} \rightarrow$ (1)
Initially $t=0$ and $y=y_{0}$.
from (1),

$$
\begin{align*}
y_{0} & =c e^{k(0)} \\
& =c e^{0} \\
y_{0} & =c(1) \\
\Rightarrow c & =y_{0} \\
y & =y_{0} e^{k t} \rightarrow \tag{2}
\end{align*}
$$

$t=2$ hrs and $y=2 y_{0}$.

$$
\begin{aligned}
2 y_{0} & =y_{0}=e^{k(2)} \\
e^{2 k} & =2 \\
2 k & =\log 2 \\
k & =\frac{1}{2} \log 2 \\
k & =0.34657 \\
K & =0.3466
\end{aligned}
$$

$$
\begin{equation*}
y=y_{0} \cdot e^{(0.3466) t} \tag{3}
\end{equation*}
$$

And also $t=? \quad y=3 y_{0}$.

$$
\begin{aligned}
& 3 \mu_{0}=y_{0} e^{(0.3466) t} \\
&(0.3486) t=3 \\
& e^{(0.3466) t}=\log 3 \\
& t=\frac{1}{0.3466} \log 3 \\
& t=3.169683 \\
& t \cong 3 \text { hrs. }
\end{aligned}
$$

* The world population at the begining 1970 billion. 3.6 bill. (a) The weight of the earth is 6.586×10^{21} tones. If the population continuous to increase Exponentially with a growth constant $k=0.02$ and with time measure in years, In what year did the weight of the people equal to the weight of the earth, If we assume that the average person weight is 120 found.
* In a certain chemical reaction the rate of conversion (b) of a substance, at time ' t ' es proportional to the quantity of the substancestill untransformed at that instant. At the end of ' 1 ' hour 60 grams remain and at the end of ' 4 ' hours ' 21 grams. How many grams of the $2^{\text {st }}$ substance was their fritially.

Sol:- Weave by law of natural growth

$$
\begin{equation*}
y=c \cdot e^{k t} \tag{1}
\end{equation*}
$$

Initially $t=0$ and $y=3.6 \times 10^{9}$

$$
\begin{align*}
3.6 \times 10^{9} & =c \cdot e^{d k(0)} \\
3.6 \times 10^{9} & =c e^{(0)} \\
c & =3.6 \times 10^{9} \\
y & =3.6 \times 10^{9} e^{k t} \tag{2}
\end{align*}
$$

Given that $k=0.02$.

$$
\begin{equation*}
y=3.6 \times 10^{9} e^{(0.02) t} \tag{3}
\end{equation*}
$$

Weight of the earth 6.586×10^{21} tons
weight of the people $3.6 \times 109 e^{(0.02) t} \times 120$ pound es

$$
(1 \text { ton }=2240 \text { pounds })
$$

weight of the earth $6.586 \times 10^{21} \times 2240$. pounds.
weight of the people $=$ weight of the easts

$$
\begin{aligned}
5.6 \times 10^{9} e^{(0.02) \cdot t} \times 120 & =6.586 \times 10^{21} \times 2240 \\
e^{(0.02) t} & =\frac{6.586 \times 10^{211} \times 2244}{3.6 \times 10^{1} \times 124} \\
& =\frac{6.586 \times 10^{12} \times 224}{43.2}=\frac{1.475264 \times 10^{1 / 3}}{43.2} \\
e^{(0.02) t} & =3.414962963 \times 10^{2} \\
(0.02) t & =\log =\left(3.414962963 \times 10^{13}\right) \\
(0.02) t & =31.161 .77286 \\
t & =\frac{31.16177286}{0.02} \\
t & =1558.088643 \\
t & =18 . \\
& =3528
\end{aligned}
$$

The rate of the population and weight of the earth ale equal.
1.

We have $y=c \cdot e^{k t} \rightarrow$ (1)
Initially $t=0$ and $y=100$

$$
\text { from (1), } \begin{aligned}
100 & =c \cdot e^{k(0)} \\
& =c \cdot e^{0} \\
& =c(1) \\
\Rightarrow(& C=100)
\end{aligned}
$$

$$
\begin{array}{r}
y=100 \cdot e^{k t} \rightarrow(2) \\
t=1 \quad \text { and } y=332 \\
332=100 \cdot e^{k(1)} \\
e^{k}=\frac{332}{100} \\
e^{k}=3.32 \\
k=\log (3.32) \\
k=1.19996 \\
y=100 \cdot e^{(1.19996) t} \tag{3}
\end{array}
$$

And also $t=1 \frac{1}{2}$ hour and $y=$?

$$
\begin{aligned}
& y=100 e^{(1.19996) 1.5} \\
& y=100 \times 6.04 .92 \\
& y=604.92 \approx 605 .
\end{aligned}
$$

(2)

We have $y=c \cdot e^{k t}$
Initially $t=0$ and $y=y_{0}$

$$
\begin{aligned}
y_{0} & =c e^{k(0)} \\
& =c \cdot e^{0} \\
y_{0} & =c(1) \\
c & =y_{0}
\end{aligned}
$$

from (1),

$$
\begin{equation*}
y=y_{0} e^{k t} \tag{2}
\end{equation*}
$$

$t=2$ and $y=2 y_{0}$

$$
\begin{aligned}
& 2 y_{0}=y_{0} e^{k(2)} \\
& e^{2 k}=2 \\
& 2 k=\log 2 \\
& k=\frac{1}{2} \log 2
\end{aligned}
$$

$$
\begin{gather*}
y \neq y_{0} \cdot l \\
y=0.34657) \\
y=y_{0} \cdot e^{(0.34657) t} \tag{3}
\end{gather*}
$$

A And also $t=8$ and $y=$?

$$
\begin{aligned}
& y=y_{0} \cdot e^{(0.34657) 8} \\
& y=y_{0}(15.9995) \\
& y \cong 16 y_{0}
\end{aligned}
$$

Find also $t=$? and $y=8 y_{0}$.

$$
\begin{aligned}
& 8 y_{0}^{\prime}=y / e^{(0.34657) t} \\
&(0.34657) t=8 \\
&(0.34657) t=\log 8 \\
& t=\frac{1}{0.34657} \log 8 \\
& t=6.00006 \times 2157 \\
& t \cong 6.1 \\
& t \cong 6 \text { houses }
\end{aligned}
$$

(5)

We have $y=c e^{k t}$
Initially $t=0$ and $y=y_{0}$

$$
\begin{aligned}
& y_{0}=c e^{k(0)} \\
&=c \cdot e^{0} \\
&=c(1) \\
& \Rightarrow c=y_{0}
\end{aligned}
$$

from (1),

$$
\begin{equation*}
y=y_{0} e^{k t} \tag{2}
\end{equation*}
$$

$t=50$ and $y=2 y_{0}$

$$
2 y 6=46 \cdot e^{0}
$$

$$
\begin{align*}
e^{k(50)} & =2 \\
k(50) & =\log 2 \\
k & =\frac{1}{50} \log 2 \\
k & =0.01386 \\
y & =y_{0} e^{(0.01386) t} \tag{3}
\end{align*}
$$

And also $t=$? and $y=3 y_{0}$.

$$
\begin{aligned}
& 3 y_{0}=9 / \cdot e^{(0.01386) t} \\
& e^{(0.01386) t}=3 \\
& (0.01386) t=\log 3 \\
& t=\frac{1}{0.01386} \cdot \log 3 \\
& t=79.2649 \\
& t \cong 79 \text { years }
\end{aligned}
$$

(5)

We have $y=c e^{k t} \rightarrow$ (1)
Initially $t=0$ and $y=y_{0}$

$$
\begin{aligned}
y_{0} & =c e^{k(0)} \\
& =c \cdot e^{0} \\
& =c \cdot(1) \\
c & =40
\end{aligned}
$$

from (1),

$$
\begin{equation*}
y=y_{0} e^{k t} \tag{2}
\end{equation*}
$$

And $t=3$. and $y=2 y_{0}$.

$$
\begin{aligned}
& 2 y / 0=y / e^{k(3)} \\
& e^{K(3)}=2 \\
& K(3)=\log 2 \\
& K=\frac{1}{3} \log 2 \\
& K=0.23104
\end{aligned}
$$

$$
\begin{align*}
& y=y_{0} \cdot e^{(0.23104) t} \rightarrow 0 \tag{3}\\
& t=15 \text { and } y=? \\
& y=y_{0} \cdot e^{(0.23104) 15} \\
& y=31.99565 y_{0} \\
& y \cong 32 y_{0}
\end{align*}
$$

And also $t=15$ and $y=$?
(9)

We have $y=c \cdot e^{k t} \rightarrow$ (1)
Initially, $t=0$ and $y=100$.

$$
\begin{aligned}
& 100=c e^{k(\theta)} \\
& 100=c \cdot e^{(0)} \\
& 100=c \cdot(1) \\
& c=100
\end{aligned}
$$

from (1),

$$
\begin{equation*}
y=100 e^{k t} \tag{2}
\end{equation*}
$$

And $t=12$ hours and $y=400$.

$$
\begin{align*}
& 4 \phi \phi=1 \phi \phi \cdot e^{k(12)} \\
& e^{k(12)}=4 \\
& k(12)=\log 4 \\
& k=\frac{1}{12} \log 4 \\
& k=0.115524 \\
& y=100 e^{(0.45524) t} \tag{3}
\end{align*}
$$

And also $t=3$ and $y=$?

$$
\begin{aligned}
& y=100 e^{(0.115524) 3} \\
& y=100 \times 1.41421 \\
& y=141.421 \Rightarrow y \approx 141
\end{aligned}
$$

Law of Natural Decay:
(4)

We have the law of natural decay is $\quad y=c e^{-k t}$
Initially $t=0, y=y_{0}$

$$
\begin{align*}
& y_{0}=c e^{-k(6)} \\
& y_{0}=c e^{(0)} \\
& y_{0}=c(1) \\
& \Rightarrow E y_{0} \\
& y=y_{0} e^{-k t} \rightarrow(2) \tag{2}\\
& t=1500 \text { and } y=\frac{y_{0}}{2} \\
& \frac{y_{0}}{2}=y_{6} e^{-k(1500)} \\
& \frac{1}{2}=e^{-k(1500)} \\
& e^{-k(1500)}=0.5 \\
&-k(1500)=\log (0.5) \\
& k=\frac{-1}{1500} \operatorname{log(0.5)} \\
& k=-c-0.620981204 \times(0 .-4) \\
& k=0.0004620981204 \\
& k=0.000462 \\
& y=y_{0} e^{-(0.000462) t} \rightarrow(3) \tag{3}
\end{align*}
$$

(a) $t=4500$ and $y=$?

$$
\begin{aligned}
& y=y_{0} e^{-(0.000462)(4500)} \\
& y=y_{0}(-0.125055204) \\
& y=0.125 y_{0} \\
& y=12.5 y_{0}
\end{aligned}
$$

(b) $t=$? and $y=\frac{1}{10} y_{0}$:

$$
\begin{aligned}
& \text { ? and } \left.\quad y=\frac{-1}{10} y_{0} .462\right) t \\
& \frac{1}{10} y_{0}=y_{0} \cdot e^{-(0.000462} \\
& \begin{aligned}
& e^{-(0.000462) t}=0.1 \\
&-(0.000462) t \log 0.1 \\
& t=\frac{-1}{0.000462} \log (0.1) \\
&=-(-4983.950418) \\
&=4983.950418 \\
& t \cong 4984
\end{aligned}
\end{aligned}
$$

(1) In a chemical reaction the rate of conversion of a substance at time ' t ' is proportional to

By law of natural decay,
we have $y=c e^{-k t}$
Initially $t=0$ and $y=y_{0}$.

$$
\begin{align*}
y_{0} & =c e^{-k(0)} \\
& =c \cdot e^{(0)} \\
y_{0} & =c(1) \\
\Rightarrow c & =y_{0} \\
y & =y_{0} e^{-k t} \tag{2}
\end{align*}
$$

And $t=1$ and $y=60$ grams
rust

$$
\begin{align*}
& 60=y_{0} e^{-k(1)} \\
& 60=y_{0} \cdot e^{-k} \tag{3}
\end{align*}
$$

And also $t=4$ and $y=21$ geans

$$
\begin{align*}
& 21=y_{0} e^{-k(4)} \\
& 21=y_{0} \cdot e^{-4 k} \tag{4}
\end{align*}
$$

divide (3)/(4)

$$
\begin{aligned}
\Rightarrow \frac{y_{0} \cdot e^{*}}{y_{0} \cdot e^{-x} k} & =\frac{60^{20}}{24} 7 \\
\frac{1}{e^{-3 K}} & =\frac{20}{7}
\end{aligned}
$$

$$
\begin{aligned}
e^{3 k} & =\frac{20}{7} \\
e^{3 k} & =2.857142857 \\
3 k & =\log (2.857) \\
k & =\frac{1}{3} \log (2.857) \\
k & =0.349924 \\
k & =0.3499
\end{aligned}
$$

sub ' k ' value in equn(3).
from (3),

$$
\begin{aligned}
& 60=y_{0} e^{-k} \\
& 60=y_{0} e^{-(0.3499)} \\
& y_{0}=\frac{1}{e^{-(0.3499)}} \\
& y_{0}=e^{(0.3499)} 60 \\
& y_{0}=85.1355 \\
& y_{0} \cong 85 \text { grams. }
\end{aligned}
$$

- If 30% of a radio active substance disappear in to days. How long will it take for 90% of its to disappear.
lr (We have $y=c e^{-k t} \rightarrow$ (i)
Initially $t=0$ and $y=y_{0}$

$$
\begin{align*}
y_{0} & =c e^{-k(0)} \\
& =c \cdot e^{(0)} \\
& =c(1) \\
\Rightarrow c & =y_{0} \\
y & =y_{0} e^{-k t} \tag{2}
\end{align*}
$$

find $t=10$ and $y=70 \%$.

$$
\begin{aligned}
& =\frac{70}{100} y_{0} \\
& \frac{70}{100} y_{0}=y_{\phi} e^{-k(10)} \\
& e^{-10 k}=0.7
\end{aligned}
$$

$$
\begin{align*}
-10 K & =\log 0.7 \\
K & =\frac{-1}{10} \log (0.7) \\
K & =0.035667494 \\
K & =0.0357 \\
y & =y_{0} \cdot e^{-(0.0357) t} \rightarrow \tag{3}
\end{align*}
$$

And also $t=$? and $y=10 \% y_{0}$.

$$
\begin{aligned}
&=\frac{10}{100} y_{0} \\
&=\frac{10}{16 \phi} y_{0}=40 e^{-(0.0357) t} \\
& e^{-(0.0357) t}=0.1 \\
&-(0.0357) t=\log 0.1 \\
& t=\frac{-1}{0.0357} \log (0.1) \\
&=-(-64.49818188) \\
& t=64.5 \\
& t \cong 64 . \text { days }
\end{aligned}
$$

(3) Find the half-life of uranium, which disentigrates at a rate proportional to the amount present at any instant given that m_{1} and m_{2} gleams of Uranium are present at t_{1} and t_{2} respectively.
solve
wharve $y=c e^{-k t}$
Initially $t=0, y=M$.

$$
\begin{align*}
M & =c e^{-k(0)} \\
& =c \cdot e^{f(0)} \\
M & =C \cdot(1) \\
C & =M \\
y & =M \cdot e^{-k t} \tag{2}
\end{align*}
$$

And $t=t_{1}$ and $y=m_{1}, t=t_{2}$ and $y=m_{2}$

$$
\begin{align*}
& m_{1}=M e^{-K t_{1}} \tag{3}\\
& m_{2}=M e^{-K t_{2}} \tag{4}\\
& \text { (3) } \Rightarrow \frac{D M e^{-K t_{1}}}{\Delta X e^{-K t_{2}}}=\frac{m_{1}}{m_{2}} \\
& \frac{e^{-k t_{1}}}{e^{-k t_{2}}}=\frac{m_{1}}{m_{2}} \\
& e^{-k t_{1}} \cdot e^{+k t_{2}}=\frac{m_{1}}{m_{2}} \\
& e^{k t_{2}-k t_{1}}=\frac{m_{1}}{m_{2}} \\
& e^{k\left(t_{2}-t_{1}\right)}=\frac{m_{1}}{m_{2}} \\
& k\left(t_{2}-t_{1}\right)=\log \frac{m_{1}}{m_{2}} \\
& K=\frac{1}{t_{2}-t_{1}} \cdot \log \frac{m_{1}}{m_{2}}
\end{align*}
$$

sub ' k ' in equn (2).

$$
y=M \cdot e^{\left.-\left(\frac{1}{t_{2}-t}\right) \log \frac{m_{1}}{m_{2}}\right] t}
$$

$$
\begin{aligned}
t & =\frac{\left(t_{1}-t_{2}\right) \log \left(\frac{1}{2}\right)}{\log \frac{m_{1}}{m_{2}}} \\
t & =\frac{\left(t_{1}-t_{2}\right) \log (1)-\log (2)}{\log \frac{m_{1}}{m_{2}}} \\
& =\frac{\left(t_{1}-t_{2}\right)(0-\log 2)}{\log \frac{m_{1}}{m_{2}}} \\
& =\frac{\left(t_{1}-t_{2}\right)(-\log 2)}{\log \frac{m_{1}}{m_{2}}} \\
& =\frac{\left(t_{2}-t_{1}\right) \log 2}{\log \frac{m_{1}}{m_{2}}}
\end{aligned}
$$

(2)

We have, $y=a e^{-k t} \rightarrow$ (1)
Initially $t=0$ and $y=y_{0}$.

$$
\begin{align*}
y_{0} & =c e^{-k(0)} \\
y_{0} & =c e^{(0)} \\
& =c(1) \\
\Rightarrow c & =y_{0} \\
y & =y_{0} e^{-k t} \tag{2}
\end{align*}
$$

(5) use have $y=c e^{-k t} \rightarrow(1)$

Initially $t=0$ and $y=10$.

$$
\begin{align*}
10 & =c \cdot e^{-k(0)} \\
10 & =c e^{(0)} \\
& =c(1) \\
\Rightarrow & c=10 \\
y & =10 e^{-k t} \rightarrow \tag{2}
\end{align*}
$$

and $t=1$ and $y=0.051$

$$
\begin{align*}
& 0.051=10 e^{-k(1)} \\
& \frac{0.051}{10}=e^{-k} \\
&-k=\log \left(\frac{0.051}{10}\right) \\
& k=-\log \left(\frac{0.051}{10}\right) \\
& k=-(-5.278514739) \\
& k=5.279 \\
& y=10 e^{-(5.279) t} \tag{3}
\end{align*}
$$

And also $\quad y=5$ and $t=$?

$$
\begin{aligned}
& \phi=10^{2} \cdot e^{-(5.279) t} \\
& 1 / 2=e^{-(5.27 .9) t}
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2=e^{-(5.279) t} \\
& e^{-(5.279) t}=1 / 2 \\
& -(5.279) t \\
& =\log (1 / 2) \\
& t
\end{aligned}=\frac{-1}{5.279} \log (1 / 2) \quad \begin{aligned}
t & =-(-0.131302743) \\
t & =0.1313
\end{aligned}
$$

(2).
(3)

By Newton's Law of cooling, we have $T=T_{A}+C \cdot e^{-k t}$
Initially $t=0, T=100^{\circ} \mathrm{C}$ and $T_{A}=40^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 100=40+c e^{-k(0)} \\
& 100-40=c e^{(0)} \\
& 60=c(1) \\
& \Rightarrow c=60
\end{aligned}
$$

frome:

$$
\begin{align*}
t=4 & =40+60 e^{-K t} \\
t T & =60 \tag{2}\\
60 & =40+60 e^{-k(4)} \\
60-40 & =60 \cdot e^{-4 k} \\
k \phi & =\phi^{3} e^{-4 k} \\
\frac{1}{3} & =e^{-4 k} \\
-4 k & =\log \frac{1}{3} \\
K & =\frac{-1}{4} \log \frac{1}{3}
\end{align*}
$$

$$
\begin{align*}
K= & -\frac{1}{4} \cdot \log (0.33) \\
K & =-(-0.277 .165656) \\
K & =0.2772 \\
T=40 & +60 e^{-.(0.2772) t} \rightarrow(3) \tag{3}
\end{align*}
$$

And also $t=$? $T=50$

$$
\begin{aligned}
& 50=40+60 e^{-(0.2772) t} \\
& 1 \phi=6 \phi e^{-(0.2772) t} \\
& \frac{1}{6}=e^{-(0.27 .72) t} \\
& -(0.2772) t=\log 1 / 6 \\
& t=\frac{-1}{0.27 .72} \log (1 / 6) \\
& t=-(-6.9+1044.242) \\
& t=7 \mathrm{~min}
\end{aligned}
$$

)
By Newton's Law, of Cooling, we have $T=T_{A}+C e^{-k t}$
Initially $t=0, T=370 \mathrm{~K}$ and $T_{A}=300 \mathrm{~K}$.

$$
\begin{aligned}
& 370=300+c e^{-k(0)} \\
& 70=c e^{(0)} \\
& 70=c(1) \\
& c=70
\end{aligned}
$$

from 0 ,

$$
\begin{equation*}
T=300+70 e^{-K t} \tag{2}
\end{equation*}
$$

And $t=15 \mathrm{~min}, T=340 \mathrm{~K}$

$$
\begin{aligned}
& 340=300+70 e^{-k(15)} \\
& 4 \phi=7 \phi e^{-15 k} \\
& 4 / 7=e^{-15 k} \\
& -15 K=\log 4 / 7 \\
& K=\frac{-1}{15} \log (0.6)
\end{aligned}
$$

$$
\begin{aligned}
& K=0.03,9, \quad K=0.0373
\end{aligned}
$$

$$
\begin{equation*}
T=300+70 e^{-(0.0373) t} \tag{3}
\end{equation*}
$$

And also $t=$? and $T=310 \mathrm{~K}$

$$
\begin{aligned}
& 310=300+70 e^{-(0.0373) t} \\
& 1 \phi=7 \phi e^{-(0.0373) t} \\
&-(0.0373) t=\log (1 / 7) \\
& t=\frac{-1}{0.0373} \log (1 / 9) \\
& t=-(-52.169(729) \\
& t \cong 52 \mathrm{~min} .
\end{aligned}
$$

(7)

By Necuton's Law of Cooling, we have $T=T_{A}+c e^{-k t^{\prime}} \rightarrow 0$

Initially $t=0, T=1.00^{\circ} \mathrm{C}$ and $T_{A}=25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 100=25+c e^{-k(0)} \\
& 75=c e^{(0)} \\
& 75=c(1) \\
& c=75
\end{aligned}
$$

from (1)

$$
\begin{align*}
& T=25+75 e^{-k t} \tag{2}\\
& \text { and } T=80^{\circ} \mathrm{C}
\end{align*}
$$

$$
t=10 \text { and } T=80^{\circ} \mathrm{C}
$$

$$
80=25+75 e^{-k(10)}
$$

$$
80-25=75 e^{-10 k}
$$

$$
\frac{11}{55}=75 e^{-10 k}
$$

$$
e^{-11 / 15}=e^{-10 k}
$$

$$
-10 k=\log 11 / 15
$$

$$
k=\frac{-1}{10} \log (11 / 15)
$$

$$
k=-(-0.031015492)
$$

$$
K=0.031
$$

$$
\begin{equation*}
T=25+75 e^{-(0.031) t} \tag{3}
\end{equation*}
$$

(i) $t=20$ and $T=$?

$$
\begin{aligned}
& T=25+75 e^{-(0.031) 20} \\
& T=25+75 \cdot(\cdot 0.537944487) \\
& T=25+2840 \cdot 34583282 \\
& T=25+40.346 \\
& T=65 \cdot 346 \\
& T \cong 65^{\circ} \mathrm{C}
\end{aligned}
$$

(ii) $t=$? and $T=40^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 40=25+75 e^{-(0.031) t} \\
& 18=75 e^{-(0.031) t} \\
& 1 / 5=e^{-(0.031) t} \\
&-(0.031) t=\log (1 / 5) \\
& t=\frac{-1}{0.031} \log (1 / 5) \\
& t=-(-51.9 t 7352-01) \\
& t \cong 52 \mathrm{~min}
\end{aligned}
$$

(8)

By Newton's Law of Cooling, we have $T=T_{A}+C e^{-k t} \rightarrow$ (1)
Intt-pally $t=0, T=80^{\circ} \mathrm{C}$ and $T_{A}=30^{\circ} \mathrm{C}$.

$$
\begin{align*}
80 & =30^{\prime}+c e^{-k(0)} \\
50 & =c e^{(0)} \\
50 & =c(1) \\
\Rightarrow c & =50 \tag{2}
\end{align*}
$$

Fromal $T=30+50 e^{-k t}$
and $t=12, T=60^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 60=30+50 e^{-k(12)} \\
& 60-30=50 e^{-k(12)} \\
& 3 \phi=5 \phi e^{-12 k}
\end{aligned}
$$

$$
\begin{aligned}
& 3 / 5=e^{-12 K} \\
& -12 K=\log 3 / 5 \\
& K=\frac{-1}{12} \log 3 / 5
\end{aligned}
$$

(1) By Newton's Law of cooling, we have $T=T A+C e^{-K t} \rightarrow(1)$ Initially $t=0, T=100^{\circ} \mathrm{C}$ and $T_{A}=20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 1000=20+c e^{-k(0)} \\
& 100-20=c e^{-(0)} \\
& 80=c \cdot(1) \\
& \Rightarrow C=80
\end{aligned}
$$

from θ,

$$
\begin{equation*}
T=20+80 e^{-k t} \tag{2}
\end{equation*}
$$

And $t=10, T=25^{\circ} \mathrm{C}$

$$
\left.\begin{array}{rl}
25=20 & +80 e^{-k(10)} \\
25-20 & =80 e^{-10 k} \\
8 & =80 e^{-10 k} \\
\frac{1}{16} & =e^{-10 k} \\
-10 k & =\log (1 / 16) \\
K & =\frac{-1}{10} \log (1 / 16) \\
K & =-(-0.277258872) \\
K & =0.28
\end{array}\right]=\text { (3) }
$$

And also $t=1 / 2^{(0.5)}$ and $T=$?

$$
\begin{aligned}
& T=20+80 e^{-(0.28)(0.5)} \\
& T=20+80 \times 0.869358235 \\
& T=20+69.54865883 \\
& T=20+69 \\
& T \cong 89^{\circ} \mathrm{C}
\end{aligned}
$$

(2) By Newton's Law of cooling, we have, $T=T_{A}+c e^{-k t}$

Initially $t=0, T=75^{\circ} \mathrm{C}$ and $T_{n}=25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 75=25+c e^{-k(0)} \\
& 75-25=c \cdot e^{(0)} \\
& 50=c(1) \\
& \Rightarrow c=50
\end{aligned}
$$

from (1),

$$
T=25+50 e^{-k t}
$$

$$
\begin{aligned}
t=10 \mathrm{~min}, \cdot T & =65^{\circ} \mathrm{C} \\
65=25 & +50 e^{-k(10)} \\
65-25 & =50 e^{-10 K} \\
4 \phi & =5 \phi e^{-10 k} \\
-10 K & =\log (4 / 5) \\
K & =\frac{-1}{10} \log (4 / 5) \\
K & =-(-0.022314355) \\
K & =0.0223
\end{aligned}
$$

$$
\begin{equation*}
T=25+50 e^{-(0.0223) t} \tag{3}
\end{equation*}
$$

And also $t=20 \mathrm{~min}, T=$?

$$
\begin{aligned}
& T=25+50 e^{-(0.0223) 20} \\
& T=25+32 \cdot 0091886 \\
& T=25+32 \\
& T \cong 57
\end{aligned}
$$

Find also

$$
\begin{aligned}
& t=? \text { and } T=55 .^{\circ} \mathrm{C} \\
& 55=25+50 e^{-(0.0223) t} \\
& 55-25=50 e^{-(0.0223) t} \\
& 3 \phi=5 \phi e^{-(0.0223) t} \\
& t=\frac{-1}{0.0223} \log (3 / 5) \\
&=-c-22.90697864) \\
& t \cong 23
\end{aligned}
$$

(5) By Newton's Law of Cooling. we have $T=T_{A}+c e^{-k t}$
Initially $t=0, T=100^{\circ} \mathrm{C}, T_{A}=20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 100=20+c e^{-k(0)} \\
& 100-20=c e^{(0)} \\
& 80=c(1) \\
& \Rightarrow c=80
\end{aligned}
$$

from(10

$$
\begin{equation*}
T=20+80 e^{-K t} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& t=1 \min , T=60^{\circ} \mathrm{C} \\
& 60=20+80 e^{-k(1)} \\
& 60-20=80 e^{-k} \\
& 4 \phi=8 \phi e^{-k} \\
& 1 / 2=e^{-k} \\
& -k=\log (1 / 2) \\
& k=-\log (1 / 2) \\
& k=-(-0.69314718) \\
& k=0.693 \\
& T=20+80 e^{-(0.693) t} \rightarrow \text { (3) } \tag{3}
\end{align*}
$$

And also $t=2 \mathrm{~min}$ and $T=$?

$$
\begin{aligned}
& T=20+80 e^{-(0.693) 2} \\
& T=20+20.00588809 \\
& T=20+20 \\
& T \cong 40
\end{aligned}
$$

(G) By Newton's Law of Cooling, we have $T=T_{A}+C e^{-k t} \rightarrow$ (1)

Initially $t=0, T=100^{\circ} \mathrm{C}$ and $T_{A}=30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 100=30+c e^{-k(0)} \\
& 100-30=c \cdot e^{(0)} \\
& 70=c(1) \\
& 1 c=70
\end{aligned}
$$

$$
\begin{equation*}
\text { from(1) } T=30+70 e^{-k t} \tag{2}
\end{equation*}
$$

$t=10 \mathrm{~min}, T=80^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 80=30+70 e^{-k(10)} \\
& 80-30=70 e^{-10 k} \\
& 5 \phi=7 \varnothing e^{-10 k} \\
& e^{-10 k}=58 \\
& -10 k=\log (5 / 7) \\
& k=\frac{-1}{10} \log (5 / 7) \\
& k=-(-0.033647223) \\
& K=0.034
\end{aligned}
$$

$$
\begin{equation*}
T=30+70 e^{-(0.034) t} \tag{3}
\end{equation*}
$$

And also $t=$? and $T=40^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 40=30+70 e^{-(0.034) t} \\
& 1 \phi=7 \phi e^{-(0.034) t} \\
& e^{-(0.034) t}=(1 / 7) \\
& -(0.034) t=\log (1 / 7) \\
& t=\frac{-1}{0.034} \log (1 / 7) \\
& t=-(-57.23265144) \\
& t \cong 5.7
\end{aligned}
$$

(9) By Newton's Law of Cooling, we have $T=T_{A}+C e^{-K t} \rightarrow$ (1)
Initially $t=0, T=100, T_{A}=15^{\circ} \mathrm{C}$.

$$
\begin{align*}
& 100=15+c e^{-k(0)} \\
& 85=c e^{(0)} \\
& 85=c(1) \\
& \Rightarrow C=85 \\
& T=15+8.5 e^{-k t} \tag{2}
\end{align*}
$$

$t=5 \mathrm{~min}, T=60^{\circ} \mathrm{C}$

$$
\begin{align*}
60 & =15+85 e^{-k(5)} \\
45 & =85 e^{-5 k} \\
e^{-5 k} & =\frac{45}{85} \\
e^{-5 k} & =0.529411764 \\
e^{-5 k} & =0.53 \\
-5 k & =\log (0.53) \\
k & =\frac{-1}{5} \log (0.53) \\
k & =-C-0.1269756549) \\
k & =0.13 \\
T & =15+85 e^{-(0.13) t} \rightarrow(3) \tag{3}
\end{align*}
$$

And also $t=5, T=$?

$$
\begin{aligned}
& T=15+8.5 e^{-(0.13) 5} \\
& T=15+44.37389102 \\
& T=15+44 \\
& T \cong 59 .
\end{aligned}
$$

(10) By Newton's Law of Cooling, we have $T=T_{A}+C e^{-K t} \rightarrow$ (1) Initially $t=0, T=110^{\circ} \mathrm{C}, T A=10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 110=10+c e^{-k(0)} \\
& 100=c e^{(0)} \\
& 100=c(1) \\
& c=100
\end{aligned}
$$

frome:

$$
\begin{align*}
& T=10+100 e^{-k t} \rightarrow \tag{2}\\
& r \quad, T=60^{\circ} \mathrm{c} \\
& 60=10+100 e^{-k(1)} \\
& \$ \phi=1^{2} \phi e^{-k} \\
& e^{-k}=1 / 2
\end{align*}
$$

$$
t=1 \mathrm{hr} . \quad T=60^{\circ} \mathrm{C}
$$

$$
\begin{align*}
-k & =\log (1 / 2) \\
K & =-\log (1 / 2) \\
K & =-(-0.69314718) \\
K & =0.693 \\
T & =10+100 e^{-(0.693) t} \tag{3}
\end{align*}
$$

And also $t=$? $T=30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 30=10+100 e^{-(0.693) t} \\
& \$ \phi=10 \phi e^{-(0.693) t} \\
& 1 / 5=e^{-(0.693) t} \\
& -(0.693) t=\log (1 / 5) \\
& t=\frac{-1}{0.693} \log (1 / 5) \\
& t=-(-2.32242123) \\
& t \cong 2 \mathrm{hr}
\end{aligned}
$$

is 10 Electrical circuits:
(1) A constant electromotive force E volts is applied to a circuit containing a constant resistance ' R 'ohms in serfes and a constant inductance ' N ' henry's. If the initial current is ' 0 '. Show that the current builds up to half of its maximum in $\frac{L \log 2}{R} \mathrm{sec}$.
(2) A resistance of $100 \mathrm{ohm}^{\prime} \mathrm{s}$ and inductance of 0.5 henry are connected in a series with a battery of 20 Volts . Find the current in the circuit, if initially there is no current in the circuit.
(3) A voltage. $E e^{- \text {at }}$ is applied at $t=0$ to a circuit containing inductance ' L 'and resistance ' R '. Show that at any, time t is $\frac{E}{R-a l}\left(e^{-a t}-e^{-\frac{R}{L} t}\right)$.
(4) Solve the equi $L \frac{d i}{d t}+R_{i}=200 \cdot \cos (300 t)$. When $R=100$, $L=0.05$. and find ' i ': Given that $i=0$ when $t=0$, what value thus 'i 'approach after along time.
(1). By using Krientic of

By using Kirchoff's Law the eque of the LR circuit is $L \cdot \frac{d i}{d t}+R i=E$

$$
\begin{equation*}
\frac{d i}{d t}+\frac{R i}{L}=\frac{E}{L} \tag{1}
\end{equation*}
$$

equn (1) is on linear form $\frac{d y}{d x}+P y^{j}=Q$

IF

$$
\begin{aligned}
e^{\int P(t) d t} & =\frac{R}{L} \text { and } \\
& =e^{\int \frac{R}{L} d t} \\
& =e^{\frac{R}{L} \int(1) d t} \\
& =e^{\frac{R}{L} t}
\end{aligned}
$$

Now the solution of Equn(1) is

$$
\begin{aligned}
i \cdot e^{\frac{R}{L} t} & =\int \frac{E}{L} e^{\frac{R}{L} t}+C \\
& =\frac{E}{L} \int e^{\frac{R}{L} t}+c \\
& =\frac{E}{L} \frac{e^{\frac{R}{L} t}}{R / L}+C \\
q \cdot e^{\frac{R}{L} t} & =\frac{E}{R} e^{\frac{R}{L} t}+c \\
i \cdot e^{\frac{R}{L} t} & =e^{R / t}\left(\frac{E}{R}+c e^{-R / L t}\right) \\
i & =\frac{E}{R}+c e^{-\frac{R}{L} t}
\end{aligned}
$$

Initially $t=0$ and $i=0$

$$
\begin{aligned}
& 0=\frac{E}{R}+c \cdot e^{-\frac{R}{R}(0)} \\
&-\frac{E}{R}=c e^{(0)} \\
& \frac{-E}{R}=c(1) \\
& \Rightarrow C=\frac{-E}{R} \\
& i=\frac{E}{R}-\frac{E}{R} \cdot e^{-\frac{R}{L} t} \\
& i=\frac{E}{R}\left(1-e^{-R / L t}\right)
\end{aligned}
$$

Given that $i=\frac{1}{2} \frac{E}{R}, t=$?

$$
\begin{aligned}
& \frac{1}{2} \frac{E}{K}=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right) \\
& e^{-\frac{R}{L} t}=1-1 / 2 \\
& e^{-R / L t}=1 / 2 \\
& \frac{-R}{L} t=\log 1 / 2 \\
& t=\frac{-L}{R}(\log 1-\log 2) \\
& t=\frac{-L}{R}(0-\log 2) \\
& t=\frac{+L \log L}{R} \sec .
\end{aligned}
$$

(3) By using Kirchoff's Law the equn of the $L R$ circuit is $L \frac{d i}{d t}+R i=E$

$$
\frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L} e^{-a t} \rightarrow 0
$$

equn(1) is in linear form.

$$
\begin{aligned}
P=\frac{R}{L} & =\int^{\int P(t) d t} Q=\frac{E}{L} \\
= & e^{\int \frac{R}{L} d t} \\
= & e^{\frac{R}{L}} \iint(t) d t \\
& =e^{\frac{R}{L} t}
\end{aligned}
$$

Now the sol of $e^{n} n^{n}(1)$ is

$$
\begin{aligned}
i \cdot e^{\frac{R}{L} t} & =\int \frac{E}{R} e^{-k R R / L t}+C \\
& =\frac{R}{K} \frac{e^{R / L t}}{R / L}+C \\
& =\frac{E}{R} e^{R / L t}+C \\
i \cdot e^{R / L t} & =e^{R / L t}\left(\frac{E}{R}+C \cdot e^{-R / L t}\right) \\
& =\frac{E}{R}+C e^{-R / L t} \\
\text { initially } t & =0, \quad e=0 .
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{E}{R}+C \cdot e^{-\frac{R}{t}(0)} \\
& \frac{-E}{R}=C e^{(0)} \\
& \Rightarrow C=\frac{L E}{R} \\
& i=\frac{E}{R}-\frac{E}{R} e^{-R / L t} \\
& i=\frac{E}{R}\left(1-e^{-R / L t}\right)
\end{aligned}
$$

Given that

$$
\begin{aligned}
f \cdot e^{R / L t} & =\int \frac{E}{L} e^{-a t} \cdot e^{R / L t} d t+c \\
& =\frac{E}{L} \int e^{R / L-a t} d t+c \\
& =\frac{E}{L} \int e^{(R / L-a) t} d t+c \\
& =\frac{E}{L} \frac{(R / L-a) t}{(R / L-a)}+c \\
& =\frac{E}{V} \frac{e^{(R / L-a) t}\left(\frac{R-a L}{Y}\right)}{Y}+C \\
& =\frac{E}{R-a L} e^{(R / L-a) t} \\
& =\frac{E}{R-a L} e^{R / L} \cdot e^{-a t}+C \\
i \cdot e^{R / 1 t} & =e^{R / L t}\left[\frac{E}{R-a L} e^{-a t}+C \cdot e^{-R / L t}\right] \\
i & =\left[\frac{E}{R-a L} e^{-a t}+c \cdot e^{-R / L t}\right]
\end{aligned}
$$

Initially $t=0$ and $i=0$

$$
\begin{aligned}
& O=\frac{E}{R-a L} e^{-a(0)}+c \cdot e^{-R / L(0)} \\
&-\frac{E}{R-a L}(0)^{(0)}=c \cdot e^{(0)} \\
& \frac{-E}{R-a L}=c(1) \\
& C=\frac{-E}{R-a L}
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{E}{R-a L} \cdot e^{-a t}-\frac{E}{R-a L} e^{R / L t} \\
& i=\frac{E}{R-a L}\left[e^{-a t}-e^{-R / L t}\right]
\end{aligned}
$$

(4) By using Kirchoff's Law the equn of the $L R$ circuit is $L \frac{d i}{d t}+R i=E$

$$
\frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L}
$$

Given that $L \frac{d i}{d t}+R i=200 \cdot \cos (300 t)$

$$
\frac{d i}{d t}+\frac{R}{L} i=\frac{200 \cdot \cos (300 t)}{L}
$$

Given that $R=100, L=0.05$

$$
\begin{align*}
& \frac{d i}{d t}+\frac{100}{0.05} i=\frac{200 \cdot \cos (300 t)}{0.05} \\
& \frac{d i}{d t}+2000 i=4000 \cdot \cos (300 t) \tag{1}
\end{align*}
$$

equn (1). is in linear form:

$$
\begin{aligned}
& P=2000 \text { and } Q=4000 \cos (300 t) \text { : } \\
& \text { Inf } e^{\int 2000 d t}=e^{2000 \int(1) d t}=e^{2000 t} \\
& \text { i. } e^{2000 t}=\int 4000 \cdot \cos (300 t) e^{2000 t} d t+c \\
& =4000 \int \cos (300 t) \cdot e^{2000 t 9} d t+c \\
& =4000 \int e^{2000 t} \cdot \cos (300 t)+c . \\
& =4000 \cdot\left[\frac{e^{(2000) t}}{(2000)^{2}+(300)^{2}}\left[\begin{array}{r}
2000 \cos (300) t+ \\
300 \cdot \sin (300) t
\end{array}\right]+C\right] \\
& i \cdot e^{2000 t}=4000 \cdot\left[\frac{e^{(2000) t}}{409000 \theta}[2000 \cos (300) t+300 \operatorname{sen}(300) t)+0\right] \\
& =\frac{4}{4090} e^{(2000) t}[2000-\cos (300) t+300 \sin (300) t]+c \\
& =e^{(2000) t}\left[\frac{4 \times 200 \phi}{4090} \cos \left(300 t+\frac{4 \times 30 \phi}{409 \phi} \sin (300) t\right]+C\right. \\
& =e^{(2000) t}\left[\frac{40 \times 20}{409} \cos (300 t)+\frac{40 \times 3}{409} \sin \cdot(300) t\right]+C
\end{aligned}
$$

$$
\begin{aligned}
p \cdot e^{(2000) t} & =e^{(2000) t} \frac{40}{409}\left\{[20 \cdot \cos (300) t+3 \cdot \sin (300) t]+C e^{-(2000)}\right. \\
i & =\frac{40}{409}[20 \cos (300) t+3 \sin (300) t]+C \cdot e^{-(2000) t}
\end{aligned}
$$

Given that $i=0$ and taro.

$$
\begin{aligned}
& 0=\frac{40}{409}[20 \cdot \cos (300)(0)+3 \cdot \sin (300)(0)]+c \cdot e^{-(200)(0)} \\
& 0=\frac{40}{409}(20 \cdot \cos (0)+3 \cdot \sin (0)]+c \cdot e^{(0)} \\
& 0=\frac{40}{409}[20(1)+3(0))+c(1) \\
& 0=\frac{40}{409}(20+0)+c \\
& c=\frac{-40 \times 20}{409}
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{40}{409}[20 \cos (300) t+3 \cdot \sin (300) t] \frac{40 \times 20}{409} e^{-(2000) t} \\
& i=\frac{40}{409}\left[20 \cos (300) t+3 \cdot \sin (300) t-20 \cdot e^{-(2000) t}\right] \\
& i=\frac{40}{409}\left[20\left(\cos (300) t-e^{-(2000) t}\right)+3 \cdot \sin (300) t\right]
\end{aligned}
$$

(2) By using kirchoff's Law the squ of the LR circuit is $t \frac{d i}{d t}+R i=E$

$$
\frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L}
$$

Given that $R=100, k=0.5, E 20$

$$
\begin{align*}
& \frac{d i}{d t}+\frac{100}{0-5} i=\frac{20}{0.5} \\
& \frac{d i}{d t}+200 \cdot i=40 \tag{1}
\end{align*}
$$

equnc is in linear form.

$$
P=200 \text { and } Q=40
$$

IF $e^{\int 200 d t}=e^{200 \int(1) d . t}$

$$
=e^{200 t}
$$

$$
\begin{aligned}
i \cdot e^{200 t} & =\int 40 \cdot \cdot e^{200 t} d t+c \\
& =40 \int e^{200 t} d t+c \\
& =4 \phi \frac{e^{200 t}}{20 \phi}+c \\
i \cdot e^{200 t} & =\frac{1}{5} \cdot e^{200 t}+c \\
i \cdot e^{200 t} & =e^{200 t}\left(\frac{1}{5}+c \cdot e^{-200 t}\right) \\
i & =\frac{1}{5}+c \cdot e^{-200 t}
\end{aligned}
$$

Initially $t=0$ and $i=0$

$$
\begin{aligned}
& 0=\frac{1}{5}+c \cdot e^{-200(0)} \\
& -\frac{1}{5}=c \cdot e^{(0)} \\
& \Rightarrow C=-1 / 5=c(1) \\
& i=\frac{1}{5}-\frac{1}{5} e^{-200 t} \\
& i=\frac{1}{5}\left(1-e^{-200 t}\right) .
\end{aligned}
$$

Law of Growth:
(3)
we have $y=c e^{k t}$
Initially $t=0$ and $y=0 \mathrm{~N}$

$$
\left.\begin{array}{rl}
N & =c e^{k(0)} \\
N & =c e^{(0)} \\
& =c(1) \\
\Rightarrow(c=N
\end{array}\right)
$$

and $t=2$ and $y=3 N_{0}$

$$
\begin{aligned}
3 \nsim & =凶 e^{k(2)} \\
2 k & =\log 3 \\
k & =\frac{1}{2} \log 3 \\
k & =0.549306144 \\
k & =0.549
\end{aligned}
$$

$$
y=N \cdot e^{(0.5(19) t} \rightarrow(3)
$$

And also $t=$? and $y=100 \mathrm{~N}$

$$
\begin{aligned}
& 100 \nsim=N\left(e^{(0.549) t}\right. \\
& e^{(0.549) t}=100 \\
& (0.599) t=\log 100 \\
& t=\frac{1}{0.549} \log (100) \\
& t=8.388288135 \\
& t \approx 8
\end{aligned}
$$

Higher Order Differential Equations
solutions of thegher order Honxrgeneores Differentiae Equations:

Solve the following thigher order Differential Equations:
(1) $\frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}-6 y=0$.
(2) $\frac{d^{4} y}{d x^{4}}+13 \frac{d^{2} y}{d x^{2}}+36 y=0$
(3) $\frac{d^{4}{ }^{9} x}{d t^{4}}+4 x=0$.
(4) $\left.\quad D^{y}+4\right) y=0$
(5) $y^{\prime \prime}-2 y^{\prime}+10 y=0$. given $y(0)=4, y(0)=1$
(6) $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+8 y=0$. under the conditions $y(0)=0$ and $y^{\prime}(0)=0, y^{\prime \prime}(0)=2$.
(7) $\frac{d 4 x^{4}}{d y^{4}} \cdot \frac{d 4 x}{d t^{4}}=m^{4} x$. Show that $x=c_{1} \cos m t+c_{2} \sin m t+$ $c_{3} \cos h m t+c_{4} \sin h m t$.
(8) $\left(D^{3}+1\right) y=0$.
(9) $\left(D^{4}+6 D^{3}+11 D^{2}+6 D\right) y=0$.
(4)

Given $D \cdot E$ is $\left(D^{4}+4\right) y=0$.
An $A \cdot E$ is

$$
\begin{gathered}
\left(m^{2}\right)^{2}+(2)^{2}=0 \\
\left(m^{2}+2\right)^{2}-2 m^{2}(2)=0 \\
\left(m^{2}+2\right)^{2}-4 m^{2}=0 \\
\left(m^{2}+2\right)^{2}-(2 m)^{2}=0 \\
\left(m^{2}+2+2 m\right)\left(m^{2}+2-2 m\right)=0 \\
m^{2}+2 m+2=0 \text { and } m^{2}-2 m+2=0 \\
m=\frac{-2 \pm \sqrt{4-8}}{2} \quad \text { and } m=\frac{2 \pm \sqrt{4-8}}{2} \\
=\frac{-2 \pm 2 i}{2}=\frac{2 \pm 2 i}{2} \\
=\frac{2(-1 \pm i)}{2} \quad m=1 \pm i . \\
m=\frac{-1 \pm i}{2} \quad
\end{gathered}
$$

\therefore The roots $-1 \pm i, 1 \pm i$ are complex distinct roots.
\therefore The complementary function $(C \cdot F)$ is

$$
e^{-1(x)}\left[c_{1} \cos x+c_{2} \sin x\right]+e^{\prime(x)}\left[c_{3} \cos x+c_{4} \sin x\right]
$$

\therefore The solution of equn(1) is $y=C-F$

$$
y=e^{-x}\left[c_{1} \cos x+c_{2} \sin x\right]+e^{x}\left[c_{3} \cos x+c_{4} \sin x\right] .
$$

(5)

Given $D-E$ is $y^{\prime \prime}-2 y^{\prime}+10 y=0$

$$
\begin{aligned}
& D^{2} y-2 D y+10 y=0 \\
& \left(D^{2}-2 D+10\right) y=0
\end{aligned}
$$

An A.E is $m^{2}-2 m+10=0$

$$
\begin{aligned}
m & =\frac{2 \pm \sqrt{4-40}}{2} \\
& =\frac{2 \pm \sqrt{-36}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \pm 6 i}{2} \\
& =\frac{2(1 \pm 3 i)}{\%} \\
& m=1 \pm 3 i
\end{aligned}
$$

\therefore The roots $1 \pm 3 i$ are complex and distinct roots.
\therefore The complementary function $=e^{(1) x}\left[c_{1} \cos 3 x+c_{2} \delta \ln 3 x\right]$
\therefore The solution is $y=C \cdot F$

$$
\left.y=e^{x}\left[c_{1} \cos 3 x+c_{2} \sin 3 x\right]\right]
$$

Given that $y(0)=4$ and $y^{\prime}(0)=1$

$$
x=0^{\prime /} ; y=4 \quad \therefore \quad x^{-4}, y^{\prime}=1
$$

at $x=0, \quad y=4$
from (1),

$$
\begin{aligned}
& y=e^{0}\left[c_{1} \cos 3(0)+c_{2} \sin 3(0)\right] \\
& y=t\left[c_{1} \cos 0+c_{2} \sin 0\right] \\
& y=c_{1}(4)+c_{2}(0) \\
& \Rightarrow c_{1}=4
\end{aligned}
$$

from (1)
att $x=00_{+} \quad y^{\prime}=e^{x}\left[c_{1} \cos 3 x+c_{2} \sin 3 x\right]+e^{x}\left[c_{1}(-\sin 3 x) 3+\right.$

$$
y^{\prime}=e^{x}\left[c_{1} \cos 3 x+c_{2} \sin 3 x\right]+e^{x}\left[-3 c_{1} \cdot \sin 3 x+3 c_{2} \cos 3 x\right)[(3)]
$$

at $x=0, y^{\prime}=1$ and $c_{1}=4$

$$
\begin{aligned}
1 & =e^{0}\left[4 \cdot \cos 3(0)+c_{2} \sin 3(0)\right]+e^{0}\left[-3(4) \sin 3(0)+3 c_{2} \cos 3(0)\right] \\
1 & =(1)\left[4(1)+c_{2}(0)\right]+(1)\left[-12(0)+3 c_{2}(1)\right] \\
1 & =(4+0)+\left(0+3 c_{2}\right) \\
1 & =4+3 c_{1} \\
& 3 c_{2}=1-4 \\
& 3 c_{2}=-3 \\
& c_{2}=-1 \\
\therefore y & =e^{x}[4 \cos 3 x-\sin 3 x]
\end{aligned}
$$

(6)

$$
\begin{gathered}
\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+8 y=0 \\
D^{3} y+6 D^{2} y+12 D y+8 y=0 \\
\left(D^{3}+6 D^{2}+12 D+8\right) y=0
\end{gathered}
$$

AQ. A.E is $\quad m^{3}+6 m^{2}+12 m+8=0$

$$
\begin{aligned}
& (m+2)\left(m^{2}+4 m+4\right)=0 \\
& m+2=0, \quad m^{2}+4 m+4=0 \\
& m=-2, \quad(m+2)(m+2)=0 \\
& m=-2, \quad m=-2
\end{aligned}
$$

\therefore The roots $-2,-2,-2$ are real and repeated d roots.
Now, $\quad C \cdot F=c_{1} e^{-2 x}+c_{2} e^{-2 x}(x)+c_{3} e^{-2 x} \cdot\left(x^{2}\right)$
\therefore The solution is $y=C \cdot F$

$$
\begin{align*}
& y=c_{1} e^{-2 x}+c_{2} e^{-2 x}+c_{3} e^{-2 x} x^{2} \\
& y=e^{-2 x}\left[c_{1}+c_{2} x+c_{3} x^{2}\right] \tag{1}
\end{align*}
$$

Given that $y(0)=0, y^{\prime}(0)=0$ and $y^{\prime \prime}(e)=2$. at $x=0, \quad y=0$.

$$
\begin{aligned}
& 0=e^{-2(0)}\left[c_{1}+c_{2}(0)+c_{3}(0)^{2}\right] \\
& 0=(1)\left[c_{1}+0+0\right] \\
& \\
& \Rightarrow c_{1}=0
\end{aligned}
$$

from θ,

$$
\begin{equation*}
y^{\prime}=e^{-2 x}(-2)\left[c_{1}+c_{2} x+c_{3} x^{2}\right]+e^{-2 x}\left[0+c_{2}+2 c_{3} x\right] \tag{2}
\end{equation*}
$$

at $x=0, y^{\prime}=0$.

$$
\begin{aligned}
& 0=e^{-2(0)}(-2)\left[c_{1}+c_{2}(0)+c_{3}(0)\right]+e^{-2(0)}\left[c_{2}+2 c_{3}(0)\right] \\
& 0=(1)(-2)[0+0]+(1)\left[c_{2}+0\right] \\
& 0=-2 c_{1}+c_{2} \\
& \Rightarrow c_{2}=0
\end{aligned}
$$

from (2),
oots.
at $x=0, \quad y^{\prime \prime}=2$

$$
\begin{aligned}
& 2=4 e^{-2(0)}\left[c_{2}(0)+c_{3}(0)^{2}\right]-4 e^{-2(0)}\left[c_{2}+2 c_{3}(0)\right]+2 e^{-2(0)} c_{3} \\
& 2=4(1)[0+0)-4 c^{2}(1)\left[c_{2}+0\right]+2(1) c_{3} \\
& 2=4(0)-4 c_{2}+2 c_{3} \\
& 2=0-4(2)+2 c_{3} \\
& 2=-8+2 c_{3} \\
& \not 又 c_{3}=10^{5} \\
&\left.\quad c_{3}=5\right] \\
& y^{\prime}= e^{-2 x \cdot\left[c_{1}+c_{2} x+c_{3} x^{2}\right]+e^{-2 x}\left[c_{2}+2 c_{3} x\right]} \\
& y^{\prime}= e^{-2 x}\left[-2 c_{1}-2 c_{2} x-2 c_{3} x^{2}+c_{2}+2 c_{3} x\right] \\
& y^{\prime \prime}= e^{-2 x}(-2) \cdot\left[-2 c_{1}-2 c_{2} x-2 c_{3} x^{2}+c_{2}+2 c_{3} x\right]+e^{-2 x}\left[0-2 c_{2}-2 c_{3}(2 x)+0\right. \\
&\left.+2 c_{3}\right]
\end{aligned}
$$

at $x=0, y^{\prime \prime}=2$

$$
\begin{aligned}
2 & =-2 e^{-2(0)}\left[-2(0)-2(0) x-2 c_{3}(0)^{2}+0+2 c_{3}(0)\right]+e^{-2(0)}\left[-2(0)-4(0) c_{3}+2 c_{3}\right] \\
2 & =-2(1) \cdot[0]+(1)\left[2 c_{3}\right] \\
2 & =0+2 c_{3} \\
& \left(k=2 c_{3} \quad \Rightarrow \quad c_{3}=1\right. \\
& \therefore c_{1}=0, \quad c_{2}=0, \quad c_{3}=1
\end{aligned}
$$

from(1),

$$
\text { (0) } \begin{aligned}
\therefore y & =e^{-2 x}\left[c_{1}+c_{2} x+c_{3} x^{2}\right] \\
& =e^{-2 x}[0+0+1] \Rightarrow y=e^{-2 x}
\end{aligned}
$$

(1)

$$
\begin{align*}
& \frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}-6 y=0 \\
& D^{3} y-7 D y-6 y=0 \\
& \left(D^{3}-7 D-6\right) y=0
\end{align*}
$$

An Auxiliary Equip is $m^{3}-7 m-6=0$

$$
\left.\begin{array}{rl}
& (m+1)\left(m^{2}-m-6\right)=0 \\
m+1=0 \quad \text { and } \quad m^{2}-m-6=0 \\
& m^{2}-3 m+2 m-6=0 \\
& (m(m-3)+2(m-3)=0 \\
& (m-3)(m+2)=0 \\
& (m=-2,3
\end{array}\right)
$$

\therefore The roots are real and distinct:

$$
\text { Now, } C F=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}
$$

Now, the solution of EquD(1) is $y=C \cdot F$

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}
$$

(2) Given $D \cdot E$ is $\frac{d^{4} y}{d x^{4}}+13 \frac{d^{2} y}{d x^{2}}+36 y=0$

$$
\begin{aligned}
& D^{4} y+13 D^{2} y+36 y=0 \\
& \left(D^{4}+130^{2}+36\right) y=0
\end{aligned}
$$

An Auxiliary equn os $m^{4}+13 m^{2}+36=0$

$$
-\left[\begin{array}{ccc}
1 & 0 & 13 \\
0 & -1 & 36 \\
\hline 1 & -1 &
\end{array}\right.
$$

(3). Given $D \cdot E$ is $\frac{d^{4} x}{d t^{4}}+4 x=0$.

$$
p^{4} x+4 x=0
$$

$$
\left(D^{4}+4\right) x=0 .
$$

An A.E is $m^{4}+4=0$

$$
\begin{aligned}
&\left(m^{2}\right)^{2}+(2)^{2}=0 \\
&\left(m^{2}+2\right)^{2}-2(2) m^{2}=0 \\
&\left(m^{2}+2\right)^{2}-(9 m)^{2}=0 \\
&\left(m^{2}+2+2 m\right)\left(m^{2}+2-2 m\right)=0 . \\
&\left(m^{2}+2 m+2\right)\left(m^{2}-2 m+2\right)=0 \\
& m=\frac{-2 \pm \sqrt{4-8}}{2} \quad m=\frac{2 \pm \sqrt{4-8}}{2} \\
&=\frac{-2 \pm 2 i}{2}=\frac{2 \pm \cdot 2 i}{2} \\
&=\frac{ \pm E 1 \pm i)}{4}=\frac{2(1 \pm i)}{2} \\
&=-1 \pm i=1 \pm 2 \\
& m=-1 \pm i, 1 \pm i .
\end{aligned}
$$

\therefore The roots are complex and district.
Now the $C \cdot F=e^{-\frac{\theta}{\theta}}\left[c_{1} \cos c^{t}+c_{2} \sin t\right]+e^{t}\left[c_{3} \cos t+c_{4} \sin t\right]$;
\therefore The solution of equn (1) is $y=C \cdot F$

$$
x y=e^{-t}\left[c_{1} \cos t+c_{2} \sin t\right]+e^{t}\left[c_{3} \cos t+c_{4} \sin t\right]
$$

Given DE is
47

$$
\begin{align*}
& \frac{d^{4} x}{d t^{4}}=m^{4} x \rightarrow \tag{1}\\
& D^{4} x=m^{4} x \\
& D^{4} x-m^{4} x=0 \\
& x\left(D^{4}-m^{4}\right)=0
\end{align*}
$$

An A.E is my-
(8) Given D.E is $\left(D^{3}+1\right) y=0$

An $A \cdot E$ is $m^{3}+1=0$

$$
\begin{gathered}
m^{3}+(1)^{3}=0 \\
(m+1)^{3}-3 m \cdot(m+1)=0 \\
(m+1)^{3} *\left[(m+1)^{2}-3 m\right]=0 \\
(m+1)\left(m^{2}+1+2 m-3 m\right]=0 \\
(m+1)\left(m^{2}-m+1\right)=0 \\
m=-1, \quad m=\frac{1 \pm \sqrt{1-4}}{2} \\
=\frac{1 \pm \sqrt{3} i}{2} \\
m=-1, \frac{1 \pm \sqrt{3} i}{2}
\end{gathered}
$$

\therefore The roots are real, complex and district.

$$
\text { Now, } c \cdot F=c_{1} e^{-x}+\frac{1 / 2 x}{e}\left[c_{1} \cos \left(\frac{\sqrt{3}}{2}\right)+c_{2} \sin \frac{\sqrt{3}}{2}\right]
$$

Now the solution of equate is $y=C . F$

$$
y=c_{1} e^{-x}+e^{1 / 2 x}\left[c_{1} \cos \left(\frac{\sqrt{3}}{2}\right)+c_{2} \sin \frac{\sqrt{3}}{2}\right]
$$

(9) Given D.E is $\left(D^{4}+6 D^{3}+11 D^{2}+6 D\right)+0$
tin A.E is $m 4+6 m^{3}+11 m^{2}+6 m=0$

$$
\begin{aligned}
& \quad(m+1)(m+2)\left(m^{2}+3 m\right)=0 . \\
& m+1=0, \quad m+2=0, \quad m^{2}+3 m=0 \\
& m=-1, \quad m=-2, \quad m(m+3)=0 \\
& \quad m=0, \quad m=-3 . \\
& \therefore \quad m=0,-1,-2,-3 .
\end{aligned}
$$

\therefore The roots are real and distrinct.
Now, the C.F $=C\left(e^{(0) x}+c_{2} e^{-x}+c_{3} e^{-2 x}+c_{4} e^{-3 x}\right.$
\therefore The solution of $\varepsilon q u$)(1) is $y=C F$

$$
y=c_{1} e^{(0) x}+c_{2} e^{-x}+c_{3} e^{-2 x}+c_{4} e^{-3 x}
$$

(1) $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=0$

301:-

$$
D^{3} y-6 \cdot D^{2} y+11 \cdot D y-6 y=0
$$

$$
\left(D^{3}-6 D^{2}+11 D^{2}-6\right) y=0
$$

$$
m^{3}-6 m^{2}+11 m-6=0 . \quad \text { (auxiliary equation) }
$$

$$
\left(m^{2}-5 m+6\right)(m-1)=0
$$

$$
1 \left\lvert\, \begin{array}{rrrr}
1 & -6 & 11 & -6 \\
0 & 1 & -5 & 6 \\
\hline 1 & -5 & 6 & 0
\end{array}\right.
$$

$$
\begin{array}{ll}
m-1=0 & \text { and } \\
m=1 \quad m^{2}-5 m+6=0 \\
& m^{2}-3 m-2 m+6=0 \\
& m(m-3)-2(m-3)=0 \\
& m=2, \quad m=3
\end{array}
$$

The roots are real and distinct-

$$
c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

\therefore The solution is $y=$ C.F. (complementary function)

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

(2) $\frac{d^{2} y}{d x^{3}}-8 y=0$.
sol:-

$$
\begin{aligned}
& 0^{3} y-8 y=0 \\
& \left(D^{2}-8\right) y=0
\end{aligned}
$$

An au xiliary equine is $m^{3}-8=0$.

$$
\begin{gathered}
m^{m^{3} \neq 1 / 2} \\
m^{3}-22^{3}=0 \\
(m-2)\left(m^{2}+2 m+4\right)=0 \\
m-2=0 \quad \text { and } m^{2}+2 m+4=0 \\
m=2 \quad m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

$$
\begin{aligned}
m & =\frac{-2 \pm \sqrt{4-16}}{2} \\
& =\frac{-2 \pm \sqrt{-11}}{2} \\
& =\frac{-2 \pm \sqrt{3} i}{2} \\
& =\frac{2(-1 \pm \sqrt{3} i)}{2} \\
m & =-1 \pm \sqrt{3} i .
\end{aligned}
$$

$$
m=2, \quad-1+\sqrt{3} i, \quad-1-\sqrt{3} i
$$

Now, Complementary function is

$$
\begin{aligned}
& c_{1} e^{2-x}+c_{2} e^{(-1+\sqrt{3} i) x}+c_{3} e^{(-1-\sqrt{3} i) x} \\
& =e^{-x}\left[c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right]+c_{3} e^{2 x}
\end{aligned}
$$

Now the solution is $y=C \cdot F$

$$
y=e^{-x}\left[c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right]+c_{3} e^{2 x}
$$

Non-Homogeneous Higher Orider D.E:.
(2) $\frac{2^{2} y}{d x^{3}}+y=1345 e^{x}$
type-
(2) $\frac{d 2 y}{d x^{2}}+4 \frac{d y}{d x}+5 y=-2 \cosh x$

Sol:-

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=-2 \cos h x \tag{1}
\end{equation*}
$$

equn(1) is a non-homogeneous t1-O.D Equ?.

$$
\begin{aligned}
& D^{2} y+4 D y+5 y=-2 \cosh x \\
& \left(D^{2}+4 D+5\right) y=-2 \cosh x
\end{aligned}
$$

An Auxiliary equn is $m^{2}+4 m+5=0$

$$
\begin{aligned}
m & =\frac{-4 \pm \sqrt{16-20}}{2} \\
& =\frac{-4 \pm 2 i}{2}=\frac{k(-2 \pm i)}{2} \\
m & =-2 \pm i
\end{aligned}
$$

\therefore The roots are complex and distrinct.
Now, $C \cdot F=e^{-2 x}\left[c_{1} \cos \cdot x+c_{2}\right.$ spin $\left.x\right]$
And Particular
The particular Integral of the Equ(1)

$$
\begin{aligned}
& \text { is }=\frac{1}{f(D)} \times \\
& {\left[\sin h x=\frac{e^{x}-e^{-x}}{2}\right.} \\
& =\frac{1}{D^{2}+4 D o+5}-2 \cosh x \\
& \cosh x=\frac{e^{x}+e^{-x}}{2} . \\
& =\frac{1}{D^{2}+4 D+5}-\neq\left(\frac{e^{x}+e^{-x}}{4}\right) \\
& =-\left[\frac{+1}{D^{2}+4 D+5}\left(e^{x}+e^{-x}\right)\right] \\
& =-\left[\frac{1}{D^{2}+4 D+5} e^{x}+\frac{1}{D^{2}+4 D+5} e^{-x}\right] . \\
& =-\left[\frac{1}{(1)^{2}+4(1)+5} e^{x}+\frac{1}{(+1)^{2}+4(-1)+5}\right] \\
& =-\left[\frac{1}{1+4+5} e^{x}+\frac{e^{-x}}{1-4+5}\right] \\
& =-\left[\frac{e^{x}}{10}+\frac{e^{-x}}{2}\right] \\
& \Rightarrow+\left[\frac{1+5}{10}\right]^{-1} \\
& \neq-\left[\frac{0.03}{18}\right] \\
& P A=-\frac{18}{5} \cdot e^{x} .
\end{aligned}
$$

\therefore The solution of equ? © is $y=C \cdot F+P \cdot I$

$$
y=e^{-2 x}\left[c_{1} \cos x+c_{2} \sin x\right]-\frac{1}{10} e^{x}-\frac{1}{2} e^{-x} .
$$

(3)

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}-4 y=\left(1+e^{x}\right)^{2} \tag{1}\\
& D^{2} y-4 y=\left(1+e^{x}\right)^{2} \\
& \left(D^{2}-4\right) y=1+\left(e^{x}\right)^{2}+2 e^{x}
\end{align*}
$$

An $A \in E$ is $m^{2}-4=0$

$$
\begin{aligned}
& m^{2}-(2)^{2}=0 \\
& (m+2)(m-2)=0
\end{aligned}
$$

$$
m=-2,2 \text {. }
$$

\therefore The roots are real and disirinct.
Now, The C.F $=c_{1} e^{-2 x}+c_{2} e^{2 x}$
Now the P.I $=\frac{1}{f(0)}(\cdot x)$

$$
\begin{align*}
& =\frac{1}{D^{x}-4}\left(1+e^{x}\right)^{2} \\
& =\frac{1}{D^{2}-4}\left(1+e^{2 x}+2 e^{x}\right) \\
P-I & =\frac{1}{D^{2}-4}(1)+\frac{1}{D^{2}-4} e^{24}+\frac{1}{D^{2}-4} \cdot 2 e^{x} \\
& =\frac{1}{D^{2}-4} e^{(0) x}+\frac{1}{D^{2}-4} e^{2 x}+\frac{1}{D^{2}-4} 2 e^{x} \tag{2}\\
& =\frac{1}{D-4} e^{(D) x}+\left(4^{x}-4\right. \tag{2}
\end{align*}
$$

$$
\begin{aligned}
P I_{1} & =\frac{1}{D^{2}-4} e^{(0) x}=\frac{1}{0-4} e^{(0) x}=\frac{-1}{4} \\
P I_{2} & =\frac{1}{D^{2}-4} e^{2 x} \\
& =\frac{x}{2 D-0} e^{2 x}=\frac{x}{2(2)} e^{2 x}=\frac{x}{4} e^{2 x} \\
P I_{3} & =\frac{1}{D^{2}-4} \cdot e^{x}=\frac{2}{(1)^{2}-4} e^{x}=2 \frac{1}{1-4} e^{x}=\frac{-2}{3} e^{x}
\end{aligned}
$$

equn (2),

$$
P \cdot I=\frac{-1}{4}+\frac{x}{4} e^{2 x}-\frac{2}{3} e^{x} .
$$

Now the solution is $y=C . F+$ PI

$$
y=c_{1} e^{-2 x}+c_{2} e^{2 x}-\frac{1}{4}+\frac{x}{4} e^{2 x}-\frac{2}{3} e^{x} .
$$

(8)

$$
\begin{align*}
& (D+2) \cdot(D-1)^{2} y=e^{-2 x}+2 \sinh x \tag{1}\\
& (D+2)\left(D^{2}-1-2 D\right) y=e^{-2 x}+2 \sinh x
\end{align*}
$$

An $A \cdot E$ is $(m+2)(m-1)^{2}=0$.

$$
\begin{gathered}
m+2=0, \quad(m-1)^{2}=0 . \\
m=-2, \quad(m-1)(m-1)=0 \\
m=1 \\
\therefore m=1,1-2 \quad
\end{gathered}
$$

Now, the $C \cdot F=c_{1} e^{x}+c_{2} x \cdot e^{x}+c_{3} e^{-2 x}$.
Now the Particular integral $=\frac{1}{F(D)}(x)$

$$
\begin{align*}
& P \cdot T=\frac{1}{(D+2)(D-1)^{2}}\left(e^{-2 x}+2 \sinh x\right) \\
& =\frac{1}{(D+2)(D-1)^{2}}\left[e^{-2 x}+\alpha \cdot\left(\frac{e^{x}-e^{-x}}{y}\right)\right] \\
& =\frac{1}{(D+2)(D-1)^{2}}\left[e^{-2 x}+e^{x}-e^{-x}\right] \\
& =\frac{1}{(D+2)(D-1)^{2}} e^{-2 x}+\frac{1}{(D+2)(D-1)^{2}} e^{x} \\
& \text { (PI } \left.I_{1}\right) \\
& -\frac{1}{(D+2)(D-1)^{2}} e^{-x} \\
& P I_{1}=\frac{1}{(D+2)(D-1)} e^{-2 x} \\
& =\frac{x}{(1+0) 2(D)-x)(1-0)} e^{-2 x} \\
& =\frac{x}{2(-x-1)} e^{-2^{x}}=\frac{\not x}{6} e^{2 x}=\frac{f x}{6} e^{2 x} \\
& \left(I / 2=\frac{1}{(D+2)(D-1)^{2}} e^{d}\right. \\
& \begin{aligned}
& \neq \frac{12}{} \\
& P I_{1}=\frac{1}{(D+2)(D-1)^{2}} e^{-2 x}
\end{aligned} \\
& =\frac{x}{(D+2) 2(D-1)+(D-1)^{2}(1+0)} e^{-2 x} \\
& =\frac{x}{(-2+2) 2(-2-1)+(-2-1)^{2}} e^{-2 x} \\
& =\frac{x}{0+(-3)^{2}} e^{-2 x}=\frac{x}{9} e^{-2 x} \\
& P I_{2}=\frac{1}{(D+2)(D-1)^{2}} e^{x} \\
& =\frac{x}{(D+2) \cdot 2(D-1)+(D-1)^{2}(1+0)} e^{x} \\
& \Rightarrow \frac{x}{(14 / 23) \sec (-1-1)(t(x-1)} \\
& =\frac{x}{(0-1)[2(0+2)+(D-1)]} e^{x}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{(D-1)[2(1+0)+(1-0)]+[2(D+2)+(D-1)](1-0)} e^{x} \\
& =\frac{x^{2}}{(1-1)(2+1)+[2}(1+3)+(1-1)(1) e^{x} \\
& =\frac{x^{2}}{0+2(3)+0} e^{x} \\
& =\frac{x^{2}}{6} e^{x} \\
P I_{3} & =\frac{1}{(D+2)(D-1)^{2}} e^{-x} \\
& =\frac{1}{(-1+2)(-1-1)^{2}} e^{-x} \\
& =\frac{1}{(1)(-2)^{2}} e^{-x}=\frac{1}{4} e^{-x} .
\end{aligned}
$$

from (2),

$$
\text { PI }=\frac{x}{9} e^{-2 x}+\frac{x^{2}}{6} e^{x}+\frac{1}{4} e^{-x}
$$

Now the solution of equncis is $y=C \cdot F+$ POI

$$
y=c_{1} e^{x}+c_{2} x \cdot e^{x}+c_{3} e^{-2 x}+\frac{x}{9} e^{-2 x}+\frac{x^{2}}{6} e^{x} \frac{1}{4} e^{-x}
$$

(9) Given D.E is $\frac{d^{2} y}{d x^{2}}-4 y=\cosh (2 x-1)+3^{x}$.

$$
\begin{aligned}
& D^{2} y-4 y=\cosh (2 x-1)+3^{x} \\
& \left(D^{2}-4\right) y=\cosh (2 x-1)+3^{x}
\end{aligned}
$$

An $A E$ is $m^{2}-4=0$

$$
\begin{gathered}
m^{2}-(2)^{2}=0 \\
(m+2)(m-2)=0 \\
m=-2,2
\end{gathered}
$$

\therefore The the roots are real and districts. Now, the $C \cdot F=c_{1} e^{-2 x}+c_{2} e^{2 x}$:
Now, the particular Integral $=\frac{1}{F(D)} \times$.

$$
\begin{aligned}
& =\frac{1}{D^{2}-4}\left[\cosh (2 x-1)+3^{x}\right] \\
& =\frac{1}{D^{2}-4} \cosh \left(2(x-1)+\frac{1}{D^{2}-4}-3^{x}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{D^{2}-4}[\cosh (2 x) \cdot \cosh (1)-\sinh (2 x) \cdot \sinh (1)]+\frac{1}{D^{2}-4} 3^{x} \\
& =\frac{1}{D^{2}-4} \cosh (2 x) \cosh (1)-\frac{1}{D^{2}-4} \sinh (2 x) \cdot \sinh (1)+\frac{1}{D^{2}-4} 3^{x} \\
& P \cdot I=\cosh (1) \frac{1}{D^{2}-4} \cosh (2 x)-\operatorname{seh}(1) \frac{1}{D^{2}-4} \sinh (2 x)+\frac{J}{D^{2}-4} 3^{x} \\
& \text { PI, } \\
& \mathrm{PF}_{2} \\
& \mathrm{PI}_{3} \\
& \cosh (a \pm b)= \\
& \cosh a \cdot \cosh b \pm \sin h a \sin k b \\
& \sinh (a \pm b)= \\
& \sinh a \cosh b \pm \cosh a \sin h b \\
& P I_{2}=\frac{1}{D^{2}-4} \sinh (2 x) \\
& =\frac{1}{D^{2}-4}\left[\frac{e^{2 x}-e^{-2 x}}{2}\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}-4} e^{2 x}-\frac{1}{D^{2}-4} e^{-2 x}\right] \\
& =\frac{1}{2}\left[\frac{x}{2 D} e^{2 x} \frac{x}{2 D} \cdot c^{-2 x}\right] \\
& =\frac{1}{2} \cdot\left[\frac{x}{4} e^{2 x}\left(\frac{x}{-4}\right) e^{-2 x}\right] \\
& =\frac{1}{2}\left[\frac{x}{4} e^{2 x}+\frac{x}{4} e^{-2 x}\right] \\
& =\frac{x}{4}\left[\frac{e^{2 x}+e^{-2 x}}{2}\right]=\frac{x}{4} \cosh (2 x) \\
& P I_{3}=\frac{1}{D^{2}-4} s^{x} \\
& =\frac{1}{D^{2}-4} e^{\log _{3} x} \\
& =\frac{1}{D^{2}-4} e^{x \log 3} \\
& =\frac{1}{b^{2}-4} e^{(\log 3) x} \\
& =\frac{1}{(\log 3)^{2}-4} e^{(\log 3) \cdot x} \\
& =\frac{1}{(\log 3)^{2}-4} 3^{x} .
\end{aligned}
$$

$$
\begin{aligned}
P I & =\frac{\cosh (1)}{4} \sinh (2 x)-\frac{x}{4} \cosh (2 x)+\frac{1}{(\log 3)^{2}-4} 3^{x} \\
& =\frac{x}{4}[\sinh (2 x) \cosh (1)-\cosh (2 x) \sinh (1)]-\frac{1}{(\log 3)^{2}-4} 3^{x} \\
& =\frac{x}{4} \sinh (2 x-1)+\frac{1}{(\log 3)^{2}-4} 3^{x} .
\end{aligned}
$$

W.: The solution of $\quad 2 q n^{n}$ (0) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{-2 x}+c_{2} e^{2 x}+\frac{x}{4} \sin h(2 x-1)+\frac{1}{\left(\log _{3}\right)^{2}-4} \cdot 3^{x}
$$

wednesday
$30|10| 19$
Type - II
(4) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{2 x}-\cos ^{2} x$

Sol:

$$
\begin{aligned}
& D^{2} y+2 D y+y=e^{2 x}-\cos ^{2} x . \\
& \left(D^{2}+2 D+1\right) y=e^{2 x}-\cos ^{2} x .
\end{aligned}
$$

An A.E is $m^{2}+2 m+1=0$

$$
\begin{gathered}
m^{2}+m+m+1=0 \\
m(m+1)+1(m+1)=0 \\
(m+1)(m+1)=0 \\
\therefore m=-1,-1
\end{gathered}
$$

\therefore The roots are real and repeat.

$$
\text { Now, the } c \cdot f=c_{1} e^{-x}+c_{2} x \cdot e^{-x}
$$

keos prose t

$$
\begin{aligned}
P I & =\frac{1}{f(D)} x \\
& =\frac{1}{D^{2}+2 D+1}\left(e^{2 x}-\cos ^{2} x\right) \\
& =\frac{1}{D^{2}+2 D+1} e^{2 x}-\frac{1}{D^{2}+2 D+1} \cos ^{2} x \\
P I_{1} & =\frac{1}{D^{2}+2 D+1} e^{2 x} \\
& =\frac{1}{4+4+1} e^{2 x}=\frac{1}{9} e^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& P I_{2}=\frac{1}{D^{2}+2 D+1} \cos ^{2} x \\
& =\frac{1}{D^{2}+2 D+1}\left(\frac{1+\cos 2 x}{2}\right) \\
& \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& =\frac{1}{2}\left[\frac{1}{D^{2}+2 D+1}(1+\cos 2 x)\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}+2 D+1}(1)+\frac{1}{D^{2}+2 D+1}(\cos 2 x)\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}+2 D+1} e^{(0) x}+\frac{1}{D^{2}+2 D+1} \cos 2 x\right] \\
& =\frac{1}{2}\left[\frac{1}{0+0+1} e^{(0) x}+\frac{1}{-4+2 D+1} \cdot \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{1}{2 D-3} \cos 2 x\right] \text {. } \\
& =\frac{1}{2}\left[1+\frac{1}{2 D-3} \times \frac{2 D+3}{2 D+3} \cdot \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{2 D+3}{4 D^{2}-9} \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{2 D+3}{4(-4)-9} \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{2 D+3}{-16-9} \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{2 D+3}{-25} \cos 2 x\right] \text {. } \\
& =\frac{1}{2}\left[1-\frac{2 D+3}{25} \cos 2 x\right] \\
& =\frac{1}{2}\left[1-\frac{1}{25}(2 D \cos 2 x+3 \cos 2 x)\right] \\
& =\frac{1}{2}\left[1-\frac{1}{25}(2-\sin 2 x(2)+3 \cos 2 x)\right] \\
& =\frac{1}{2}\left[1-\frac{1}{25}(-4 \sin 2 x+3 \cos 2 x)\right] \\
& =\frac{1}{2}\left[1-\frac{1}{25}(3 \cos 2 x-4 \sin 2 x)\right] \\
& =\frac{1}{2}-\frac{1}{50}(3 \cos 2 x-4 \sin 2 x) \\
& =\frac{1}{2}-\frac{3}{50} \cos 2 x+\frac{2}{25} \sin 2 x \text {. } \\
& \dot{P I}=\frac{1}{9} e^{2 x}+\frac{1}{2}-\frac{3}{50} \cos 2 x+\frac{2}{25} \sin 2 x
\end{aligned}
$$

Now, the solution is $y=C \cdot F+P . I$

$$
y=\frac{1}{9} e^{2 x}+\frac{1}{2}-\frac{3}{50} \cos x+\frac{2}{25} \sin 2 x+c_{1} e^{-x}+c_{2} x e^{-x}
$$

(5). $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=e^{-x}+\sin 2 x$

Sol:-

$$
\begin{aligned}
& D^{3} y+2 D^{2} y+D y=e^{-x}+\sin 2 x \\
& \left(D^{3}+2 D^{2}+D\right) y=e^{-x}+\sin 2 x
\end{aligned}
$$

An. A.E is $m^{3}+2 m^{2}+m=0$.

$$
\begin{aligned}
& (m+1)\left(m^{2}+m\right)=0 \\
& m+1=0 \quad m(m+1)=0 \\
& m=-1, \quad m+1=0 \\
& m=-1, m=0 \\
& \therefore m=-1,-1,0
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
\text { Now, } \quad C \cdot F=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} e^{(0) x}
$$

$$
\begin{aligned}
P I & =\frac{1}{D^{3}+2 D^{2}+D}\left(e^{-x}+\sin 2 x\right) \\
& =\frac{1}{D^{3}+2 D+D} e^{-x}+\frac{1}{D D^{3}+2 D^{2}+D} \sin 2 x \\
P I_{1} & =\frac{1}{D^{3}+2 D^{2}+D} e^{-x} \\
& =\frac{x}{3 D^{2}+4 D+1} e^{-x} \\
& =\frac{x^{2}}{6 D+4} e^{-x} \\
& =\frac{x^{2}}{+6+4} e^{-x}=\frac{-x^{2}}{2} e^{-x}
\end{aligned}
$$

$$
P I_{2}=\frac{1}{D^{3}+2 D^{2}+D} \cdot \sin 2 x
$$

$$
=\frac{1}{D^{2} \cdot D+2 D^{2}+D} \sin 2 x
$$

$$
=\frac{1}{(-4) x+2(-4)+D} \sin 2 x
$$

$$
=\frac{1}{-4 D-8+D} \sin 2 x
$$

$$
\begin{aligned}
& =\frac{1}{-3 D-8} \sin 2 x \\
& =\frac{1}{-3 D-8} \times \frac{-3 D+8}{-3 D+8} \sin 2 x \\
& =\frac{-3 D+8}{9 D^{2}-64} \sin 2 x \\
& =\frac{-3 D+8}{9(-4)-64} \sin 2 x \\
& =\frac{-3 D+8}{-36-64} \cdot \sin 2 x \\
& =\frac{1(30-8)}{100} \sin 2 x \\
& =\frac{1}{100}[3 D \sin 2 x-8 \sin 2 x] \\
& =\frac{8^{3}}{100} \cdot \cos 2 x-\frac{8}{50} \cdot \sin 2 x \\
& = \\
& =\frac{30}{50} \cos 2 x-\frac{2}{25} \sin 2 x \\
& =
\end{aligned}
$$

Now, the solution is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{-x}+c_{2} x \cdot e^{-x}+c_{3} e^{(0) x}+\frac{x^{2}}{2} e^{-x}+\frac{3}{50} \cos 2 x-\frac{2}{25} \sin 2 x
$$

(6). $\left(D^{2}+D+1\right) y=(1+\sin x)^{2}$.

3 ot

$$
\left(D^{2}+D+1\right) y=1+\sin ^{2} x+2 \sin x
$$

An A-E is $m^{2}+m+1=0$

$$
\begin{aligned}
& m=\frac{-1 \pm \sqrt{1-4}}{2} \\
& \therefore m=\frac{-1 \pm \sqrt{3} i}{2} \\
& \therefore \quad m=\frac{-1}{2} \pm \frac{\sqrt{3}}{2} i
\end{aligned}
$$

\therefore The roots are complex and distrint.
Now, $\quad c \cdot F=Q \cdot e^{-1 / 2 x} \cdot\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right]$

$$
P I=\frac{1}{D^{2}+D+1}\left(1+\sin ^{2} x+2 \sin x\right)
$$

$$
\begin{aligned}
& =\frac{1}{D^{2}+D+1}(1)+\frac{1}{D^{2}+D+1} \sin ^{2} x+\frac{1}{D^{2}+D+1} 2 \sin x \\
& P_{1} \quad P I_{2} \quad \mathrm{PI}_{3} \\
& P I_{1}=\frac{1}{D^{2}+D+1} e^{(0) x} \\
& =\frac{1}{0+0+1} e^{(0) x} \\
& =(.1) e^{(0) x} \text {. } \\
& P I_{2}=\frac{1}{D^{2}+D+1} \sin ^{2} x \\
& =\frac{1}{D^{2}+D+1}\left(\frac{1-\cos 2 x}{2}\right) \\
& =\frac{1}{2}\left[\frac{1}{D^{2}+D+1}-\frac{1}{D^{2}+D+1} \cdot \cos 2 x\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}+D+1} e^{(0) x}-\frac{1}{D^{2}+D+1} \cos 2 x\right] \\
& =\frac{1}{2}\left[\frac{1}{0+0+1} e^{(0) x}-\frac{1}{-4+D+1} \cos 2 x\right] \\
& =\frac{1}{2}\left[1-\frac{1}{D-3} \cos 2 x\right] \\
& =\frac{1}{2}\left[1-\frac{1}{D-3} \times \frac{D+3}{D+3} \cos 2 x\right] \\
& =\frac{1}{2}\left[1-\frac{D+3}{D^{2}-9} \cos 2 x\right] \text {. } \\
& =\frac{1}{2}\left[1-\frac{D+3}{-4-9} \cos 2 x\right] \\
& =\frac{1}{2}\left[1-\frac{D+3}{-13} \cos 2 x\right] \\
& =-\frac{1}{2}\left[1+\frac{D+3}{13} \cdot \cos 2 x\right] \\
& =\frac{1}{2}\left[1+\frac{1}{13}(D \cos 2 x+3 \cdot \cos 2 x)\right] \\
& =\frac{1}{2}\left[1+\frac{1}{13}(-\sin 2 x(2)+3 \cos 2 x)\right] \\
& =\frac{1}{2}\left[1+\frac{1}{13}[(-2 \sin 2 x+3 \cos 2 x)]\right. \\
& =\frac{1}{2}-\frac{\operatorname{sen} 2 x}{13}+\frac{3}{2} \cos 2 x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
P I_{3} & =\frac{1}{D^{2}+D+1} 2 \sin x \\
& =2 \cdot \frac{1}{D^{2}+D+1} \sin x \\
& =2 \frac{1}{-x+D+x} \cdot \sin x \\
& =2 \frac{1}{D} \sin x . \\
& =2(-\cos x . \\
P I & =1+\frac{1}{2}-\frac{1}{13} \sin 2 x+\frac{3}{2} \cos 2 x-2 \cos x .
\end{aligned}
$$

Now, the solution is $y=C \cdot F+P \cdot I$

$$
y=e^{-1 / 2 x}\left[c_{1} \cos \left(\frac{\sqrt{3}}{2}\right) x+c_{2} \sin \frac{\sqrt{3}}{2} x\right]+1+\frac{1}{2}-\frac{1}{13} \sin 2 x+\frac{3}{2} \cos 2 x-2 \cos x
$$

$$
\text { (1) } \frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\sin 2 x
$$

Given $D E$ is $D^{3} y+D^{2} y+D y+y=\sin 2 x$.

$$
\left(D^{3}+D^{2}+D+1\right) y=\sin 2 x
$$

- An A-E is $m^{3}+m^{2}+m+1=0$.

$$
\begin{gathered}
(m+1)\left(m^{2}+1\right)=0 \\
m+1=0, \quad m^{2}+18 x^{2}=\infty \\
m=-1, \quad \because \quad m= \pm i
\end{gathered}
$$

\therefore The roots are real, complex and distinct.

$$
\begin{aligned}
& C \cdot F=C_{1} e^{-x}+e^{(0) x}\left[c_{1} \cos x+C_{2} \sin x\right] \\
& P I=\frac{1}{D^{3}+D^{2}+D+1} \sin 2 x \\
&=\frac{1}{-4 D-4+D+1} \sin 2 x \\
&=\frac{1}{-3 D-3} \sin 2 x \\
&=\frac{1}{-3 D-3} \times \frac{-3 D+3}{-3 D+3} \sin 2 x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-3 D+3}{9 D^{2}-9} \sin 2 x \\
& =\frac{-3 D+3}{9(-4)-9} \sin 2 x \\
& =\frac{-3 D+3}{-36-9} \sin 2 x \\
& =\frac{-3 D+3}{-45} \cdot \sin 2 x \\
& =\frac{-1(3 D-3)}{+45} \sin 2 x \\
& =\frac{\S(D-1)}{\frac{45}{15}} \sin 2 x \\
& =\frac{D-1}{15} \sin 2 x \\
& =\frac{1}{15}[D \cdot \sin 2 x-\sin 2 x] \\
& =\frac{1}{15}[\cos 2 x \cdot(2)-\sin 2 x] \\
& =\frac{1}{15}[2 \cos 2 x-\sin 2 x] \\
& P I=\frac{1}{15}[2 \cos 2 x-\sin 2 x]
\end{aligned}
$$

\therefore The solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{-x}+e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\frac{1}{15}[2 \cos 2 x-\sin 2 x]
$$

(2) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=\cos 2 x$
goer $\quad D^{2} y+D y=\cos 2 x$.

$$
\left(b^{\prime}+D\right) y=\cos 2 x
$$

An A.E is $m^{2}+m=0$

$$
\begin{aligned}
& m(m+1)=0 \\
& m=0, \quad m=-1
\end{aligned}
$$

T The roots ale real and district.
Now C.F $=c_{1} e^{(0) x}+c_{2} e^{-x}$.

$$
\begin{aligned}
P I & =\frac{1}{D^{2}+D} \cos 2 x \\
& =\frac{1}{-4+D} \cos 2 x \\
& =\frac{1}{-4+D} \times \frac{-4-D}{-4-D} \cos 2 x \\
& =\frac{-4-0}{16-D^{2}}-\cos 2 x \\
& =\frac{-4-D}{16-(-4)} \\
& =\frac{-4-D}{20} \cos 2 x \\
& =\frac{-1}{20}[4 \cos 2 x+D \cos 2 x] \\
& \left.=\frac{-1}{20}\left[4 \cos 2 x+\frac{-1}{20} 2 x\right) 2\right] \\
& =\frac{-1}{20}[4 \cos 2 x-2 \sin 2 x] \\
& =\frac{-1}{5} \cos 2 x+\frac{1}{10} \sin 2 x .
\end{aligned}
$$

Now the solution is $y=C \cdot F+P I$

$$
y=e_{1} e^{\cos x}+c_{2} e^{-x}-\frac{1}{5} \cos 2 x+\frac{1}{16} \sin 2 x
$$

(3) $\left(D^{3}+1\right) y=2 \cos ^{2} x$.

Given D.E. \&s $\left(D^{3}+1\right) y=2 \cos ^{2} x$
An AE is $m^{3}+1=0$

$$
\begin{aligned}
&(m+1)\left(m^{2}-m+1\right)=0 \\
& m=-1, \quad m=\frac{-1 \pm \sqrt{1-4}}{2} \\
&=\frac{-1 \pm \sqrt{31}}{2}
\end{aligned}
$$

\therefore The roots are real, complex and distriate.

Now, $C \cdot F=c_{1} e^{-x}+e^{-1 / 2 x}\left[c_{2} \cos \frac{\sqrt{3}}{2} x+c_{3} \sin \frac{\sqrt{3}}{2} x\right]$

$$
\begin{aligned}
P I & =\frac{1}{D^{2}+1} 2 \cos ^{2} x \\
& =2\left[\frac{1}{D^{3}+1} \cos ^{2} x\right] \\
& =2\left[\frac{1}{D^{3}+1}\left(\frac{1+\cos 2 x}{2}\right)\right] \\
& =\frac{1}{D^{3}+1}(1)+\frac{1}{D^{3}+1} \cos 2 x \\
& =\frac{1}{D^{3}+1} e^{6)} x+\frac{1}{D^{3}+1} \cdot \cos 2 x \\
& =\frac{1}{(D) 0+1} e^{(0) x}+\frac{1}{-4 D+1} \cdot \cos 2 x \\
& =1+\frac{1}{-4 D+1} \times \frac{-4 D-1}{-4 D-1} \cos 2 x \\
& =1+\frac{-4 D-1}{16 D^{2}-1} \cos 2 x \\
& =1-\frac{-4 D+1}{16 D^{2}+1} \cos 2 x \\
& =1-\frac{4 D+1}{-64+} \cos 2 x \\
& =1+\frac{4 D+1}{63} \cos 2 x \\
& =1+\frac{4 D}{63} \cos 2 x+\frac{1}{63} \sin 2 x \\
& =1+\frac{4}{63}(-\sin 2 x)(2)+\frac{1}{63} \sin 2 x \\
& =1-\frac{8}{63} \sin 2 x+\frac{1}{63} \sin x
\end{aligned}
$$

\therefore The solution is $y=C \cdot F+P I$.

$$
y=e_{1} e^{-x}+e^{-1 / 2 x}\left[\cos \frac{\sqrt{3}}{2} x+\sin \frac{\sqrt{3}}{2} x\right]+1-\frac{8}{63} \sin 2 x+\frac{1}{63} \sin x \text {. }
$$

(8) $\left(D^{2}-3 D+2\right) y=6 e^{-3 x}+\sin 2 x$
sofr Given $D \cdot E$ is $\left(D^{2}-3 D+2\right) y=6 e^{-3 x}+\sin 2 x$
Am A.E is $m^{2}-3 m+2=0$

$$
\begin{aligned}
& m^{2}-m-2 m+2=0 \\
& m(m-1)-2(m-1)=0 \\
& (m-1)(m-2)=0 \\
& m=1,2
\end{aligned}
$$

Now, $\quad C \cdot F=c_{1} e^{x}+c_{2} e^{2 x}$.
Now, the. $P I=\frac{1}{\cdot D^{2}-3 D+2}\left(6 e^{-3 x}+\sin 2 x\right)$

$$
\begin{gather*}
=6 \frac{1}{D^{2}-3 D+2} e^{-3 x}+\frac{1}{D^{2}-3 D+2} \sin 2 x \tag{2}\\
P I_{1}
\end{gather*}
$$

$$
\begin{aligned}
P I_{1} & =6 \frac{1}{D^{2}+3 D+2} e^{-3 x} \\
& =6 \frac{1}{9+9+2} e^{-3 x} \\
& =6^{3} \frac{1}{\frac{20}{10} e^{-3 x}}=\frac{3}{10} e^{-3 x}
\end{aligned}
$$

$$
P I_{2}=\frac{1}{D^{2}-3 D+2} \sin 2 x
$$

$$
=\frac{1}{-4-3 D+2} \sin 2 x
$$

$$
=\frac{1}{-3 D-2} \sin 2 x
$$

$$
=\frac{1}{-3 D-2} \times \frac{-3 D+2}{-3 D+2} \sin 2 x
$$

$$
=\frac{-3 D+2}{9 D^{2}-4} \sin 2 x
$$

$$
=\frac{-3 D+2}{-36-4} \sin 2 x=\frac{-3 D+2}{-40} \sin 2 x
$$

$$
=\frac{-3}{-40}[0 \sin 2 x]+\frac{2}{-40}[\sin 2 x]
$$

$$
=\frac{3}{40} \cos 2 x(x)-\frac{1}{20} \sin 2 x
$$

from (2),

$$
\begin{aligned}
P I & =\frac{3}{10} e^{-3 x}+\frac{3}{20} \cos 2 x-\frac{1}{20} \sin 2 x \\
& =\frac{1}{10}\left[3 \cdot e^{-3 x}+\frac{3}{2} \cos 2 x-\frac{1}{2} \sin 2 x\right]
\end{aligned}
$$

\therefore The solution of equin(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+\frac{1}{10}\left[3-e^{-3 x}+\frac{3}{2} \cos 2 x-\frac{1}{2} \sin 2 x\right]
$$

(9) $\frac{d^{2} y}{d x^{2}}+4 y=e^{x}+\sin 2 x$

Sol 1- Given D.E is $\frac{d^{2} y}{d x^{2}}+4 y=e^{x}+\sin 2 x$.

$$
\begin{align*}
& D^{2} y+4 y=e^{x}+\sin 2 x \\
& \left(D^{2}+4\right) y=e^{x}+\sin 2 x \tag{i}
\end{align*}
$$

An AE is $m^{2}+4=0$

$$
\begin{aligned}
& m^{2} / \pm-4 \\
& m=\frac{0 \pm \sqrt{0-16}}{2} \\
&=\frac{ \pm \sqrt{16} i}{2} \\
&=\frac{ \pm \not A^{2} i}{2} \\
& m= \pm 2 i
\end{aligned}
$$

:The roots are complex and distrinct.
Now, the C.F $=e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]$

$$
P I_{2}=\frac{1}{D^{2}+4} \sin 2 x
$$

$$
=\frac{x}{2 D^{\circ}} \sin 2 x
$$

$$
=\frac{x}{2} \frac{1}{D} \sin 2 x
$$

$$
=\frac{x}{2}-\frac{\cos 2 x}{2}
$$

$$
=\frac{-x}{4} \cdot \cos 2 x .
$$

$$
P I=\frac{1}{5} e^{x}-\frac{x}{4} \cos 2 x .
$$

Now the solution of equn is $y=C \cdot F+P \cdot I$

$$
y=\frac{\$}{\$} e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]+\frac{1}{5} e^{x}-\frac{x}{4} \cos 2 x
$$

$$
\begin{align*}
& \text { Now, the } P \cdot I=\frac{1}{D^{2}+4}\left(e^{x}+\sin 2 x\right) \\
& =\frac{1}{D^{x}+4} e^{x}+\frac{1}{D^{2}+4} \sin 2 x \tag{2}\\
& =\frac{1}{1+4} e^{x}+\frac{1}{-1}+1+x \\
& P I_{1}=\frac{1}{D^{2}+9} e^{x}=\frac{1}{1+4} e^{x}=\frac{1}{5} e^{x}
\end{align*}
$$

(7)

$$
\left(D^{2}-4 D+3\right) y=\sin 3 x \cdot \cos 2 x
$$

Given $D E$ is $\left(D^{2}-4 D+3\right) y=\sin 3 x \cdot \cos 2 x$
An $A \cdot E$ is $m^{2}-4 m+3=0$

$$
\begin{aligned}
& m^{2}-m-3 m+8=0 \\
& m(m-1)-3(m-1)=0 \\
& (m-1)(m-3)=0 \\
& m=1,3 .
\end{aligned}
$$

\therefore The roots are real and distrinct.
Now, the $C \cdot F=c_{1} e^{x}+c_{2} e^{3 x}$

$$
\begin{align*}
P \cdot I & =\frac{1}{D^{2}-4 D+3} \sin 3 x \cdot \cos 2 x \\
& \left.=\frac{1}{D^{2}-4 D+2} \frac{1}{2}[\sin 5 x+\sin x] \quad \begin{array}{l}
\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A B) \\
\cos A \cdot \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \\
\sin A \cdot \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{array}\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}-4 D+3} \sin 5 x+\frac{1}{D^{2}-4 D+3} \sin x\right] . \\
& =\frac{1}{2} \frac{1}{D^{2}-4 D+3} \sin 5 x+\frac{1}{2} \frac{1}{D^{2}-4 D+3} \sin x
\end{aligned} \quad \begin{aligned}
& P I_{1} \\
&
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{884}[4(D \sin 5 x)-22 \sin 5 x] \\
& =\frac{1}{884}[4 \cdot \cos 5 x(5)-22 \sin 5 x] \\
& =\frac{20^{5}}{\frac{884}{221}} \cos 5 x-\frac{28 x}{\frac{11}{442}} \sin 5 x \\
& =\frac{5}{221} \cos 5 x-\frac{11}{442} \sin 5 x \text {. } \\
& P I_{2}=\frac{1}{D^{2}-4 D+3} \sin x \\
& =\frac{1}{-1-40+3} \sin x \\
& =\frac{1}{-4 D+2} \sin x \prime=\frac{1}{-4 D+2} \times \frac{-4 D-2}{-4 D-2} \sin x \\
& =\frac{-40+2}{16 D^{2}-4} \sin x \\
& =\frac{-40-2}{16(-1)-4} \sin x \\
& =\frac{-(40+2)}{-(6-4} \sin x \\
& =\frac{+2(2 D+1)}{+\frac{20}{10}} \sin x=\frac{1}{10}[2(D \sin x)+\sin x] \\
& =\frac{1}{10}[2 \cdot \cos x+\sin x] \\
& =\frac{2}{10} \cos x+\frac{1}{10} \sin x \text {. } \\
& =\frac{1}{5} \cos x+\frac{1}{10} \sin x . \\
& P I=\frac{1}{2}\left[\frac{5}{221} \cos 5 x-\frac{11}{442} \sin 5 x+\frac{1}{5} \cos x+\frac{1}{10} \sin x\right]
\end{aligned}
$$

Now the solution of equ"D is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{3 x}+\frac{1}{2}\left\{\frac{5}{221} \cos 5 x-\frac{11}{442} \sin 5 x+\frac{1}{5} \cos x+\frac{1}{10} \sin x\right]
$$

(10) $\frac{d^{3} y}{d x^{3}}+y=\cos (2 x-1)$

Given $D \cdot E$ is $\frac{d^{3} y}{d x^{3}}+y=\cos (2 x-1)$

$$
\begin{align*}
& \mathbb{D}^{3} y+y=\cos (2 x-1) \\
& \left(D^{3}+1\right) y=\cos (2 x-1) \tag{1}
\end{align*}
$$

An A.E is $m^{3}+1=0$.

$$
\begin{array}{cc}
\quad(m+1)\left(m^{2}-m+1\right)=0 \\
m+r=0, & m^{2}-m+1=0 \\
m=-1, & m=\frac{1 \pm \sqrt{1-4}}{2} \\
& =\frac{1 \pm \sqrt{3} i}{2} \\
0 & -1 \begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 \\
1 & -1 & 1
\end{array} \\
\therefore m=-1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} i
\end{array}
$$

\therefore The roots are real, complex and distinct.
Now, the $C \cdot F=c_{1} e^{-x}+e^{1 / 2 x}\left[c_{2} \cos \frac{\sqrt{3}}{2} x+c_{3} \sin \frac{\sqrt{3}}{2} x\right]$

$$
\begin{aligned}
& P \cdot I=\frac{x-4}{\cos 2 x-1} \frac{1}{D^{3}+1} \quad \cos (2 x-1) \\
& =\frac{1}{D^{3}+1}[\cos 2 x \cdot \cos (1)+\sin 2 x \sin (1)] . \\
& =\cos (1) \frac{1}{D^{3}+1} \cos 2 x+\sin (1) \frac{1}{D^{3}+1} \sin 2 x \\
& \mathrm{PI} \quad \mathrm{PI}_{2} \\
& P I_{1}=\cos (1) \frac{1}{D^{3}+1} \cos 2 x \\
& =\cos (1) \frac{1}{D^{2}-D+1} \cos 2 x \\
& =\cos (1) \frac{1}{-4 D+1} \cos 2 x \\
& =\cos 1 \frac{1}{-4 D+1} \times \frac{-4 D-1}{-4 D-1} \cos 2 x \\
& =\cos (1) \frac{-4 D-1}{16 D^{2}-1} \cos 2 x \\
& =\cos (1) \frac{-(4 D+1)}{16(-4)-1} \cos 2 x \\
& =\cos (1) \frac{+(4 D+1)}{\operatorname{F65}} \cos 2 x \\
& =\frac{\cos (1)}{65}[4(D \cos 2 x)+\cos 2 x] . \\
& =\frac{\cos (1)}{65}[4 \cdot(-\sin 2 x)(2)+\cos 2 x] \\
& =\frac{\cos (x)}{65}[-8 \sin 2 x+\cos 2 x] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
P I_{2} & =\sin (1) \frac{1}{D^{3}+1} \sin 2 x \\
& =\sin (1) \frac{1}{-4 D+1} \sin 2 x \\
& =\sin (1) \frac{1}{-4 D+1} \times \frac{-4 D-1}{-4 D-1} \sin 2 x \\
& =\sin (1) \frac{-4 D-1}{16 D^{2}-1} \sin 2 x \\
& =\sin (1) \frac{-(4 D+1)}{-16(-4)-1} \sin 2 x \\
& =\sin (1) \frac{+(4 D+1)}{765} \sin 2 x \\
& =\frac{\sin (1)}{65}[4(D \sin 2 x)+\sin 2 x] \\
& =\frac{\sin (1)}{65}[4 \cos 2 x(2)+\sin 2 x] \\
& =\frac{\sin (1)}{65}[8 \cos 2 x+\sin 2 x] \\
P I & =\frac{\cos (1)}{65}[-8 \sin 2 x+\cos 2 x]+\frac{\sin (1)}{65}[8 \cos 2 x+\sin 2 x]
\end{aligned}
$$

a the solution of equine is , $y=C \cdot F+P-I$.

$$
\begin{aligned}
y= & c_{1} e^{-x}+e^{-y_{2} x}\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right] \\
& +\frac{\cos (1)}{65}(-8 \sin 2 x+\cos 2 x)+\frac{\sin (1)}{65}(8 \cos 2 x+\sin 2 x)
\end{aligned}
$$

4 (u) 2019
Type - III
(2) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2}+2 x+4$
sols Given $D \cdot E$ is $D^{2} y+D y=x^{2}+2 x+4$

$$
\begin{equation*}
\left(D^{2}+D\right) y=x^{2}+2 x+y \tag{1}
\end{equation*}
$$

An A-E is $m^{2}+m=0$

$$
\begin{aligned}
& m(m+1)=0 \\
& m=0,-1
\end{aligned}
$$

\therefore The roots are real and distinct.
Now, $C \cdot F=c_{1} e^{(0) x}+c_{2} e^{-x}$

$$
\begin{aligned}
P I & =\frac{1}{D^{2}+0}\left(x^{2}+2 x+4\right) \\
& =\frac{1}{D\left(D^{2}+1\right)}\left(x^{2}+2 x+4\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{D\left(1+D^{2}\right)}\left(x^{2}+2 x+4\right) \\
& =\frac{1}{D}\left(1+D^{-1}\left(x^{2}+2 x+4\right)\right. \\
& =\frac{1}{D}\left[1-D^{-1}+D^{4}-D^{3}+\right]\left(x^{2}+2 x+4\right) \\
& =\frac{1}{D}\left[x^{2}+2 x+4-(2 x+2)+2\right] \\
& =\frac{1}{D}\left[x^{2}+2 x+4-2(x-x)+k\right] \\
& =\frac{1}{D}\left(x^{2}+4\right) \\
& P I==\frac{x^{3}}{3}+4 x .
\end{aligned}
$$

Now the solution of equin(1) is $y=C \cdot F+R I$

$$
y=c_{1} e^{(0) x}+c_{2} e^{-x}+\frac{x^{3}}{3}+4 x \text {. }
$$

(2) $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}=1+x^{2}$
sol: Given $D-E$ is $D^{3} y-D^{2} y-6 D y=1+x^{2}$

$$
\begin{equation*}
\left(D^{3}-D^{2}-6 D\right) y=1+x^{2} \tag{1}
\end{equation*}
$$

An A-E is $m^{3}-m^{2}-6 m=0$.

$$
\begin{aligned}
& (m-3)\left(m^{2}+2 m\right)=0 \\
& (m-3) m(m+2)=0 \\
& m=0, \quad m=-2, m=3
\end{aligned}
$$

$$
3 \begin{array}{cccc}
1 & -1 & -6 & 0 \\
0 & 3 & 6 & 0 \\
1 & 2 & 0 & 0
\end{array}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
C F & =c_{1} e^{(0) x}+c_{2} e^{-2 x}+c_{3} e^{3 x} \\
P I & =\frac{1}{D^{3}-D^{2}-6 D}\left(1+x^{2}\right) \\
& \left.=\frac{1}{}+\frac{\left(1+x^{2}\right)}{6 D}-1\right) \\
& =\frac{1}{-6 D}\left[1-\left(\frac{D^{2}-D}{6}\right)\right] \\
& =\frac{-1}{6 D}\left[1-\left(\frac{D^{2}-D}{6}\right)\right]-1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{6 D}\left[1+\left(\frac{D^{2}-D}{6}\right)+\left(\frac{D^{2}-D}{6}\right)^{2}+\cdots\right]\left(1+x^{2}\right) . \\
& =\frac{-1}{60}\left[\left(1+x^{2}\right)+\frac{\left(D^{2}-D\right)}{6}\left(1+x^{2}\right)+\left(\frac{D^{2}-D}{6}\right)^{2}\left(1+x^{2}\right)\right] \\
& =\frac{-1}{6 D}\left[1+x^{2}+\frac{1}{6}\left[2-(0+2 x)+\frac{\left(D^{4}+D^{2}-2 D^{3}\right.}{36}\left(1+x^{2}\right)\right]\right. \\
& \left.=\frac{-1}{60}\left[1+x^{2}+\frac{1}{6}(2-2 x)\right]+\frac{1}{36}(00+2-0)\right] \\
& =\frac{-1}{60}\left[1+x^{2}+\frac{1}{3}(1-x)+\frac{1}{36}(\%)\right] \text {. } \\
& =-\frac{1}{60}\left[1+x^{2}+\frac{1-x}{3}+\frac{1}{18}\right] \\
& \begin{array}{l}
=\frac{1}{60}\left(x^{2}-x^{2}+29+18\right) \\
=\frac{-1}{6}\left[\frac{1}{6}\left(x^{2}\right)-\frac{1}{0}(x)+\frac{1}{10}(2) x+\frac{1}{8}\left(\frac{1}{18}\right)\right] \\
\\
\left.=\frac{x}{6}\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x\right]+\frac{1}{18} x\right]
\end{array} \\
& =\frac{-1}{60}\left[1+x^{2}+\frac{1}{3}-\frac{x}{3}+\frac{1}{18}\right] \\
& =\frac{-1}{6}\left[\frac{1}{b}(1)+\frac{1}{D}\left(x^{2}\right)-\frac{1}{D} \frac{1}{3}-\frac{1}{D} \frac{x}{3}+\frac{1}{D} \frac{1}{18}\right] \\
& =-\frac{1}{6}\left[x+\frac{x^{3}}{3}-\frac{1}{3} x-\frac{1}{3} \frac{x^{2}}{2}+\frac{1}{18}, x\right] \\
& =-\frac{1}{6}\left[x+\frac{x^{3}}{3}-\frac{x}{3}-\frac{x^{2}}{6}+\frac{x^{1}}{18}\right] \\
& =\frac{-1}{6}\left[\frac{18 x+6 x^{3}-6 x-3 x^{2}+x}{18}\right] \\
& P I=\frac{-1}{108}\left(6 x^{3}-3 x^{2}+13 x\right)
\end{aligned}
$$

Now, the solution of Equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{(0) x}+c_{2} e^{-2 x}+c_{3} e^{3 x}-\frac{1}{108}\left(6 x^{3}-3 x^{2}+13 x\right)
$$

(5) $\frac{d^{2} y}{d x^{2}}-4 y=x^{2}+2 x$.
sole Given $D \cdot E$ is $D^{2} y-4 y=x^{2}+2 x$

$$
\begin{equation*}
\left(D^{2}-4\right) y=x^{2}+2 x \tag{1}
\end{equation*}
$$

An AE is $m^{2}-4=0$.

$$
\begin{aligned}
& (m+2)(m-1)=0 \\
& m=2,-2
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
C \cdot F & =C_{1} e^{2 x}+C_{2} e^{-2 x} \\
P I & =\frac{1}{D^{2}-4}\left(x^{2}+2 x\right) \\
& =\frac{1}{4\left(\frac{D^{2}}{4}-1\right)}\left(x^{2}+2 x\right) \\
& =\frac{1}{-4\left(1-\frac{D^{2}}{4}\right)}\left(x^{2}+2 x\right) \\
& =\frac{-1}{4}\left(1-\frac{D^{2}}{4}\right)^{-1}\left(x^{2}+2 x\right) \\
& =\frac{-1}{4}\left[1+\frac{D^{2}}{4}+\left(\frac{D^{2}}{4}\right)^{2}+\cdots\right]\left(x^{2}+2 x\right) \\
& =\frac{-1}{4}\left[\left(x^{2}+2 x^{2}\right)+\frac{1}{4} D^{2}\left(x^{2}+2 x\right)+\frac{1}{16}\right. \\
& =\frac{-1}{4}\left[x^{2}+2 x+\frac{1}{4}(2)+0\right] \\
& \left.=\frac{-1}{4}\left[x^{2}+2 x\right)\right] \\
& =\frac{-1}{4}\left[\frac{\left.2 x^{2}+2 x+\frac{1}{2}\right]}{2}\right] \\
& =\frac{-1}{8}\left[2 x^{2}+4 x+1\right]
\end{aligned}
$$

Now, the solution of $\varepsilon q \mu^{n}(1)$ is $y=C . F+P . \mathbb{C}$

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{1}{8}\left[2 x^{2}+4 x+1\right]
$$

(8) $\left(D^{3}-D\right) z=2 y+1+4 \cos y+2 e^{y}$

Given $D \cdot E$ is $\left(D^{3}-D\right) z=2 y+1+4 \cos y+2 e^{y}$
An A.E is $m^{3}-m=0$

$$
\begin{gathered}
m\left(m^{2}-m 1\right)=0 \\
m(m+1)(m-1)=0 \\
m=0,-1,1
\end{gathered}
$$

\therefore The roots are real and distinct.

$$
\begin{align*}
& C \cdot F=C_{1} e^{(0) x}+C_{2} e^{-x}+C_{3} e^{x} \\
P I= & \frac{1}{D^{3}-D}\left(2 y+1+4 \cos y+2 e^{y}\right) \\
= & \frac{1}{D^{3}-D} 2 y+\frac{1}{D^{3}-D}(1)+\frac{1}{\left.D^{3}-1\right)} 4 \cos y+\frac{1}{D^{3}-D} 2 e^{y} \\
= & 2 \frac{1}{D^{3}-D} y+\frac{1}{D^{3}-D}(0) y+\frac{1}{D^{3}-D} \cos y+2 \cdot \frac{1}{D^{3}-D} e^{y} \tag{2}\\
& P I_{1} \\
P I_{1}= & 2 \cdot \frac{1}{D^{3}-D} y \\
= & 2 \frac{1}{D\left(D^{2}-1\right)} y \\
= & \frac{2}{-D} \frac{1}{\left(1-D^{2}\right)} y=\frac{-2}{D}\left[1+D^{2}+\left(D^{2}\right)^{2}+\left(D^{2}\right)^{3}+\cdots D^{2} y\right. \\
= & \frac{-2}{D}\left[y \cdot D^{2}(y)+0+0\right] \\
= & \frac{-2}{D}[y+0] \\
= & \frac{-2}{D}(y) \\
= & -\frac{2}{D} \frac{1}{D}(y) \\
= & -\not y^{2} \cdot \frac{y^{2}}{2}
\end{align*}
$$

$$
\begin{aligned}
P I_{2} & =\frac{1}{D^{3}-1} e^{(0) y} \\
& =\frac{x y}{3 D^{2}-1} e^{(0) y} \\
& =\frac{y}{0-1} e^{(0) y}=-y \\
P I_{3} & =4 \frac{1}{D^{3}-D} \cos y \\
& =4 \frac{y}{3 D^{2}-1} \cos y \\
& =4 \frac{y}{3(-1)-1} \cos y \\
& =4 \frac{y}{-y} \cos y \\
& =-y \cdot \cos y \\
P I & =-y^{2}-y-y \cos y+y e^{y} .
\end{aligned}
$$

$$
P I_{y}=2 \frac{1}{D^{3}-D} e^{y}
$$

$$
=2 \frac{y}{3 D^{2}-1} e^{y}
$$

$$
=2 \frac{y}{3(1)-1} e^{y}
$$

$$
=\$ \frac{y}{z} e^{y}
$$

$$
=y \cdot e^{y}
$$

Now the solution of equip is $z=C \cdot F+P \cdot I$

$$
z=c_{1} e^{(0) x}+c_{2} e^{-x}+c_{3} e^{x}-y^{2}-y-y \cos y+y e^{y} \text {. }
$$

(3) $\left(D^{2}-2\right)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$

An $A \cdot E$ is $(m-2)^{2}=0$

$$
\begin{aligned}
& (m-2)(m+2)=0 \\
& m=2,2
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
\begin{aligned}
& C \cdot F=c_{1} e^{2 x}+c_{1} x \cdot e^{2 x} . \\
& \text { PhI }=\frac{1}{(D-2)^{2}} \cdot 8\left(e^{2 x}+\sin 2 x+x^{2}\right) \\
& \neq 8 \cdot \frac{y}{2\left[\frac{0^{2}}{L}-1\right]}\left(\ell^{2 x}+\sin \left(2 x+x^{2}\right)\right. \\
& =1\left(\frac{-8}{2} \frac{x}{\left[1+\frac{p^{2}}{2}\right]^{2}}\left(e^{2 x}+\sin 2 x+x^{2}\right)\right. \\
& =-x^{\prime}\left[x-\frac{\phi^{2}}{x}\right]^{+2}\left(d^{2 x}+/ \sin 2 x^{2}+x^{2}\right) \\
& =-\mu\{
\end{aligned}
$$

$$
\begin{aligned}
& =8\left[\begin{array}{c}
\left.\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}} \cdot \sin 2 x+\frac{1}{(D-2)^{2}} \cdot x^{2}\right] \\
P I_{1} \quad \mathrm{PI}_{2}
\end{array}\right. \\
& P I_{1}=\frac{1}{(D-2)^{2}} e^{2 x} \quad P I_{2}=\frac{1}{D^{2}-4 D+4} \sin 2 x \\
& =\frac{x}{2(D-2)} \cdot e^{2 x} \\
& =\frac{1}{-X X-4 D+X X} \sin 2 x \\
& =\frac{x^{2}}{2(1)} e^{2 x} \\
& =-\frac{1}{4} \frac{1}{5} \sin 2 x \\
& =\frac{x^{2}}{2} \cdot e^{2 x} \\
& =+\frac{1}{4} \frac{(\cos 2 x)}{2} \\
& =\frac{1}{8} \cos 2 x \\
& P I_{3}=\frac{1}{(D-2)^{2}} \cdot x^{2}=\frac{1}{-2\left(1-\frac{D^{2}}{2}\right)^{2}} x^{2} \\
& =-\frac{1}{2}\left(1-\frac{D^{2}}{2}\right)^{-2} \cdot x^{2} \\
& =-\frac{1}{2}\left[1+4 \frac{D^{2}}{2}+3\left(\frac{D^{2}}{2}\right)^{2}+\cdots\right] x^{2} \\
& =\frac{-1}{2}\left[x^{2}+D^{2}\left(x^{2}\right)+0\right] \\
& =-\frac{1}{2}\left[x^{2}+2\right]
\end{aligned}
$$

from (2),

$$
\begin{aligned}
P I & =8\left[\frac{x^{2}}{2} e^{2 x}+\frac{1}{8} \cos 2 x-\frac{1}{2}\left(x^{2}+2\right)\right] \\
& \left.=8 \frac{4 x^{2} e^{2 x}+\cos 2 x-4 x^{2}-8}{8}\right] \\
& =4 x^{2} e^{2 x}+\cos 2 x-4 x^{2}-8
\end{aligned}
$$

Now the solution of $\varepsilon q \mu^{n}(1)$ is $y=C . F .+P \cdot I$

$$
y=c_{1} e^{2 x}+c_{2}-x e^{2 x}+4 x^{2} e^{2 x}+\cos 2 x-c_{1} x^{2}-8
$$

(b) $\frac{d^{2} y}{d x^{2}}+y=e^{2 x}+\cosh 2 x+x^{3}$.

Given $D-E$ is $D^{2} y+y=e^{2 x}+\cosh 2 x+x^{3}$.

$$
\left(D^{2}+1\right) y=e^{2 x}+\cos h_{2} x+x^{3}
$$

An A.E is $m^{2}+1=0$

$$
\begin{aligned}
m & =\frac{+0 \pm \sqrt{0-4}}{2} \\
& =\frac{ \pm x^{2} i}{2} \\
& = \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{aligned}
& C \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& P \cdot I=\frac{1}{D^{2}+1}\left[e^{2 x}+\cosh 2 x+x^{3}\right] \\
&=\frac{1}{D^{2}+1} e^{2 x}+\frac{1}{D^{2}+1} \cosh 2 x+\frac{1}{D^{2}+1} x^{3} \\
& P I_{1} \quad P I_{2}
\end{aligned}
$$

$$
\begin{aligned}
P I_{1} & =\frac{1}{D^{2}+1} e^{2 x} \\
& =\frac{1}{4+1} e^{2 x}=\frac{1}{5} e^{2 x}
\end{aligned}
$$

$$
P I_{2}=\frac{1}{D^{2}+1} \cdot \cosh 2 x
$$

$$
=\frac{1}{x^{2}+1} \frac{e^{2 x}+e^{-2 x}}{2}
$$

$$
=\frac{1}{2}\left[\frac{1}{D^{2}+1} e^{2 x}+\frac{1}{D^{2}+1} e^{-2 x}\right]
$$

$$
=\frac{1}{2}\left[\frac{1}{4+1} e^{2 x}+\frac{1}{4+7} e^{-2 x}\right]
$$

$$
=\frac{1}{2}\left[\frac{1}{5} e^{2 x}+\frac{1}{5} e^{-2 x}\right]
$$

$$
=\frac{1}{10}\left(e^{2 x}+e^{-2 x}\right)
$$

$$
\begin{aligned}
P I_{3} & =\frac{1}{D^{2}+1} \cdot x^{3} \\
& =\frac{1}{1+D^{2}} x^{3} \\
& =\left(1+D^{2}\right)^{-1} x^{3} \\
& =\left(1-D^{2}+D^{3}-D^{3}+\cdots\right] x^{3} \\
& =x^{3}-D^{2}\left(x^{3}\right)+D^{2}\left(x^{3}\right)-D^{3}\left(x^{3}\right) \\
& =x^{3}-3 x^{2}+6 x-6
\end{aligned}
$$

from (2)

$$
P I=\frac{1}{5} e^{2 x}+\frac{1}{10}\left(e^{2 x}+e^{-2 x}\right)+x^{3}-3 x^{2}+6 x-6 .
$$

Now the solution of equn (1) is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\frac{1}{5}\left[e^{2 x}+\frac{1}{2}\left(e^{2 x}+e^{-2 x}\right)\right]+x^{3}-3 x^{2}+6 x-6
$$

(7) $(D-1)^{2}(D+1)^{2} y=\sin ^{2} \frac{x}{2}+e^{x}+x$.

Sol: $=$
Given D.E is $(D-1)^{2}(D+1)^{2}=\sin ^{2} x / 2+e^{x}+x$
An A.E is

$$
\begin{aligned}
& \text { is }(m-1)^{2}(m+1)^{2}=0 \\
& m=1,1, \quad m=-1,-1
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
\begin{aligned}
& C \cdot F=c_{1} e^{x}+c_{2} x \cdot e^{x}+c_{3} e^{-x}+c_{4} x \cdot e^{-x} \\
& R I=\frac{1}{(D-1)^{2}(D+1)^{2}}\left(\sin ^{2} x r_{2}+e^{x}+x\right) \\
&=\frac{1}{(D-1)^{2}(D+1)^{2}}\left[\frac{1-\cos x}{2}+e^{x}+x\right] \\
&=\frac{1}{(D-1)^{2}(D+1)^{2}}\left(\frac{(-\cos x}{2}\right)+\frac{1}{(D-1)^{2}(D+1)^{2}} e^{x}+\frac{1}{(D-1)^{2}(D+1)^{2}} x . \\
&=\frac{1}{2} \frac{1}{(D-1)^{2}(D+1)^{2}} P I_{1} \quad-\frac{1}{2} \frac{1}{(D-1)^{2}(D+1)^{2}} \cos x+\frac{1}{(D-1)^{2}(D+1)^{2}} e^{x}+\frac{1}{(D-1)^{2}(D+1)^{2}} x
\end{aligned}
$$

$$
\begin{align*}
P I_{1} & =\frac{1}{2} \frac{1}{(D-1)^{2}\left((D+1)^{2}\right.} e^{(0) x} \tag{2}\\
& =\frac{1}{2} \frac{1}{(1)(1)} e^{(0) x}=\frac{1}{2} .
\end{align*}
$$

$$
P I_{2}=\frac{1}{2} \frac{1}{(D-1)^{2}(D+1)^{2}} \cos x
$$

$$
=\frac{+}{2} \frac{x}{(D-1)^{2} 2(D+n)+(D+1)^{2}+(D-1)} \cos x
$$

$$
=\frac{1}{2}+x \neq
$$

$$
=\frac{1}{2} \frac{1}{[(D-1)(D+1)]^{2}} \cos x
$$

$$
=\frac{1}{2} \frac{1}{\left(D^{2}-1\right)^{2}} \cos x=\frac{1}{2} \frac{1}{(-1-1)^{2}} \cos x
$$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{x}{2\left(D^{x}-1\right)^{2} 20}=\frac{1}{2} \cos x \\
& =\frac{1}{8} \frac{x^{2}}{10(2)^{2}} \cos +\left(x^{2}-1\right)(x) \cos x \\
& =\frac{1}{2} \frac{1}{4} \cos x \\
& \left(1 x^{2}(2 x+1)+(1-x)(1 x)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =x \\
P I & =\frac{1}{2}+\frac{1}{8} \cos x+\frac{x^{x}}{8} e^{x}+x
\end{aligned}
$$

Now the solution of $\operatorname{sen}^{n}(1)$ is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} x \cdot e^{x}+c_{3} e^{-x}+c_{4} x \cdot e^{-x}+\frac{1}{2}-\frac{1}{8} \cos x+\frac{x^{2}}{8} e^{x}+
$$

$$
\begin{aligned}
& =\frac{x^{2}}{8}\left(\frac{1}{2}+\infty\right)^{\cos +x} \\
& =\frac{x^{2}}{\sqrt{6}} \cdot \cos x . \\
& P I_{3}=\frac{1}{(D-1)^{2}(D+1)^{2}} e^{x} \\
& \Rightarrow \frac{1}{\left(D^{2}+a^{2}\right.} x^{x} \\
& \neq \frac{-x}{2\left(\cos ^{2}-1\right)} . \\
& 7 \frac{x}{(D-1)^{-2}} \\
& =\frac{1}{\left(D^{2}-1\right)^{2}} e^{x} \text {. } \\
& =\frac{x}{2\left(D^{2}-1\right) \cdot(2 D)} e^{x}=\frac{1}{4} \frac{x}{\dot{D}\left(D^{2}-1\right)} e^{x} . \\
& =\frac{1}{4} \frac{x^{2}}{D(2 D-0)+\left(D^{2}-1\right)(1)} e^{x} \\
& =\frac{1}{4} \frac{x^{2}}{(1) 2(1)+\operatorname{co})(1)} e^{x} \\
& =\frac{1}{4} \frac{x^{2}}{2} e^{x}=\frac{x^{2}}{8} e^{x} \\
& { }^{P I} I_{y}=\frac{1}{(D-1)^{2}(0+1)^{2}} x . \\
& \left.=\frac{1}{\left(D^{2}-1\right)^{2}} x=A^{2}-1\right) \frac{1}{(+1)}\left(1-D^{2}\right)^{2} \cdot \\
& =\left(1-D^{2}\right)^{-2} \cdot x \\
& =\left[1+2\left(D^{D}\right)+3\left(D^{2}+{ }^{2}+4\left(D^{2}\right)^{3}+s(D)^{4}+\cdots\right] x\right. \\
& =\left(x+2 D^{2} x+3 D^{4} x+4 D^{2} x+\cdots\right) \\
& =x+2(0)+3(0)+4(0)+ \\
& =x+0+0 \div \\
& =x
\end{aligned}
$$

1419Type-4.
(7) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x^{2} e^{3 x}+\sin 2 x$.

Sol:- Given $D \cdot E$ is $D^{2} y-3 D y+2 y=x^{2} \cdot e^{3 x}+\sin 2 x$

$$
\begin{equation*}
\left(D^{2}-3 D+2\right) y=x^{2} \cdot e^{3 x}+\sin 2 x \tag{1}
\end{equation*}
$$

A) $A E$ is

$$
\begin{gathered}
m^{2}-3 m+2=0 \\
m^{2}-m-2 m+2=0 \\
m(m-1)-2(m-1)=0 \\
(m-1)(m-2)=0 \\
m=1,4 .
\end{gathered}
$$

The roots are real and distinct.

$$
\begin{aligned}
& C \cdot F=c_{1} e^{x}+c_{2} e^{2 x} \\
& P I=\frac{1}{\left(D^{2}-3 D+2\right)}\left(x \cdot e^{3 x}+\sin 2 x\right) \\
& =\theta^{3 x} \frac{1}{(D+3)^{2}-3(D+3)+2} x^{2}+\frac{(6)}{(D-(A))^{2}-3(D+(0)+2} \sin 2 x \text {. } \\
& P I_{1} \\
& \mathrm{PI}_{2} \\
& P I_{1}=e^{3 x} \frac{1}{D^{2}+9+6 D-3 D-x x+2} x^{2} \\
& =e^{3 x} \frac{1}{D^{2}+3 D+2} x^{2} \\
& =e^{3 x} \frac{1}{2\left(\frac{D^{2}+3 D}{2}+1\right)} x^{2} \\
& \begin{array}{l}
=\frac{e^{3 x}}{2} \frac{1}{1+\left(\frac{D^{2}+3 D}{2}\right)} x^{2} \\
=\frac{e^{3 x}}{2}\left(1+\frac{D^{2}+3 D}{2}\right)^{-1} x^{2}
\end{array} \\
& =\frac{e^{3 x}}{2}\left[1-\left(\frac{\left(D^{2}+3 D\right.}{2}\right)+\left(\frac{D^{2}+3 D}{2}\right)^{2}-\left(D^{2}+3 D\right)^{3}+\cdots\right] x^{2} \\
& =\frac{e^{3 x}}{2}\left[x^{2}-\left(\frac{D^{2}+3 D}{2}\right) x^{2}+\left(\frac{D^{2}+3 D}{2}\right)^{2} x^{2}-\cdots\right] \\
& \therefore=\frac{e^{3 x}}{2}\left[x^{2}-\frac{1}{2}\left[D^{2}\left(x^{2}\right)+3 D\left(x^{2}\right)\right]+\left(\frac{D 4+9 D^{2}+6 D^{3}}{4}\right) x^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{3 x}}{2}\left[x^{2}-\frac{1}{2}[2+3(2 x)]+\frac{1}{4}\left[D^{4}\left(x^{2}\right)+9 D^{2}\left(x^{2}\right)+6 D\left(x^{2}\right)\right]\right] \\
& =\frac{e^{3 x}}{2}\left[x^{2}-\frac{1}{2}[2+6 x)+\frac{1}{4}(0+9 .(2)+6(2 x))\right] \\
& =\frac{e^{3 x}}{2}\left[x^{2}-1-3 x+\frac{1}{4} \cdot(18+124)\right] \\
& =\frac{e^{3 x}}{2} \cdot\left[x^{2}-1-3 x+\frac{1}{2}(9+x)\right] \text {. } \\
& =\frac{e^{3 x}}{2} \cdot\left[x^{2}-1-3 x+\frac{9}{2}+\frac{3 x}{x}\right] \\
& =\frac{e^{3 x}}{2}\left[x^{2}-1-3 x+\frac{9}{2}+3 x\right] \text {. } \\
& =\frac{e^{3 x}}{2}\left[x^{2}-1+\frac{9}{2} x-3 x\right] \\
& =\frac{e^{3 x}}{2} \frac{4}{2}\left[\left(2 x^{2 x}-2+49\right]\right. \\
& -1+\frac{9}{2} \\
& =\frac{-2+9}{2}=\frac{7}{2} \\
& \neq \frac{e^{3 x}}{4}\left(22 x^{2}+A_{1}\right) \text {. } \\
& =\frac{e^{3 x}}{2}\left[x^{2}-3 x+\frac{7}{2}\right] \\
& P I_{2}=\frac{1}{D^{2}-3 D+2} \sin 2 x \\
& =\frac{1}{-4-3 D+2} \sin 2 x \\
& =\frac{1}{-3 D-2} \sin 2 x \\
& =\frac{1}{-3 D-2} \times \frac{-3 D+2}{-3 D+2} \sin 4 x \\
& =\frac{-3 x+2}{9 D^{2}-4} \sin 2 x \\
& =\frac{-3 D+2}{9(-4)-4} \operatorname{sen} 2 x \\
& =\frac{-3 D+2}{-36-4} \sin 2 x \\
& =\frac{+(3 D-2)}{+4^{\circ}} \sin 2 x \\
& =\left(\frac{30-2}{40}\right) \sin 2 x
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{40}[30 \sin 2 x-2 \sin 2 x] \\
&=\frac{1}{40}[3 \cdot \cos 2 x(2)-2 \sin 2 x] \\
&=\frac{1}{40}[6 \cos 2 x-2 \sin 2 x] \\
&=\frac{\not 2}{40}[3 \cos 2 x-\sin 2 x] \\
&=\frac{1}{20}[3 \cos 2 x-\sin 2 x] \\
& P I=\frac{e^{3 x}}{2}\left[x^{2}-3 x+\frac{7}{2}\right]+\frac{1}{20}[3 \cos 2 x-\sin 2 x]
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+\frac{e^{3 x}}{2}\left[x^{2}-3 x+\frac{7}{2}\right]+\frac{1}{20}[3 \cos 2 x-\sin 2 x]
$$

(1) $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$

Sols Given D.E is $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$
An A.E is $m^{2}-4 m+3=0$

$$
\begin{aligned}
& m^{2}-m-3 m+3=0 \\
& m(m-1)-3(m-1)=0 \\
& (m-1)(m-3)=0 \\
& m=1 ; 3 .
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{2}-4 D+3} e^{x} \cdot \cos 2 x \\
& =e^{x} \frac{1}{(D+1)^{2}-4(D+1)+3} \cos 2 x \\
& =e^{x} \frac{1}{D^{2}+x+2 D-4 D-4+7} \cos 2 x \\
& =e^{x} \frac{1}{D^{2}-2 D} \cos 2 x \\
& =e^{x} \frac{1}{-4-2 D} \cos 2 x \\
& =e^{x} \frac{1}{-4-2 D} \times \frac{-4+2 D}{-4+2 D} \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x} \frac{-4+2 D^{2}}{16-4 D^{2}} \cos 2 x \\
& =e^{x} \frac{-4+2 D}{16-4(-4)} \cos 2 x \\
& =e^{x} \frac{-4+2 D}{16+16} \cos 2 x \\
& =e^{x} \frac{2 D-4}{32} \cos 2 x \\
& =\frac{e^{x}}{32}(2 \cdot D \cos 2 x-4 \cos 2 x) \\
& =\frac{e^{x}}{32}(2 \cdot(-\sin 2 x)(2)-4 \cos 2 x) \\
& =\frac{e^{x}}{32}(-4 \sin 2 x-4 \cos 2 x) \\
& =\frac{-e^{x}}{8}(\sin 2 x+\cos 2 x)
\end{aligned}
$$

Now the solution of sequin is $y_{1}=C \cdot F+P \cdot I$.

$$
y=c_{1} e^{x}+c_{2} e^{3 x}+-\frac{e^{x}}{8} \sin 2 x-\frac{e^{x}}{8} \cos 2 x
$$

(2) $\left(D^{4}-1\right) y=\cos x \cdot \cosh x$.

Sol:- Given $D E E$ is $(D 4-1) y=\cos x \cdot \cosh x$
$(8)+D)$.
on A.E is $m^{4}-1=0$

$$
\begin{aligned}
& \left(m^{2}\right)^{2}-(1)^{2}=0 \\
& \left(m^{2}+1\right)\left(m^{2}-1\right)=0 . \\
& m^{2}+1=0, \quad m^{2}-1=0 \\
& m= \pm i, \quad m= \pm 1
\end{aligned}
$$

\therefore The roots are real imaginary and distinct.

$$
\begin{aligned}
& C \cdot F=c_{1} e^{x}+c_{2} e^{-x}+e^{00 x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& P \cdot T=\frac{1}{D^{4}-1} \cos x \cdot \cosh x \\
&=\frac{1}{0^{4}-1} \cos x \cdot\left(\frac{e^{x}+e^{-x}}{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2} \frac{1}{D^{4}-1}\left(e^{x} \cdot \cos x+e^{-x} \cdot \cos x\right) \\
& =\frac{1}{2}\left[\frac{1}{D^{4}-1} e^{x} \cdot \cos x+\frac{1}{D^{4}-1} \cdot e^{-x} \cos x\right] \tag{2}\\
& P I_{1}=\frac{1}{D U-1} \quad e^{x} \cdot \cos x \\
& =e^{x} \frac{1}{(D+1)^{4}-1} \cdot \cos x \text {. } \\
& =e^{x} \frac{1}{\left[(D+1)^{2}\right]^{2}-1} \cos x \\
& =e^{x} \frac{1}{\left(D^{2}+2 D+1\right)^{2}-1} \cos x \text {. } \\
& =e^{x} \frac{1}{\left(D^{2}\right)^{2}+4 D^{2}+y+4 D^{3}+4 D+2 D^{2}-x} \cos x \\
& =e^{x} \frac{1}{\left(D^{2}\right)^{2}+6 D^{2}+4 D^{3}+4 D} \cos x \\
& =e^{x} \frac{1}{(-1)^{2}+6(-1)+4(-1) D+4 D} \cos x \\
& =e^{x} \quad \frac{1}{1-6-4 \phi+4 \phi} \cos x \\
& =e^{x} \frac{1}{-5} \cos x=\frac{-e^{x}}{5} \cos x \\
& P-I_{2}=\frac{1}{\left(D^{2}+1\right)\left(D^{2}-1\right)} e^{-x} \cos x \\
& =e^{-x} \frac{1}{\left[(D-1)^{2}+1\right]\left((D-1)^{2}-1\right)^{2}} \cos x \\
& =e^{-x} \frac{1}{\left[D^{2}+1-2 D+1\right]\left(D^{2}+(-2 D-y)\right.} \cos x \\
& =e^{-x} \frac{1}{\left(D^{2}-2 D+2\right)\left(D^{2}-2 D\right)} \cos x \\
& =e^{-x} \frac{1}{D^{4}-2 D^{3}-2 D^{3}+4 D^{2}+2 D^{2}-4 D^{\circ}} \cos x^{\prime} \\
& =e^{-x} \frac{1}{D^{4}-4 D^{3}+6 D^{2}-4 D} \cos \cdot x .
\end{align*}
$$

$$
\begin{aligned}
& =e^{-x} \frac{1}{(-1)^{2}-4(-1) D+6(-1)-4 D} \cos x \\
& =e^{-x} \frac{1}{1+4 D-6-4 x} \cos x \\
& =e^{-x} \cdot \frac{1}{-5} \cdot \cos x=\frac{-e^{-x}}{5} \cos x
\end{aligned}
$$

from (2),

$$
P I=-\frac{e^{x}}{5} \cos x-\frac{e^{-x}}{5}
$$

Now the solution of equn(D) is $y=C \cdot F+P-T$

$$
y=c_{1} e^{x}+c_{2} e^{-x}+e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]-\frac{e^{x}}{5} \cos x-\frac{e^{-x}}{5}
$$

(3) $\frac{d^{2} y}{d x^{2}}-4 y=x \cdot \sinh x$
sold Given $D-E$ is $D^{2} y-4 y=x \cdot \sinh x$

$$
\left(x^{2}-4\right) y=x \cdot \sinh x
$$

An Auxiliary equation is $m^{2}-4=0$

$$
\begin{aligned}
& \quad(m+2)(m-2)=0 \\
& m=-2,2
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{align*}
C . F & =C_{1} e^{-2 x}+C_{2} e^{2 x} \\
P \cdot I & =\frac{1}{D^{2}-4} \cdot x \cdot \sin h x \\
& =\frac{1}{D^{2}-4} \cdot\left(\frac{e^{x}-e^{-x}}{2}\right) \\
& =\frac{1}{2}\left(\frac{1}{D^{2}-4}\right)\left[x \cdot e^{x}-x \cdot e^{-x}\right] \\
& =\frac{1}{2}\left[\frac{1}{D^{2}-4} \cdot x e^{x}-\frac{1}{D^{2}-4} e^{-x} x\right] \tag{2}\\
P \cdot I_{1} & =\frac{1}{D^{2}-4} x \cdot e^{x} \\
& =e^{x} \frac{1}{(D+1)^{2}-4} \cdot x \\
& =e^{x} \frac{1}{24\left(1-\frac{(D+1}{4}\right)^{2}}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{-e^{x}}{4}\left[1-\frac{(\theta+1)^{2}}{4}\right]^{-1} x \\
& =\frac{-e^{x}}{4}\left[1+\frac{(D+1)^{2}}{4}+\left(\frac{(D+1)^{2}}{4}\right)^{2}+\cdots\right] x \\
& =\frac{-e^{x}}{4}\left[x+\frac{(D+1)^{2}}{4} x+\frac{\left.(D+1)^{2}\right)^{2}}{16} x\right] \\
& =\frac{-e^{x}}{4}\left[x+\frac{D^{2}+1+2 D}{4} x+\frac{\left(D^{2}+2 D+1\right)^{2}}{16} \cdot x\right] \\
& =\frac{=e^{-x}}{4}\left[x+\frac{1}{4}\left(D^{2}(x)+x+2 D x\right)+\left(\frac{\left.D^{4}+4 D^{2}+1+4 D^{3}+4 D+2 D^{2}\right)}{16} x\right]\right. \\
& =-\frac{e^{x}}{4}\left[x+\frac{1}{4}[0+x+2]+\frac{1}{16}[0+0+x+0+4+0]\right] \\
& =\frac{-e^{x}}{4} \cdot\left[x+\frac{x}{4}+\frac{x}{42}+\frac{1}{16}(x+4)\right] \\
& =\frac{-e^{x}}{4}\left[x+\frac{x}{4}+\frac{1}{2}+\frac{x}{16}+\frac{1}{4}\right] \\
& =\frac{-e^{x}}{4}\left[\frac{16 x+4 x+8+x+4}{16}\right] \\
& =\frac{-e^{x}}{4}\left(\frac{21 x+12}{16}\right) \\
& =\frac{-e^{x}}{4} \cdot\left(\frac{21 x}{16}+\frac{\frac{12^{3}}{18}}{\frac{1}{4}}\right) \\
& =-\frac{e^{x}}{4}\left(\frac{21 x}{16}+\frac{3}{4}\right) \\
& P \cdot I_{2}=\frac{1}{D^{2}-4} e^{-x} \cdot x \\
& =e^{-x} \frac{1}{(D-1)^{2}-4} x \\
& =e^{-x} \frac{1}{D^{2}+1-2 D-4} x . \\
& =e^{-x} \frac{1}{D^{2}-2 D-3} \cdot x \\
& =e^{-x} \frac{1}{-3\left(1-\left(\frac{D^{2}-2 D}{3}\right)\right)} x \\
& =-\frac{e^{-x}}{3}\left[1-\left(\frac{D^{2}-2 D}{3}\right)\right]^{-1} x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-e^{-x}}{3}\left[1+\left(\frac{D^{2}-2 D}{3}\right)+\left(\frac{\left(D^{2}-2 D\right.}{3}\right)^{2}+\cdots\right] x \\
& =-\frac{e^{-x}}{3}\left[x+\left(\frac{D^{2} 2 D}{3}\right) x+\frac{D^{4}+4 D^{2}+4 D^{3}}{9} \cdot x\right] \\
& =-\frac{e^{-x}}{3}\left[x+\frac{1}{3}\left(D^{2} x+2 D x\right)+0\right] \\
& =-\frac{e^{-x}}{3}\left[x+\frac{1}{3}(D-2) 7^{2}\right. \\
& =-\frac{e^{-x}}{3} \cdot\left(x^{2}-\frac{2}{3}\right) \\
& =-\frac{e^{-x}}{4}(3 x-2) \\
P I & =\frac{-e^{x}}{4}\left(\frac{21 x}{16}+\frac{3}{4}\right)-\frac{e^{-x}}{4}(3 x-2)
\end{aligned}
$$

Now the solution of equici is $y=G F P P \cdot I$.

$$
y=c_{1} e^{-2 x}+c_{2} e^{2 x}-\frac{e^{x}}{4}\left(\frac{21 x}{16}+\frac{3}{4}\right)-\frac{e^{-x}}{9}(3 x-2) .
$$

(4) $\frac{d^{2} y}{d x^{2}}+y=x^{2} \cdot \sin 2 x$

Sol:
Given D.E is $D^{2} y+y=x^{2} \sin 2 x$

$$
\begin{equation*}
\left(\theta^{2}+1\right) y=x^{2} \sin 2 x \tag{1}
\end{equation*}
$$

An A is $m^{2}+1=0$

$$
m= \pm i
$$

\therefore The roots are complex and distinct.

$$
\begin{aligned}
& \therefore \text { The } \\
& \text { CF }=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& P \cdot I=\frac{1}{D^{2}+1} x^{2} \sin 2 x \\
&=I \cdot P\left(\frac{1}{D^{2}+1} x^{2}(\cos 2 x+i \sin 2 x)\right] \\
&=I \cdot P\left[\frac{1}{D^{2}+1} \cdot x^{2} e^{2 i x}\right] \\
&=I \cdot P \cdot e^{2 i x}\left[\frac{1}{(D+2 i)^{2}+1} \cdot x^{2}\right) \\
&=I \cdot P e^{2 i x} \frac{1}{1+(D+2 i)^{2}} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =I \cdot p e^{2 i x} \cdot\left[1+(D+2 i)^{2}\right]^{-1} x^{2} \\
& =I \cdot P e^{2 i x}\left[1-(D+2 i)^{2}+\left[(D+2 i)^{2}\right)^{2}+\cdots\right] x^{2} \\
& =I \cdot p e^{2 i x}\left[x^{2}-\left(D^{2}+4 i^{2}+4 D i\right) x^{2}+\left(D^{2}+4 i^{2}+4 D i\right)^{2} x^{2}\right] \\
& =I \cdot P e^{2 i x}\left[x^{2}-\left(D^{2}-4+4 D i\right)-4 x^{2}+4 i D x^{2}\right)+\left[D 4 x^{2}+16+16 D^{2} i^{2}-8 D^{2}-32 D i+8 i^{2} i\right] \\
& =I \cdot p e^{2 i x}\left[x^{2}-\left(2 x-4 x^{2}+4 i(2 x)\right]+\left(0+16 x^{2}-16(2)-8(2)-32 i(2 x)\right.\right. \\
& =I \cdot P e^{2 i x}\left[x^{2}-2 x+4 x^{2}-8 x i+16 x^{2}-32-16-64 x i\right] \\
& P-I .
\end{aligned}
$$

Now the solution of equ" (1) is $y=C \cdot E+P \cdot I$

$$
y=e^{(0) x}\left[r_{1} \cos x+c_{2} \sin x\right]+I \cdot p e^{2 i x}\left(21 x^{2}-72 x i-2 x-48\right)
$$

(5) $\left(D^{4}+2 D^{2}+1\right) y=2 e^{x} \cdot \cos (x+2) \cdot x^{2} \cdot \cos x$.

Solo Given $D-E$ is $\left(D 4+2 D^{2}+1\right) y=x^{2} \cos x$
An. AE is $m y+2 m^{2}+1=0$

$$
\begin{aligned}
\left(m^{2}+1\right)^{2} & =0 \\
\left(m^{2}+1\right)\left(m^{2}+1\right) & =0 \\
m= \pm i, m & = \pm i
\end{aligned}
$$

\therefore The roots are complex and repeat.

$$
\begin{aligned}
C \cdot F & =e^{(0) x}\left[c_{1}+c_{2} x\right) \cos x+\left(c_{3}+c_{y} x\right) \sin x \\
P \cdot I & =\frac{1}{\left(D^{2}+1\right)^{2}} \cdot x^{2}-\cos \\
& =R \cdot P\left[\frac{1}{\left(D^{2}+1\right)^{2}} \cdot x^{2} \cdot(\cos x+i \sin x)\right] \\
& =R \cdot P\left[\frac{1}{\left(D^{2}+1\right)^{2}} x^{2} \cdot e^{i x}\right] \\
& =R \cdot P \cdot 1 e^{i x}\left[\frac{1}{\left(D D^{2}+1\right)^{2}} x^{2}\right] \\
& \text { ARP } e^{i x} \frac{1}{\left(1+D^{2}\right)^{2}} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow R \cdot p \cdot e^{i x} \cdot\left(1+\theta^{2}\right)^{-r} \cdot x^{x} \\
& -R P e^{2 x}-\left[x+2 x^{2}+2\left(B^{2}\right)^{2}+-7 x^{2}\right. \\
& \Rightarrow R<P=e^{i x}\left[x^{2}-2 x^{2} x^{2}+3 D x \cdot x^{2}+x\right] \\
& =R \cdot P \quad e^{p x} \frac{1}{\left((D+i)^{1}+1\right)^{2}} x^{2} \\
& =R \cdot P e^{i x} \frac{1}{\left(1+(D+i)^{2}\right)^{2}} x^{2} \\
& =R \cdot P e^{i x}\left[1+(D+i)^{2}\right]^{-2} \cdot x^{2} \\
& \left.=R \cdot P \quad e^{i x}\left[1-2(D+i)^{2}+3\left((D+i)^{2}\right)^{2}-4(D+i)^{2}\right]^{3}+\cdots\right] x^{2} \\
& =R \cdot P e^{i x}\left[x^{2}-2\left(D^{2}+i^{2}+2 D i\right) x^{2}+3\left(D^{2}+i^{2}+2 D i\right)^{2} x^{2}\right] \\
& \text { (} \left.D^{2}-1+2 D i\right) \\
& =R \cdot P e^{i x}\left[x^{2}-2\left(D^{2} x^{2}-x^{2}+2 D x^{2}\right)+3\left(D^{4}+1+4 D^{2} i^{2}-2 D^{2}\right.\right. \\
& \left.-40 i+403 i) x^{2}\right] \\
& =R \cdot P e^{i x}\left[x^{2}-2\left(2-x^{2}+2 i(2 x i)\right)+3\left(200+x^{2}-4(2)-2(2)-4 i(2 x)\right.\right. \\
& +0)] \\
& =\text { RaP } e^{i x}\left[x^{2}-4+2 x^{2}-8 x i+3 x^{2}-24-12-24 x i\right] \\
& P \cdot I=R \cdot P \quad e^{i x}\left[x^{2} 6 x^{2}-32 x i-40\right]
\end{aligned}
$$

Now the solution of $\varepsilon q u n(1)$ is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[\left(c_{1}+c_{2} x\right) \cos x+\left(c_{3}+c_{4} x\right) \sin x\right]+R \cdot R e^{i x}\left[6 x^{2}-32 x^{i}-40\right]
$$

(8) $\frac{d^{4} y}{d x y}-y=e^{x} \cos x$

Sol Given $D-E$ is $D^{4} y^{4}-y^{2}=e^{x} \cos x$.

$$
(D 4-1) y=e^{x} \cos x \rightarrow \text { (1) }
$$

An $A E$ is $m^{4}-1=0$

$$
\begin{aligned}
& \left(m^{2}\right)^{2}-(1)^{2}=0 \\
& \left(m^{2}+1\right)\left(m^{2}-1\right)=0 \\
& m= \pm i, m= \pm 1
\end{aligned}
$$

\therefore The roots are real complex and distinct.

$$
c . F=c_{1} e^{-x}+c_{2} e^{x}+e^{(0) x}\left[c_{3} \cos x+c_{4} \sin x\right]
$$

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{4}-1} e^{x} \cos x \\
& =e^{x} \frac{1}{(D+1)^{4}-1} \cdot \cos x=e^{x} \frac{1}{\left(D^{2}+1+2\right)^{2}-1} \cdot \cos x \\
& =e^{x} \frac{1}{\left(D^{4}+1+4 D^{2}+2 D^{2}+4 D+4 D^{3}-1\right.} \cos x \\
& =e^{x} \frac{1}{(-1)(-1)+4(-1)+2(-1)+4 D+4(-1) D^{2}} \cos x \\
& =e^{x} \cdot \frac{1}{4-4-2+45-40} \cos x \\
& =e^{x} \frac{1}{(-1+1)^{2}-1} \cos x \\
& =e^{x} \frac{1}{-5} \cos x \\
& \cos x \cdot I
\end{aligned}
$$

$$
\text { est) } \neq-6 x \cos x .
$$

Now the solution of equico is $y=C . F+P \cdot I$

$$
y=c_{1} e^{-x}+c_{2} e^{x}+e^{(0) x}\left[c_{3} \cos x+c_{4} \sin x\right]-\frac{e^{x}}{5} \cos x .
$$

(9) $\left(D^{2}-2 D\right) y=e^{x} \sin x$

Given D-E is $\left(D^{2}-2 D\right) y=e^{x} \sin x$
An A-E is $\quad m^{2}-2 m=0$

$$
\begin{aligned}
& \dot{m}(m-2)=0 \\
& m=0,2
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{2}-2 D}=C_{1} e^{(0) x}+C_{2} e^{2 x} \\
& =e^{x} \frac{1}{(D+1)^{2}-2(D+1)} \sin x \\
& =e^{x} \frac{1}{D^{2}+1+2 D-2 D-2} \sin x \\
& =e^{x} \frac{1}{D^{2}-1} \sin x \\
& =e^{x} \frac{1}{-1-1} \sin x \\
& =e^{x} \frac{1}{-2} \sin x \\
P-I & =-\frac{e^{x}}{2} \sin x
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+p \cdot T$

$$
y=c_{1} e^{\cos x}+c_{2} e^{2 x}-\frac{e^{x}}{2} \sin x .
$$

(10) $y^{\prime \prime}-2 y^{\prime}+2 y=x+e^{x} \cdot \cos x$
golv- Given D.E is $y^{\prime \prime}-2 y^{\prime}+2 y=x+e^{x} \cos x$

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=x+e^{x} \cos ^{\prime} x \\
& D^{2} y-2 D y+2 y=x+e^{x} \cos x \\
& \left(D^{2}-2 D+2\right) y=x+e^{x} \cos x \tag{1}
\end{align*}
$$

Am A.E is $m^{2}-2 m+2=0$

$$
\begin{aligned}
m & =\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2} \\
& =\frac{2 \pm 2 i}{2} \\
& =\frac{\$(1 \pm i)}{2} \\
m & =1 \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{align*}
& c \cdot F=e^{x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& P \cdot I=\frac{1}{D^{2}-2 D+2}\left(x+e^{x} \cos x\right)=\frac{1}{D^{2}-2 D+2} x+\frac{1}{D^{2}-2 D+2} e^{x} \cos x \tag{2}\\
& P I_{1}=\frac{1}{2\left(\frac{D^{2}-2 D}{2}+1\right)}\left(x+e^{x} \cos x\right) \\
& =\frac{1}{2\left(1+\frac{D^{2}-2 D}{2}\right)}(x) A e^{x(x \cos x x)} \\
& \left.=\frac{1}{2}\left[1+\left(\frac{D^{2}-2 D}{2}\right)\right]^{-1}(x)+\cos \cos x\right) \\
& =\frac{1}{2}\left[1-\left(\frac{D^{2}-2 D}{2}\right)+\left(\frac{D^{2}-2 D}{2}\right)^{2}-\right] x \text {. } \\
& =\frac{1}{2}\left[x-\left(\frac{D^{2}-2 D}{2}\right) x+\left(\frac{D^{2}}{2}\right) \times x\left(\frac{D 4+4 D^{2}-4 D^{3}}{2}\right) x\right] \\
& =\frac{1}{2}\left[x-\frac{1}{2}\left(D^{2} x-2 D x\right)+0\right] \\
& =\frac{1}{2} \cdot\left[x-\frac{1}{2}(0-2)\right] \\
& =\frac{1}{2}[x+1] \\
& P I_{z}=\frac{1}{D^{2}-2 D+2} \cdot e^{x} \cdot \cos x \text {. } \\
& =e^{x} \frac{1}{(D+1)^{2}-2(D+1)+2} \cos x
\end{align*}
$$

$$
\begin{aligned}
& =e^{x} \frac{1}{D^{2}+1+2 D-2 D-x+2 \cdot} \cos x \\
& =e^{x} \frac{1}{D^{2}+1} \cos x \\
& =e^{x} \frac{1}{2} \cdot \frac{x}{2 D} \cos x \\
& =e^{x} \frac{x}{2(x)} \\
& =e^{x} \cdot \frac{x}{2} \cdot \frac{1}{B}(\cos x) \\
P \cdot I=\frac{1}{2} & (x+1)+\frac{x \cdot e^{x}}{2} \sin x .
\end{aligned}
$$

Now the solution of equn (1) is $y=C \cdot F+P-I$

$$
y=e^{x}\left[c_{1} \cos x+c_{2} \sin x\right]+\frac{1}{2}(x+1)+\frac{x \cdot e^{x}}{2} \sin x \text {. }
$$

(12) $\frac{d^{2} y}{d x^{2}}+2 y=x^{2} e^{3 x}+e^{x}(\cos 2 x)$

Sol:- Given D.E is $D^{4} y+2 y=x^{2} e^{3 x}+e^{x}(\cos 2 x)$

$$
\left(x^{2}+2\right) y=x^{2} e^{3 x}+e^{x} \cos 2 x
$$

An A.E is $m^{2}+2=0$

$$
\begin{aligned}
& m=-2 \\
& m=\sqrt{-2} \\
& m= \pm \sqrt{2} j
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{align*}
C \cdot F & =e^{(D) x}\left(C_{1} \cos \sqrt{2} x+C_{2} \sin \sqrt{2} x\right) \\
P \cdot I & =\frac{1}{D^{2}+2}\left(x^{2} e^{3 x}+e^{x} \cos 2 x\right) \\
& =\frac{1}{D^{2}+2} x^{2} e^{3 x}+\frac{1}{D^{2}+2} e^{x} \cos 2 x \tag{2}\\
P \cdot I_{1} & =\frac{1}{D^{2}+2} e^{3 x} \cdot x^{2} \\
& =e^{3 x} \frac{1}{(D+3)^{2}+2}+x^{2}
\end{align*}
$$

$$
\begin{aligned}
& =e^{3 x} \frac{1}{D^{2}+9+6 D+2} x^{2} \\
& =e^{3 x} \frac{1}{D^{2}+6 D+11} x^{2} \\
& =e^{3 x} \frac{1}{11\left(\frac{D^{2}+6 D}{11}+1\right)^{x^{2}}} \\
& =e^{3 x} \frac{1}{11\left(1+\frac{D^{2}+G 0}{4}\right)^{x^{2}}} \\
& =\frac{e^{3 x}}{11}\left(1+\frac{D^{2}+G D}{4}\right)^{-1} x^{2} \\
& =\frac{e^{3 x}}{11}\left[1-\left(\frac{D^{2}+6 D}{11}\right)+\left(\frac{D^{2}+6 D}{11}\right)^{2} \cdots\right] x^{2} \\
& =\frac{e^{3 x}}{11}\left[x^{2}-\left(\frac{D^{2}+6 D}{11}\right) x^{2}+\left(\frac{D^{2}+6 D}{11}\right)^{2} x^{2}-\cdots\right] \\
& \left.=\frac{e^{3 x}}{11}\left[x^{2}-\frac{1}{1}\left(D^{2} x^{2}+6 D x^{2}\right)+\frac{1(D 4}{12}+36 D^{2}+12 D_{1}^{3}\right) x^{2}\right] \\
& =\frac{e^{3 x}}{11}\left[x^{2}-\frac{1}{11}[2+6(2 x)]+\frac{1}{121}(0+36(2)+0)\right] \\
& =\frac{e^{3 x}}{11}\left[x^{2}-\frac{2}{11}-\frac{12 x}{11}+\frac{72}{121}\right] \\
& =\frac{e^{3 x}}{11}\left(x^{2}-\frac{12 x}{11}+\frac{50}{121}\right) \\
& P I_{2}=\frac{1}{D^{2}+2} e^{x} \cos 2 x \\
& =e^{x} \frac{1}{(0+1)^{2}+2} \cos 2 x \\
& =e^{x} \frac{1}{D^{2}+2 D+3} \cos 2 x \\
& =e^{x} \cdot \frac{1}{-4+2 D+3} \cos 2 x \\
& =e^{x} \frac{1}{2 D-1} \cos 2 x \\
& =e^{x} \frac{1}{2 D-1} \times \frac{2 D+1}{2 D+1} \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
&=e^{x} \frac{2 D+1}{4 D^{2}-1} \cos 2 x \\
&=e^{x} \frac{2 D+1}{4(-4)-1} \cos 2 x \\
&=e^{x} \frac{2 D+1}{-17} \cos 2 x \\
&=\frac{-e^{x}}{17}(2 D \cos 2 x+(1) \cos 2 x) \\
&=-\frac{e^{x}}{17}(2(-\sin 2 x) 2+\cos 2 x) \\
&=-\frac{e^{x}}{17} \cdot(-4 \sin 2 x+\cos 2 x) \\
&=\frac{e^{x}}{17}(4 \sin 2 x-\cos 2 x) \\
& \text { P. } I=\frac{e^{3 x}}{11}\left(x^{2}-\frac{12 x}{11}+\frac{50}{121}\right)+\frac{e^{x}}{17}(4 \sin 2 x-\cos 2 x)
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x} \cdot\left[c_{1} \cos \sqrt{2} x+c_{2} \sin \sqrt{2} x\right]+\frac{e^{3 x}}{11}\left(x^{2}-\frac{12 x}{11}+\frac{50}{121}\right)+\frac{e^{7}}{17}(4 \sin 2 x-\cos 2 x)
$$

(11). $\left(D^{3}+2 D^{2}+D\right) y=x^{2} e^{2 x}+\sin ^{2} x$.

Given D.E is $\left(D^{3}+2 D^{2}+0\right) y=x^{2} e^{2 x}+\sin ^{2} x$
An Auxiliary Equation is $m^{2}+2 m^{2}+m=0$

$$
\begin{aligned}
& m\left(m^{2}+2 m+1\right)=0 \\
& m\left(m^{2}+m+m+1\right)=0 \\
& m[m(m+1)+1(m+1)]=0 \\
& m(m+1)(m+1)=0 \\
& m=0,-1,-1
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{3}+2 D^{2}+D} x^{2} e^{2 x}+\sin ^{2} x \\
& =\frac{1}{D^{3}+2 D^{2}+D} x^{2} e^{2 x}+\frac{1}{D^{3}+2 D^{2}+D} \frac{1-\cos 2 x}{2} \\
& =\frac{1}{D^{3}+2 D^{2}+D} x^{2} e^{2 x}+\frac{1}{D^{3}+2 D^{2}+D} \frac{1}{2}-\frac{1}{D^{3}+2 D^{2}+D} \frac{1}{2} \cdot \cos ^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& P I_{1}=e^{2 x \cdot 1} \frac{(D+2)^{3}+2(D+2)^{2}+(D+2)^{x^{2}}}{} \\
& =e^{2 x} \frac{1}{D^{3}+8+6 D^{2}+12 D+2 D^{2}+8+8 D+D+2} x^{2} \\
& =e^{2 x} \frac{1}{D^{3}+8 D^{2}+21 D+18} x^{2} \\
& =e^{2 x} \frac{1}{18\left(1+\frac{D^{3}+8 D^{2}+21 D}{18}\right)} x^{2}{ }^{1} \\
& =\frac{e^{2 x}}{18}\left(1+\frac{0^{3}+80^{2}+210}{18}\right)^{-1} x^{2} \\
& =\frac{e^{2 x}}{18}\left[1-\frac{D^{3}+8 D^{2}+21 D}{18}+\left(\frac{D^{3}+8 D^{2}+21 D^{2}}{18}\right)^{2}-\cdots\right] x^{2} \\
& =\frac{e^{2 x}}{18}\left[1-\frac{1}{18}\left[D^{3}+8 D^{2}+21 D\right] x^{2}+\left[D^{6}+64 D^{4}+441 D^{2}+16 D^{5}\right.\right. \\
& \left.\left.+336 D^{3}+42 D^{4}\right] x^{2}\right] \\
& \left.\left.\begin{array}{rl}
=\frac{e^{2 x}}{18}\left[1-\frac{1}{18}[0+8(2)+2(2 x)]+[0+0+4,41(2)+0+0\right. \\
+0
\end{array}\right]\right] \\
& =\frac{e^{2 x}}{18}\left[1-\frac{1}{18}[16+42 x]+882\right] \\
& =\frac{e^{2 x}}{18}\left[1-\frac{x}{18}(8+21 x)+882\right] \\
& =\frac{e^{2 x}}{18}\left[1-\frac{8}{9}-\frac{27 x}{x 3}+882\right] \\
& =\frac{e^{2 x}}{18}\left[\frac{7.939}{9}-\frac{3 x}{3}\right] \\
& P I_{2}=\frac{1}{2} \frac{1}{D^{3}+2 D^{2}+D} e^{\text {(0) } x} \\
& \begin{array}{l}
=\frac{1}{2} \frac{x}{3 D^{2}+4 D+1} e^{(0) x} \\
=\frac{1}{2} \frac{x}{1} e^{(0) x}=\frac{x}{2} \\
=\frac{1}{2} \frac{1}{D^{3}+2 D^{2}+D} \cos 2 x
\end{array} \\
& \begin{array}{l}
=\frac{1}{2} \frac{x}{3 D^{2}+4 D+1} e^{(0) x} \\
=\frac{1}{2} \frac{x}{1} e^{(0) x}=\frac{x}{2} \\
=\frac{1}{2} \frac{1}{D^{3}+2 D^{2}+D} \cos 2 x
\end{array} \\
& \begin{aligned}
& =\frac{1}{2} \frac{x}{3 D^{2}+4 D+1} e^{(0) x} \\
& =\frac{1}{2} \frac{x}{1} e^{(0) x}=\frac{x}{2} . \\
P I_{3} & =\frac{1}{2} \frac{1}{D^{3}+2 D^{2}+D} \cos 2 x
\end{aligned} \\
& =\frac{1}{2} \frac{1}{-4 D-8+D} \cos 2 x \\
& =\frac{1}{2} \frac{1}{-8-3 D} \cos 2 x \\
& =\frac{1}{2} \frac{1}{-8-3 D} \times \frac{-8+3 D}{-8+3 D} \cos 24 \\
& =\frac{1}{2} \frac{-8+3 D}{64-9 D^{2}} \cos 2 x \text {. } \\
& \begin{aligned}
1 & \frac{-8}{9}+882 \\
& =\frac{9-8+7938}{9}
\end{aligned} \\
& =\frac{7930}{9}+9 \\
& =\frac{7939}{9}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}-\frac{8+3 D}{64+36} \cos 2 x \\
& =\frac{1}{2} \frac{-8+3 D}{100} \cos 2 x \\
& =\frac{3 D-8}{200} \cdot \cos 2 x \\
& =\left(\frac{3 D}{200}-\frac{1}{25}\right) \cos 2 x .
\end{aligned}
$$

from (1),

$$
P-I=\frac{e^{2 x}}{18}\left(\frac{7939}{9}-\frac{7 x}{3}\right)+\frac{x}{2}-\left(\frac{3 D}{200}-\frac{1}{25}\right) \cos 2 x
$$

Now the solition of equn(1) is $y=C \cdot F+P \cdot I$.

$$
-y=c_{1} e^{(0) x}+c_{2} e^{-x}+c_{3} x \cdot e^{-x}+\frac{e^{2 x}}{18}\left(\frac{7939}{9}-\frac{7 x}{3}\right)+\frac{x}{2}-\left(\frac{30}{100}-\frac{1}{25}\right) \cos 2 x
$$

Formas:

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{i(2 \theta)}=\cos 2 \theta+i \sin 2 \theta \\
& e^{i(n \theta)}=\cos n \theta+i \sin n \theta
\end{aligned}
$$

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2}
$$

$$
\cos ^{2} x=\frac{1+\cos 2 x}{2}
$$

$$
\begin{aligned}
& \sin A \cdot \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& \cos A \cdot \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \\
& \sin A \cdot \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{aligned}
$$

Type -IV
(7) $\frac{d^{2} y}{d x^{2}}+4 y=x^{2} \sin 2 x$:

Given D.E. is $\frac{d^{2} y}{d x^{2}}+4 y=x^{2} \sin 2 x$

$$
\begin{align*}
& D^{2} y+4 y=x^{2} \sin 2 x \\
& \left(D^{2}+4\right) y=x^{2} \sin 2 x \tag{1}
\end{align*}
$$

An Auxiliary equation is $m^{2}+4=0$

$$
\begin{aligned}
& m^{2}=-4 \\
& m= \pm 2 i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{aligned}
& \text { c. } F=a_{1} e^{(0) x}\left[c_{1} \cdot \cos 2 x+c_{2} \sin 2 x\right] \\
& P-I=\frac{1}{D^{2}+4} \quad x^{2} \sin 2 x \\
& 7 \text { Isp }\left\{\begin{array}{l}
\text {, } \\
\text {, }
\end{array}\right. \\
& =\frac{1}{D^{2}+4} x^{2} I \cdot p e^{i(2 x)} \\
& =T \cdot P\left[\frac{1}{D^{2}+4} x^{2} e^{i(2 x)}\right] \\
& =\mathbb{I} P\left[e^{2 i x} \cdot \frac{1}{(0+21)^{2}+4} x^{2}\right] \\
& =I \cdot P\left[e^{2 i x} \frac{1}{D^{2}-y+4 D i+y} x^{2}\right] \\
& =I \cdot P\left[e^{2 i x} \frac{1}{4 D i\left(\frac{D^{*}}{4 \phi i}+1\right)} x^{2}\right] \\
& =I \cdot P \cdot\left[e^{2 i x} \frac{1}{4 D i\left(\frac{D}{4 i}+1\right)} x^{L}\right] \\
& =I \cdot P\left[\frac{e^{2 i x}}{4 D i}\left(\left[+\frac{D}{4 i}\right)^{-1} x^{2}\right]\right. \text {. } \\
& =I \cdot P\left[\frac{e^{2 i x}}{4 D i}\left(1-\frac{D}{4 i}+\left(\frac{D}{4 i}\right)^{2}-\left(\frac{D}{4 i}\right)^{3}+\ldots\right) x^{2}\right] \\
& =I \cdot p\left[\frac{e^{2 i x}}{4 D i}\left(x^{2}-\frac{D}{4 i} x^{2}+\frac{D^{2}}{(-16)} x^{2}\right]\right. \\
& =I \cdot P\left[\frac{e^{2 i t}}{4 D i}\left(x^{2}-\frac{1}{4 i}(2 x)-\frac{1}{16_{g}}(x)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =I \cdot P\left[\frac{e^{2 i x}}{4 D i}\left(x^{2}-\frac{x}{2 i}-\frac{1}{8}\right)\right] \\
& =\operatorname{I} \cdot p\left[\frac{e^{2 i x}}{4 D i} \times \frac{9}{i}\left(x^{2}-\frac{x i}{2 i i^{2}}-\frac{1}{8}\right)\right] \\
& =I \cdot p\left[\frac{e^{2 i x}}{-4 D} i\left(x^{2}+\frac{x}{2} i-\frac{1}{2}\right)\right] \\
& =I-P\left[\frac{i e^{2 i x}}{-4}\left(\frac{x^{3}}{3}+\frac{x^{2}}{4} i-\frac{1}{8} x\right)\right] \\
& =I \cdot P\left[\frac{i e^{2 i x}}{-4}\left(\frac{x^{3}}{3}+\frac{x^{2}}{4} i-\frac{x}{8}\right)\right] \\
& =I \cdot P\left[\frac{i}{-4}(\cos 2 x+i \sin 2 x)\left(\frac{x^{3}}{3}+\frac{x^{2}}{4} i-\frac{x}{8}\right)\right] \\
& =I \cdot P\left[\frac{-i}{4}(\cos 2 x+i \sin 2 x)\left(\left(\frac{x^{3}}{3}-\frac{x}{8}\right)+i\left(\frac{x^{2}}{4}\right)\right)\right] \\
& =I \cdot p\left[\frac{-i}{4} \cos 2 x \cdot\left(\frac{x^{3}}{3}-\frac{x}{8}\right)+i \frac{x^{2}}{4} \cos 2 x+i \operatorname{sen} 2 x\left(\frac{x^{3}}{3} \frac{x}{8}\right)\right. \\
& \left.-\frac{x^{2}}{4} \sin 2 x\right] \\
& =I \cdot P\left[\frac{-1}{4}\left(\cos 2 x\left(\frac{x^{3}}{3}-\frac{x}{8}\right)-\frac{x^{2}}{4} \sin 2 x+i\left(\frac{x^{2}}{4} \cos 2 x+\sin 2 x\left(\frac{x^{3}}{3}-\frac{x}{8}\right)\right)\right]\right. \\
& =\operatorname{I-P}\left[\frac { - 1 } { 4 } \left[\left(\cos 2 x\left(\frac{x^{3}}{3} \frac{x}{8}\right)-\frac{x^{2}}{4} \sin 2 x\right)+\frac{1}{4}\left[\frac{x^{2}}{2} \cos 2 x+\sin 2 x\left(\frac{x^{3}}{3}-\frac{x^{7}}{8}\right)\right]\right.\right. \\
& =I \cdot P \frac{1}{4}\left[-\frac{x^{2}}{2} \cos 2 x+\sin 2 x\left(\frac{x^{3}}{3}-\frac{x}{8}\right)+-\frac{9}{4}\left[\cos 2 x\left(\frac{x^{3}}{3}-\frac{x}{8}\right)-\frac{x^{2}}{4} \sin 2 x\right]\right. \\
& =\frac{-1}{4} \cdot \cos 2 x\left(\frac{x^{3}}{3}-\frac{x}{8}\right)-\frac{x^{2}}{4} \sin 2 x \\
& \text { P.I }=\frac{1}{4} \cdot\left[\frac{x^{2}}{4} \sin 2 x-\left(\frac{x^{3}}{5}-\frac{x}{8}\right) \cos 2 x\right]
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[c_{1} \cos 82 x+c_{2} \sin 2 x\right]+\frac{1}{4}\left[\frac{x^{2}}{4} \sin 2 x-\left(\frac{x^{3}}{3}-\frac{x}{8}\right) \cos 2 x\right] .
$$

(5) $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos x$.

Given D.E is $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos x$
An Auxiliary equn is $m 4+2 m^{2}+1=0$

$$
\begin{array}{r}
\quad\left(m^{2}+1\right)^{2}=0 \\
\left(m^{2}+1\right)\left(m^{2}+1\right)=0 \\
m= \pm i, \quad m= \pm i
\end{array}
$$

\therefore The roots are complex and repeated, rooks.

$$
\begin{aligned}
& c \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+x e^{(0) x}\left[c_{3} \cos x+c_{4} \sin x\right] \\
&=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x \\
&=\left(c_{1}+c_{3} x\right) \cos x+\left(c_{2}+c_{4} x\right) \sin x \\
& \text { PI }=\frac{1}{D^{4}+2 D^{2}+1} x^{2} \cos x \\
&=\frac{1}{\left(D^{2}+1\right)^{2}} x^{2} \cos x . \\
&(a+b)^{4}=a^{4}+4 a^{3} b+1 \\
& 6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

$$
=\frac{1}{D^{4}+2 D^{2}+1} x^{2} \cdot\left(R \cdot P e^{i x}\right)
$$

$$
=R P\left[\frac{1}{D^{4}+2 D^{2}+1} x^{2} \cdot e^{i x}\right]
$$

$$
=R \cdot P\left[e^{i x} \frac{1}{(D+i)^{4}+2 \cdot(D+i)^{2}+1} \cdot x^{2}\right]
$$

$$
\begin{aligned}
& =R \cdot P[e \\
& =R \cdot P\left[e^{i x} \frac{1}{D^{4}+4 D^{3} i+6 D^{2} i^{2}+4 D^{3}+i 4+2\left(D^{2}+i^{2}+2 D i\right)+1} x^{2}\right]
\end{aligned}
$$

$$
=R \cdot P\left[e^{i x} \frac{1}{D^{4}+4 D^{3} i-6 D^{2}-4 D A^{2}+y+2 D^{2}-\not x+4 D^{2}+y}\right]
$$

$$
=R \cdot P\left[e^{i x} \frac{1}{D^{4}-4 D^{2}+4 D^{3 i}} x^{2}\right]
$$

$$
=R \cdot P\left[e^{i x} \frac{1}{4 D^{2}\left(\frac{D^{4}+4 D^{3 i}}{4 D^{2}}-1\right)} x^{2}\right]
$$

$$
\cdots=R \cdot P\left[\frac{e^{i 4}}{-4 D^{2}}\left(1-\frac{1}{D^{2}+4 D i} \frac{4 D^{2}}{}\right) x^{2}\right]
$$

$$
\begin{aligned}
& =R \cdot P\left[\frac{-e^{i x}}{4 D^{2}}\left(1-\frac{D^{2}+4 D i}{4}\right)^{-1} x^{2}\right] \\
& =R \cdot P\left[\frac{-e^{i x}}{4 D^{2}}\left[1+\left(\frac{D^{2}+4 D i}{4}\right)+\left(\frac{D^{2}+4 D i}{4}\right)^{2}+\cdots\right] x^{2}\right] \\
& =R \cdot P\left[\frac{-e^{i x}}{4 D^{2}}\left[x^{2}+\frac{1}{4}\left(D^{2} x^{2}+4 D i x^{2}\right)+D \cdot \frac{1}{16}\left(D^{4}+16 D^{2} i x^{2}+8 D^{30} i\right) x^{2}\right]\right] \\
& =R \cdot P \cdot\left[\frac{-e^{i x}}{4 D^{2}}\left[x^{2}+\frac{1}{4}[2+4 i(2 x)]+\frac{1}{16}(.0-16(2)+0)\right]\right] \\
& =R \cdot P\left[\frac{-e^{i x}}{4 D^{2}} \cdot\left(x^{2}+\frac{2}{4}+\frac{8 x i}{4} \mp \frac{1}{16}\left(2^{2} 2 x\right)\right]\right] \\
& =R \cdot P\left[\frac{-e^{i_{x}}}{4 D^{2}}\left(x^{2}-\frac{1}{2}+2 x i-2\right)\right] \text {. } \\
& =R \cdot P\left[\frac{-e^{i x}}{4 D^{2}}\left(x^{2}+2 x i-\frac{5}{2}\right)\right] \\
& \frac{-1}{12}-2 \\
& =\frac{-1-4}{2}=\frac{-5}{2} \\
& =R P\left[\frac{-e^{i x}}{4 D^{2}}\left(x^{2}+2 x i-\frac{5}{2}\right)\right] \\
& =R \cdot P\left[\frac{-e^{i x}}{4} \frac{1}{D}\left(\frac{x^{3}}{3}+\alpha i \frac{x^{2}}{4}-\frac{5}{2} x\right)\right] \\
& =\operatorname{R\cdot p}\left[-\frac{e^{i x}}{4}\left(\frac{1}{3} \frac{x^{4}}{4}+i \frac{x^{3}}{3}-\frac{5}{2} \frac{x^{2}}{2}\right)\right] \\
& =R \cdot p\left[\frac{-e^{i x}}{4}\left(\frac{x^{4}}{12}+i \frac{x^{3}}{3}-\frac{5 x^{2}}{4}\right)\right] \\
& =R \cdot p\left[\frac{-e^{i x}}{4}\left(\frac{x^{4}+4 i x^{3}-15 x^{2}}{12}\right)\right] \\
& =R \cdot P\left[\frac{-e^{i x}}{48}\left(x^{4}+4 i x^{3}-15 x^{2}\right)\right]^{\prime} \\
& =R \cdot P\left[=\frac{1}{48}(\cos x+i \sin x)\left(x^{4}+4 i x^{3}-15 x^{2}\right)\right] \\
& =\operatorname{Rp}\left[\frac { - 1 } { 4 8 } \left(\cos x\left(x^{4}-15 x^{2}\right)+\cos x \cdot 4 i x^{3}+i \sin x\left(x^{4}-15 x^{2}\right)\right.\right. \\
& \left.\left.+i^{2} 4 x^{3} \sin x\right)\right] \\
& =R \cdot P\left[\frac{-1}{48} \cdot\left(\cos x\left(x^{4}-15 x^{2}\right)-4 x^{3} \sin x\right)+i\left(\cos x 4 x^{3}+\sin x\left(x^{4}-15 x^{2}\right)\right)\right] \\
& =\operatorname{Rep}\left[\frac{-1}{48}\left(\cos x\left(x^{4}-15 x^{2}\right)-4 x^{3} \sin x\right)+i\left(4 x^{3} \cos x+\left(x^{4}-15 x^{2}\right) \sin x\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& P \cdot I=\frac{-1}{48}\left[\left(x^{4}-15 x^{2}\right) \cos x-4 x^{3} \sin x\right] \\
& \text { POI }=\frac{1}{48}\left[4 x^{3} \sin x-\left(x^{4}-15 x^{2}\right) \cos x^{7}\right]
\end{aligned}
$$

Now the solution of 20μ no is $y=C \cdot F+P \cdot I$

$$
y=\left(c_{1}+c_{3} x\right) \cos x+\left(c_{2}+c_{4} x\right) \sin x+\frac{1}{48}\left[4^{\prime} x^{3} \sin x-\left(x^{4}-15 x^{2}\right) \cos x\right]
$$

8)1119
(un) Dey Type -V
(2) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \cdot e^{x} \sin x$

Sol: Given D.E is $D^{2} y-2 D y+y=x \cdot e^{x} \sin x$

$$
\begin{equation*}
\left(D^{2}-2 D+1\right) y=x e^{x} \sin x \tag{1}
\end{equation*}
$$

An Auxiliary Equn is $m^{2}-2 m+1=0$

$$
\begin{aligned}
& m^{2}-m-m+1=0 \\
& m(m-1)-1(m-1)=0 \\
& (m-1)(m-1)=0 \\
& m=1,1
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
\begin{align*}
C \cdot F & =C_{1} e^{x}+C_{2} x \cdot e^{x} \\
\text { PI } & =\frac{1}{D^{2}-2 D+1} x \cdot e^{x} \sin x \\
& =x \frac{1}{(D-1)^{2}} e^{x} \sin x-\frac{2(D-1)}{\left[(D-1)^{2}\right]^{2}} e^{x} \sin x \tag{2}\\
P I_{1} & =x e^{x} \frac{1}{D^{2}-2 D+1} e^{x} \sin x \\
& =x e^{x} \frac{1}{(D+1)^{2}-2(D+D+1} \sin x \\
& =x \cdot e^{x} \frac{1}{D^{2}+1 /+2 D-2 \not D-\not 2+y} \sin x \\
& =x \cdot e^{x} \frac{1}{D^{2}} \sin x \\
& =x e^{x}(-\sin x) \\
& =-x e^{x} \sin x
\end{align*}
$$

$$
\begin{aligned}
& P I_{2}=\frac{2(D-1)}{\left(D^{2} 2 D+1\right)^{2}} e^{x} \sin x \\
& =2(D-1) \frac{1}{D^{4}-4 D^{2} 1-1-4^{2} D^{2}+2 D^{2}-4 D} e^{x} \sin x \\
& =2(D-1) \frac{1}{D^{4}-4 D^{3}-2 A^{2}-4 b+1} \\
& =2(D-1) \frac{1}{\left(D^{2}-2 D+1\right)^{2}} e^{x} \sin x \\
& =2(D-1) e^{x} \frac{1}{\left[(D+1)^{2}-2(D+1)+1\right]^{2}} \sin x \\
& =2(D-1) e^{x} \frac{1}{\left(D^{2}+2 \not x+(-2 x-x+y)^{2}\right.} \sin x \\
& =2(D-1) e^{x} \frac{1}{\left(D^{2}\right)^{2}} \sin x . \\
& =2(D-1) e^{x} \frac{1}{D^{4}} \sin x \\
& =2(0-1) e^{x} \sin x \text {. } \\
& =2 e^{x}(0 \sin x-\sin x) \\
& P I_{2}=2 e^{x} \cdot(\cos x-\sin x) \\
& \text { PI }=-x e^{x} \sin x-2 e^{x}(\cos x-\sin x) \\
& =-x e^{x} \sin x-2 e^{x} \cos x+2 e^{x} \sin x \\
& =e^{x}(2 \sin x-x \sin x-2 \cos x) \\
& =2 \cdot e^{x} \sin x-x e^{x} \sin x-2 e^{x} \cos x \\
& =2 e^{x} \sin x+e^{x}(-x \sin x-2 \cos x)
\end{aligned}
$$

Now the solution of $\varepsilon q u^{n}$ (1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} x \cdot e^{x}+2 e^{x} \sin x+e^{x}(-x \sin x-2 \cos x)
$$

(5) $\left(D^{2}-1\right) y=x \sin x+\left(1+x^{2}\right) e^{x}$.

Sol - Given D.E is (D2-1) $y=x \sin x+\left(1+x^{2}\right) e^{x} \rightarrow$ (C)
An Auxiliary equip" is $n^{2}-1=0$

$$
\begin{aligned}
& m^{2}=1 \\
& m= \pm 1
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{align*}
& C \cdot F=c_{1} e^{x}+c_{2} e^{-x} \\
& P \cdot I=\frac{1}{D^{2}-1}\left[x \sin x+\left(1+x^{2}\right) e^{x}\right] \\
&=\frac{1}{D^{2}-1} x \sin x+\frac{1}{D^{2}-1}\left(\left(1+1 x^{x}\right)\right) e^{x}+\frac{1}{D^{2}-1} x^{2} e^{x} \tag{2}\\
& P I_{1}=\frac{1}{D^{2}-1} x \sin x \\
&=x \frac{1}{D^{2}-1} \sin x-\frac{2 D}{\left(D^{2}-1\right)^{2}} \sin x \\
&=x \frac{1}{-1-1} \sin x-2 D \frac{1}{(-1-1)^{2}} \sin x \\
&=\frac{x}{-2} \sin x-q D \frac{1}{4} \sin x \\
&=\frac{-x}{2} \sin x-\frac{1}{2} \cos x \\
&=\frac{1}{D^{2}-1} \cdot e^{x} \\
&=\frac{x}{2 D} e^{x} \\
&=\frac{x}{2(1)} e^{x}=\frac{x}{2} e^{x} \\
& P I_{3} \\
&=\frac{1}{D^{2}-1} x^{2} e^{x} \\
&=e^{x} \frac{1}{(D+1)^{2}-1} x^{2} \\
&=e^{x} \frac{1}{D^{2}+x^{\prime}+2 D-x} x^{2} \\
&=e^{x} \frac{1}{2 D\left(1+\frac{D}{2}\right)} \\
&=\frac{e^{x}}{2 D}\left(1+\frac{D}{2}\right)^{-1} x^{2} \\
&=\frac{e^{x}}{2 D}\left(1-\frac{D}{2}+\left(\frac{D}{2}\right)^{2}-\cdots\right) x^{2} \\
&
\end{align*}
$$

$$
\begin{aligned}
& =\frac{e^{x}}{2 D}\left(x^{2}-\frac{D}{2} x^{2}+\frac{D^{2}}{4} x^{2}\right) \\
& =\frac{e^{x}}{2 D}\left[x^{2}-\frac{1}{4}(x x)+\frac{1}{y_{2}}(x)\right] \\
& =\frac{e^{x}}{2 D}\left(x^{2}-x+\frac{1}{2}\right) \\
& =\frac{e^{x}}{2}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{1}{2} x\right)
\end{aligned}
$$

from (2),

$$
P I=\frac{-x}{2} \sin x-\frac{1}{2} \cos x+\frac{x}{2} e^{x}+\frac{e^{x}}{2}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{1}{2} x\right)
$$

Now the solution of equincli is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{-x}-\frac{x}{2} \sin x-\frac{1}{2} \cos x+\frac{x}{2} e^{x}+\frac{e^{x}}{2}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{1}{2} x\right)
$$

(7) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x e^{x} \sin x$

Sols. Given $D-E$ is $D^{2} y+3 D y+2 y=x e^{x} \sin x$

$$
\begin{equation*}
\left(D^{2}+3 D+2\right) y=x e^{x} \sin x . \tag{0}
\end{equation*}
$$

An Actxiliary equn is $m^{2}+3 m+2=0$

$$
\begin{gathered}
m^{2}+m+2 m+2=0 \\
m(m+1)+2(m+1)=0 \\
(m+1)(m+2)=0 \\
m=-1,-2
\end{gathered}
$$

\therefore The roots are real and distinct:

$$
\begin{aligned}
P \cdot I & =\frac{1}{D^{3}+3 D+2} \cdot G e^{-x}+C_{2} e^{-2 x} \\
& =\frac{1}{D^{2}+3 D+2} e^{x} \sin x \\
& =e^{x} \frac{1}{(D+1)^{2}+3(D+1)+2} x \sin x \\
& =e^{x} \frac{1}{D^{2}+2 D+1+3 D+3+2} x \sin x \\
& =e^{x} \frac{1}{D^{2}+5 D+6} x \sin x \\
& =e^{x}\left[x \frac{1}{D^{2}+5 D+6} \sin x-\frac{2 D+5}{\left(D^{2}+5 D+6\right)^{2}} \sin x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x}\left[x \frac{1}{-1+8 D+6} \sin x-\frac{2 D+5}{(-1+5 D+6)^{2}} \sin x\right] \\
& =e^{x}\left[x \frac{1}{5 D+5} \sin x-\frac{2 D+5}{(5 D+5)^{2}} \sin x\right] \\
& =e^{x}\left[x \frac{1}{5(D+1)} \sin x-\frac{2 D+5}{25(D+1)} \sin x\right] \\
& =e^{x}\left[\frac{x}{5} \frac{1}{D+1} \times \frac{D-1}{D-1} \cdot \sin x-\frac{2 D+5}{25} \frac{1}{D A 1} \times D D=1 \cdot \operatorname{sen} x \frac{1}{D^{2}+2 D+1} \sin x\right] \\
& =e^{x}\left[\frac{x}{5} \frac{D-1}{D^{2}-1} \sin x-\frac{20+5}{25} \frac{1}{-y+2 D+x} \sin x\right] \\
& =e^{x}\left[\frac{x}{5} \frac{D-1}{-1-1} \sin x-\frac{2 D+5}{25} \frac{1}{2 D} \sin x\right] \\
& =e^{x}\left[\frac{-x}{10}(D \cdot \sin x-\sin x)-\frac{2 D+5}{50}(-\cos x)\right] \\
& \left.=e^{x}\left[\frac{-x}{10}(\cos x-\sin x)+\frac{\frac{2}{50}}{25}(-\sin x)+\frac{\frac{b}{50}}{10} \cos x\right)\right] \\
& =e^{x}\left[\frac{x}{10}(\sin x-\cos x)-\frac{1}{25} \sin x+\frac{1}{10} \cos x\right] \\
& =e^{x}\left[\frac{x}{10} \sin x-\frac{x}{10} \cos x-\frac{1}{25} \sin x+\frac{1}{10} \cos x\right] \text {. } \\
& =e^{x}\left[\frac{1}{10} \cos x(1-x)+\frac{1}{5} \sin x\left(\frac{x}{2}-\frac{1}{5}\right)\right] \\
& =e^{x}\left[\frac{1}{10} \cos x(1-x)+\frac{1}{5} \sin x\left(\frac{5 x-2}{10}\right)\right] \\
& =e^{x}\left[\frac{1}{10} \cos x(1-x)+\frac{1}{50} \sin x(5 x-2)\right] \\
& P I=\frac{e^{x}}{10}\left[\cos x(1-x)+\frac{1}{5} \sin x \cdot(5 x-2)\right]
\end{aligned}
$$

Now the solution of equinit is $y=C \cdot F+P-I$

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+\frac{e^{x}}{10}\left[\cos x(1-x)+\frac{1}{5} \sin x(5 x-2)\right]
$$

(1) $\left(D^{2}-4\right) y=x \cos 2 x$

Sol:- Given D.E is $\left(D^{2}-4\right) y=x \cos 2 x$

An Auxiliary equal is $m^{2}-11=0$

$$
\begin{gathered}
m^{2}-2^{2}=0 \\
(m+2) \quad(m-2)=0 \\
m=2,-2 .
\end{gathered}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
& C \cdot F=c_{1} e^{2 \cdot x}+c_{2} e^{-2 x} \\
& P \cdot I=\frac{1}{D^{2}-4} \cdot x(\cos 2 x) \\
&=x \cdot \frac{1}{D^{2}-4} \cos 2 x-\frac{2 D}{\left(D^{2}-4\right)^{2}} \cos 2 x \\
&=x \cdot \frac{1}{-4-4} \cos 2 x-\frac{20}{(-4-4)^{2}} \cdot \cos 2 x \\
&=x \cdot \frac{1}{-8} \cos 2 x-\frac{2 D}{64} \cos 2 x \\
&=\frac{-x}{8} \cos 2 x-\frac{1}{32} \\
&=\frac{-x}{8} \cos 2 x-\frac{1}{3 x}(-\cos 2 x) \\
& P I 6 \\
& P=\frac{-x}{8} \cos 2 x+\frac{1}{16} \sin 2 x
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{x}{8} \cos 2 x+\frac{1}{16} \sin 2 x .
$$

(3) $\frac{d^{2} y}{d x^{2}}+4 y=x \sin x$
sod:-

$$
\text { Given } \quad \begin{align*}
D \cdot E \text { is } \quad \frac{d^{2} y}{d x^{2}}+4 y & =x \sin x \\
D^{2} y+4 y & =x \sin x \\
\left(D^{2}+4\right) y & =x \sin x \tag{1}
\end{align*}
$$

An Auxiliary equn is $m^{2}+4=0$

$$
\begin{aligned}
& m^{2}=-4 \\
& m= \pm 2 i
\end{aligned}
$$

\because The roots are complex and distinct.

$$
\begin{aligned}
C \cdot F & =e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] \\
& =\frac{1}{D^{2}+4} \cdot x \sin x \\
& =x \frac{1}{D^{2}+4} \sin x-\frac{2 D}{\left(D^{2}+4\right)^{2}} \sin x \\
& =x \frac{1}{-1+4} \sin x-\frac{2 D}{(-1+4)^{2}} \sin x \\
& =\frac{x}{3} \sin x-\frac{2 D}{9} \cdot \sin x \\
P \cdot I & =\frac{x}{3} \sin x-\frac{2}{9} \cos x
\end{aligned}
$$

Now the solution of equn (1) is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]+\frac{x}{3} \sin x-\frac{2}{9} \cos x
$$

(4) $\frac{d^{2} y}{d x^{2}}-9 y=x \cos 2 x$

Sol: Given $D-E$ is $D^{2} y-9 y=x \cos 2 x$

$$
\begin{equation*}
\left(1^{2}-9\right) y=x \cos 2 x \tag{1}
\end{equation*}
$$

An Auxiliary equen is $m^{2}-9=0$

$$
\begin{aligned}
& m^{2}-3^{2}=0 \\
& (m-3)(m+3)=0 \\
& m=3,-3
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{aligned}
C-F & =c_{1} e^{3 x}+c_{2} e^{-3 x} \\
P-I & =\frac{1}{D^{2}-9} \cdot x \cdot \cos 2 x \\
& =x \cdot \frac{1}{D^{2}-9} \cos 2 x-\frac{2 D}{\left(D^{2}-9\right)^{2}} \cos 2 x \\
& =x \frac{1}{-4-9} \cos 2 x-\frac{2 D}{(-4-9)^{2}} \cos 2 x \\
& =x \frac{1}{-13} \cos 2 x-\frac{2 D}{+169} \cos 2 x \\
& =\frac{x}{13} \cos 2 x-\frac{2}{169} \cdot(-\operatorname{sen} 2 x) 2 \\
& =\frac{-x}{13} \cos 2 x+\frac{4}{169} \sin 2 x
\end{aligned}
$$

$$
\begin{array}{r}
\frac{13 \times 13}{39} \\
\frac{13}{169} \\
\hline
\end{array}
$$

Now the solution of equn (1) is $y=$ oftPI

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{x}{13} \cos 2 x+\frac{4}{169} \sin 2 x
$$

(6) $\left(D^{2}-1\right) y=x \sin 3 x+\cos x$

Sol:
Given $D-E$ is $\left(n^{2}-1\right) y=x \sin 3 x+\cos x$.
An Auxiliary Equn is $m^{2}-1=0$

$$
\begin{aligned}
& (m+1)(m-1)=0 \\
& m=1,-1
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
\begin{align*}
& C \cdot F=c_{1} e^{x}+c_{2} e^{-x} \\
& P \cdot I= \frac{1}{D^{2}-1}(x \sin 3 x+\cos x) \\
&= \frac{1}{D^{2}-1} x \sin 3 x+\frac{1}{D^{2}-1} \cos x \tag{2}\\
& P I_{1}=\frac{1}{D^{2}-1} x \sin 3 x \\
&= x \frac{1}{D^{2}-1} \sin 3 x-\frac{2 D}{\left(D^{2}-1\right)^{2}} \sin 3 x \\
&= x \frac{1}{-9-1} \sin 3 x-\frac{2 D}{(-9-1)^{2}} \sin 3 x \\
&= x \frac{1}{-10} \sin 3 x-\frac{4 D}{100} \sin 3 x \\
&= \frac{-x}{10} \sin 3 x-\frac{1}{50} \cos 3 x(3) \\
&= \frac{-x}{10} \sin 3 x-\frac{3}{50} \cos 3 x \\
& P I 2=\frac{1}{D^{2}-1} \sin x \cos x \\
&=\frac{1}{-1-1} \cos x \\
&=\frac{1}{-2} \cos x \\
& \frac{-1}{2} \cos x
\end{align*}
$$

from (2),

$$
P \cdot I=\frac{-x}{10} \sin 3 x-\frac{3}{50} \cos 3 x-\frac{1}{2} \cos x .
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{-x}-\frac{x}{10} \sin 3 x-\frac{3}{50} \cos 3 x-\frac{1}{2} \cos x
$$

Monday General Method:
(3) $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.

Sol:- Given $D \cdot E$ is $D^{2} y+a^{2} y=\sec a x$.

$$
\begin{equation*}
\left(v^{2}+a^{2}\right) y=\sec a x \tag{1}
\end{equation*}
$$

An Auxiliary Equn is $m^{2}+a^{2}=0$

$$
\begin{aligned}
m^{2} & =-a^{2} \\
m & = \pm a i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{align*}
& C \cdot F=e^{(0) x}\left[C_{1} \cos a x+c_{2} \operatorname{sen} a x\right] \\
& P-I=\frac{1}{D^{2}+a^{2}} \sec a x \\
&=\frac{1}{(D+a i)(D-a i) \sec a x} \\
&=\frac{1}{1} \\
&=\frac{1}{2 a i}\left(\frac{1}{D-a i}-\frac{1}{D+a i}\right) \sec a x \\
&=\frac{1}{2 a i}\left(\frac{1}{D-a i} \sec a x-\frac{1}{D+a i} \sec a x\right] \tag{2}\\
& P I_{1}=\frac{1}{D-a i} \sec a x \\
&=e^{i a x} \int \sec a x \cdot e \\
&=e^{i a x}\left[\int \sec a x(\cos a x-i \sin a x) d x\right] \\
&=e^{i a x\left[\int \sec a x \cos a x d x-i \int \sin a x \cdot \sec a x d x\right]} \\
&=e^{i a x\left[\int(1) d x-i \int \tan a x d x\right]} \\
&=e^{i a x}(x-P \log (\sec a x)) \\
&=e^{P a x}\left[\left(x-\frac{i}{a} \log (\sec a x)\right]\right. \\
&P I-(-a i)) \sec a x
\end{align*}
$$

$$
\begin{aligned}
& =e^{-i a x} \int \sec a x e^{i a x} d x \\
& =e^{-i a x} \int \sec a x \cdot(\cos a x+i \sin a x) d x \\
& =e^{-i a x} \int \sec a x \cdot \cos a x d x+i \int \sec a x \cdot \sin a x \cdot d x \\
& =e^{-i a x} \int(1) d x+i \int \tan a x d x \\
& =e^{-i a x}\left[x+i \frac{\log (\sec a x)}{a}\right] \\
& =e^{-i a x}\left[x+\frac{i}{a} \log (\sec a x)\right] \\
P & =\frac{1}{2 a i}\left[e^{i a x}\left[x-\frac{i}{a} \log (\sec a x)\right]-e^{-i a x} \cdot\left[x+\frac{i}{a} \log (\sec a x)\right]\right. \\
& =\frac{1}{2 a i}\left[e^{i a x} \cdot x-e^{i a x} \frac{i}{a} \log (\sec a x)-e^{-i a x} x-e^{-i a x} \frac{i}{a} \log (\sec a x)\right] \\
& =\frac{1}{2 a i}\left[\log \left[e^{i a x} e^{-i a x}\right)-\frac{i}{a} \log (\sec a x)\left(e^{i a x}+e^{-i a x}\right)\right] \\
& =\frac{1}{2 a i}\left[x \cdot 2 i \sin a x-\frac{i}{a} \log (\sec a x) 2 \cos a x\right] \\
P-I & =\frac{x}{a} \sin a x-\frac{1}{2 a^{2}} \log (\sec a x) \cos a x .
\end{aligned}
$$

Now the solution of $\varepsilon q u^{n}(1)$ is $y=C \cdot F+P-I$

$$
y=e^{(0) x}\left(c_{1} \cos a x+c_{2} \sin a x\right)+\frac{x}{a} \sin a x-\frac{1}{a^{2}} \cos a x \cdot \log (\sec a x) .
$$

(5) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{e^{x}}$.

Soli- Given D-E is $D^{2} y+3 D y+2 y=e^{e^{x}}$

$$
\begin{equation*}
\left(D^{2}+3 D+2\right) y=e^{e^{x}} \tag{1}
\end{equation*}
$$

An Auxiliary equn is $m^{2}+3 m+2=0$

$$
\begin{aligned}
& m^{2}+m+2 m+2=0 \\
& m(m+1)+2(m+1)=0 \\
& (m+1)(m+2)=0 \\
& m=-1,-2 .
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
c \cdot F=c_{1} e^{-x}+c_{2} e^{-2 x}
$$

$$
\begin{align*}
& P \cdot I=\frac{1}{(D+1)(D+2)} e^{e^{x}} \\
& =\frac{1}{2}\left(\frac{1}{D+1}-\frac{1}{D+2}\right) e^{e^{x}} \\
& =\cos _{2}^{2}\left[\frac{1}{D+1} e^{e^{x}}-\frac{1}{D+2} e^{e x}\right] \\
& P I_{1}=\frac{1}{D+1} e^{e^{x}} \\
& =\frac{1}{D-(-1)} e^{e^{x}} \\
& =e^{-\pi} \int e^{e^{x}} e^{i x} d x \\
& =e^{-x} \int e^{e^{x}} e^{x} d x \\
& =e^{-x} \int e^{t} \cdot d t \\
& e^{x}=t \\
& \begin{array}{l}
=e^{-2 x} \int e^{t} \cdot t \cdot d t \\
=e^{-2 x} e^{t}(t-1)
\end{array} \\
& 1=e^{-2 x} \int e^{e^{-x}} \cdot e^{2 x} \cdot d x \text {. } \\
& =e^{-2 x} \int e^{e^{x}} \cdot e^{x} e^{x} d x \\
& =e^{-2 x} e^{e^{x}}\left(e^{x}-1\right) \\
& =e^{-x} e^{t} \\
& =e^{-x} \cdot e^{e^{x}} . \\
& \text { PI: }=\frac{1}{2}\left[e^{-x} \cdot e^{e^{x}}-e^{-2 x} e^{e^{x}}\left(e^{x}-1\right)\right] \\
& =\frac{1}{2}\left[e^{-x} e^{e^{x}}-e^{-2 x} e^{e^{x}} e^{x}+e^{-2 x} e^{e^{x}}\right] \\
& =\frac{1}{2}\left[e^{-x} e^{e^{x}}-e^{-2 x} e^{e^{x}} e^{x}+e^{-x} e^{-x} \cdot e^{e^{x}}\right] \\
& =\frac{1}{2}\left[e^{-x} e^{e^{x}}-e^{-x} e^{-x} e^{e^{x}} e^{x}+e^{-2 x} e^{e^{x}}\right] \\
& =\frac{1}{2}\left[e^{-x} e^{e^{x}}-e^{-x} e^{e^{x}}+e^{-2 x} e^{e^{x}}\right] \\
& =\frac{1}{2} \cdot e^{-2 x} \cdot e^{x}
\end{align*}
$$

(4) $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$.

Sole Given D.E is $D^{2} y+4 y=4 \tan 2 x$

$$
\left(D^{2}+4\right) y=4 \tan 2 x \rightarrow Q
$$

An Auxiliary equn is $m^{2}+4=0$

$$
\begin{aligned}
& m^{2}=-4 \\
& m= \pm 2 i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
\begin{align*}
& c \cdot F=e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] \\
& P \cdot I=\frac{1}{D^{2}+4} 4 \tan 2 x \\
& =\frac{1}{(D-2 i)(D+2 i)} 4 \tan 2 x \\
& =\frac{1}{99 i}\left(\frac{1}{D-2 i}-\frac{1}{D+2 i}\right) \text { प/ } \tan 2 x \\
& =\frac{1}{i}\left(\frac{1}{D-2 i}-\frac{1}{D+2 i}\right) \tan 2 x \\
& =+\left[\frac{1}{D-2 i} \tan 2 x-\frac{1}{D+2 i} \tan 2 x\right] \\
& =P I_{1} \quad P I_{2} \tag{2}\\
& P I_{1}=\frac{1}{D-2 i} \tan 2 x \\
& =e^{2 i x} \int \tan 2 x e^{-2 i x} d x \\
& =e^{2 i x} \int \tan 2 x \cdot e^{-i(2 x)} d x \\
& =e^{2 i x} \int \tan 2 x \cdot(\cos 2 x-i \sin 2 x) d x \\
& \text { Df }\left(-\int-1-d=e^{2 i x} \int \sin 2 x \cdot d x-i f \tan 2 x \sin 2 x d x\right. \\
& -2 i=e^{2 i x}\left(\left(-\frac{\cos 2 x}{2}\right)-i \int \frac{\operatorname{sen}^{2}(2 x)}{\cos (2 x)} d x\right] \\
& =e^{+\operatorname{2ix}}\left[8-\frac{\cos 2 x}{2}-i \int \frac{1-\cos ^{2} 2 x}{\cos 2 x} \cdot d x\right] \\
& \text { dai-p-ai}=e^{2 i x}\left[-\frac{\cos 2 x}{2}-i \int \frac{1}{\cos 2 x} d x+i \int \cos 2 x d x\right. \\
& =e^{2 i x}\left[-\frac{\cos 2 x}{2}-i \frac{\log (\sec 2 x+7 \cos 2 x)}{2}+i \frac{\sin (2 x)}{2}\right. \\
& =e^{\operatorname{2in}}\left(-\frac{\cos 2 x}{2}-i \frac{\log (\sec 2 x+\tan 2 x)}{2}+i \frac{\sin 2 x}{2}\right) \\
& P \cdot I_{2}=\frac{1}{D+2 i}, \tan 2 x . \\
& =\frac{1}{D-(-2 i)} \tan 2 x-\frac{\cos a x+i \cos d x+i \sin a x .}{}
\end{align*}
$$

$$
-e^{-3 x}
$$

$$
\begin{aligned}
& =e^{-2 i x} \int \tan 2 x \cdot e^{2 i x} d x \\
& =e^{-2 i x} \int \tan 2 x(\cos 2 x+i \sin 2 x) d x \\
& =e^{-2 i x} \int(\tan 2 x \cdot \cos 2 x+i \tan 2 x \cdot \sin 2 x) d x \\
& =e^{-2 i x} \int \sin 2 x d x+i \int \frac{\sin ^{2} x x}{\cos 2 x} d x \\
& =e^{-2 i x} \int-\frac{\cos 2 x}{2}+i \int \frac{1}{\cos 2 x} d x-i \int \frac{\cos 2 x}{\cos 2 x} d x \\
& =e^{-2 i x}\left[\frac{-\cos 2 x}{2}+i \frac{\log (\sec 2 x+\tan x)}{2}-i \frac{\sin 2 x}{2}\right] \\
& \text { P.I }=i\left[e^{2 i x} \frac{-\cos 2 x}{2}+\frac{i \log (\sec 2 x+\tan 2 x)}{2} e^{2 i x}-i \frac{\sin 2 x}{2} e^{2 i x}\right] \\
& -\left[e^{-2 i x} \frac{-\cos 2 x}{2}+i \frac{\log (\sec 2 x+\tan 2 x) e^{-2 i x}-\frac{i \sin 2 x}{2}}{2}\right. \\
& =\frac{1}{i}\left[-\frac{\cos 2 x}{2} 2 i \sin 2 x+\frac{i}{2} \log (\sec 2 x+\tan 2 x) 2 \cos 2 x-i \frac{\sin 2 x}{2} \frac{\cos 2 x}{2}\right. \\
& \left|\begin{array}{cc}
e^{-x} & e^{-2 x} \\
-e^{-x} & -2 e^{-2 x}
\end{array}\right| \\
& \cos x+8 \sin x+\cos x-8 \sin x \\
& -e^{-x} 2 e^{-2 x}+e^{-x} \cdot e^{-2 x} \\
& -2 e^{-3 x}+e^{-3 x}
\end{aligned}
$$

$$
\begin{align*}
& C \cdot F=e^{(6) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] . \\
& P \cdot I=\frac{1}{D^{2}+4} \quad 4 \tan 2 x \\
& =4 \frac{1}{D^{2}+4} \tan 2 x . \\
& =4 \frac{1}{(D+2 i)(D-2 i)} \tan 2 x \\
& =4 \frac{-1}{4 i}\left(\frac{1}{D+2 i}-\frac{1}{D-2 i}\right) \tan 2 x \\
& =\frac{-1}{i}\left(\frac{1}{D+2 i}-\frac{1}{D-2 i}\right) \tan 2 x \\
& =\frac{-1}{i}\left(\frac{1}{D+2 i} \tan 2 x-\frac{1}{D-2 i} \tan 2 x\right) \tag{2}\\
& -P I_{1} \quad P I_{2} \\
& P I_{1}=\frac{1}{D+2 i} \tan 2 x \\
& =\frac{1}{D-(2 i)} \tan 2 x \\
& =e^{-2 i x} \int \tan 2 x \cdot e^{2 i x} d x \\
& =e^{-2 i x} \int \tan 2 x(\cos 2 x+i \sin 2 x) d x \\
& =e^{-2 i x} \int \frac{\operatorname{sen} 2 x}{\cos 2 x} \cos 2 x d x+8 \int \frac{\sin 2 x}{\cos 2 x} \operatorname{sen} 2 x d x \\
& =e^{-2 i x}\left[\frac{-\cos 2 x}{2}+i \int \frac{\sin ^{2} 2 x}{\cos 2 x} d x\right] \\
& =e^{-2 i x}\left[\frac{-\cos 2 x}{2}+i \int \frac{1-\cos ^{2} 2 x}{\cos 2 x} d y\right] \\
& =e^{-2 i x}\left[\frac{-\cos 2 x}{2}+i \int \sec 2 x d x-i \int \cos 2 x d x\right. \\
& =e^{-2 \operatorname{in}}\left[\frac{-\cos 2 x}{2}+i \frac{\log (\sec 2 x+\tan 2 x)}{2}-i \frac{\sin 2 x}{2}\right] . \\
& =e^{-2 i x}\left[\frac{-1}{2} \cos 2 x+\frac{i}{2} \log (\sec 2 x+\tan 2 x)-\frac{i}{2} \sin 2 x\right] \\
& P I_{2}=\frac{1}{D-2 i} \tan 2 x \\
& =e^{2 i x} \int \tan 2 x \cdot e^{-i i x} d x \\
& =e^{2 i x} \int \tan 2 x(\cos 2 x-i \sin 2 x) d x \\
& =e^{2 i x} \int \sin 2 x d x-i \int \frac{\sin ^{2} 2 x}{\cos 2 x} d x \\
& =e^{2 i x}\left[\frac{-\cos 2 x}{2}-i \int \frac{1-\cos ^{2} 2 x}{\cos 2 x} d x\right] \text {. }
\end{align*}
$$

$$
\begin{aligned}
& =e^{2 i x}\left[\frac{-\cos 2 x}{2}-i \int \sec 2 x d x+i \int \cos 2 x d x\right. \text {. } \\
& =e^{2 i x}\left[\frac{-1}{2} \cos 2 \cdot x-i \frac{\log (\operatorname{cec} 2 x+\tan 2 x)}{2}+i \frac{\sin 2 x}{2}\right] \\
& =e^{2 i x}\left[-\frac{1}{2} \cos 2 x-\frac{i}{2} \log (\sec 2 x+\tan 2 x)+\frac{i}{2} \sin 2 x\right] \\
& P \cdot T=\frac{-1}{i}\left[e^{-2 x} x\left[-\frac{1}{2} \cos 2 x+\frac{i}{2} \log (\sec 2 x+\tan 2 x)-\frac{i}{2} \operatorname{sen} 2 x\right]-\right. \\
& \left.e^{2 i x}\left[\frac{-1}{2} \cos 2 x-\frac{i}{2} \log (-\sec 2 x+\tan 2 x)+\frac{p}{2} \sin 2 x\right]\right] \\
& =\frac{-1}{i}\left[e^{-2 i x} \frac{-1}{2} \cos 2 x+\frac{i}{2} e^{-2 i x} \log (\sec 2 x+\tan 2 x)-\frac{1}{2} e^{-2 i x} \operatorname{sen} 2 x\right. \\
& \left.+e^{2 i x} \frac{1}{2} \cos 2 x+\frac{i}{2} e^{22 x} \log (\sec 2 x+\tan 2 x)-\frac{i}{2} e^{+2 i x} \sin 2 x\right] \\
& =\frac{-1}{1}\left[\frac{1}{2} \cos 2 x\left[e^{2 i x}-e^{-2 i x}\right]+\frac{i}{2} \log (\sec 2 x+\tan 2 x)\left(e^{2 i x}+e^{-2 i x}\right] .\right. \\
& \left.-\frac{i}{2} \sin 2 x\left[e^{i i x}+e^{-2 i x}\right]\right] \\
& =\frac{-1}{\rho} \cdot\left[\frac{1}{7} \cos 2 x(\sin 2 x)+\frac{i}{2} \log (\sec 2 x+\tan 2 x) \not 2(\cos 2 x\right. \\
& \left.-\frac{i}{7} \operatorname{sen} 2 x \neq \cos 2 x\right] \\
& =-\cos 2 x \cdot \operatorname{sen} 2 x-\log (\sec 2 x+\tan 2 x) \cos 2 x+\sin 2 x \cos 2 x \text {. } \\
& \text { PhI }=-\log (\sec 2 x+\tan 2 x)
\end{aligned}
$$

Now the solution of Equ") is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]-\log (\sec 2 x+\tan 2 x)
$$

(1) $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan d x$.

Sol. Given $D \cdot E$ is $D^{2} y+a^{2} y=\tan a x$

$$
\begin{equation*}
\left(D^{2}+a^{2}\right) y=\tan a x \tag{1}
\end{equation*}
$$

An Auxiliary equn is $m^{2}+a^{2}=0$

$$
\begin{aligned}
m^{2} & =-a^{2} \\
m & = \pm a i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
C F=e^{(0) x}\left[c_{1} \cos a x+c_{2} \sin a x\right]
$$

Tuesday
(2112 219 Method of variation of Parameter:
(2) $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$.

Given D.E is $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{34}}{x^{2}}$

$$
\begin{align*}
& D^{2} y-6 D y+9 y=\frac{e^{3 x}}{x^{2}} \\
& \left(D^{2}-6 D+9\right) y=\frac{e^{3 y}}{x^{2}} \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

An Auxiliary equine is $m^{2}-6 m+9=0$

$$
\begin{aligned}
& (m-3)^{2}=0 \\
& (m-3)(m-3)=0 \\
& m=3,3
\end{aligned}
$$

\therefore The roots are real and repeat.

$$
C \cdot F=c_{1} e^{3 x}+c_{2} x e^{3 x}
$$

Let us take $y_{1}=e^{3 x}$ and $y_{2}=x e^{3 x}$
The P-I is of the form $P \cdot I=v_{1} y_{1}+v_{2} y_{2}$

$$
\begin{align*}
& U_{1}=-\int \\
& P-I=\frac{1}{D^{2}+a^{2}} \cdot \tan a x \\
& =\frac{1}{(D+a i)(D-a i)} \operatorname{Tan} a x \\
& =\frac{-1}{2 a i}\left(\frac{1}{D+a i}-\frac{1}{D-a i}\right) \tan a x \\
& =\frac{-1}{2 a i}\left[\frac{1}{D+a i} \tan a x-\frac{1}{D-a i} \tan a x\right] \tag{2}\\
& P I_{1} \quad P I_{2} \\
& P I_{1}=\frac{1}{D+a i} \tan a x \\
& =\frac{1}{D-(-a i)} \tan a x \\
& =e^{-a i x} \int \operatorname{Tan} a x e^{a i x} \cdot d x \\
& =e^{-a i x} \int \tan a x(\cos a x+i \sin a x) d x \text {. } \\
& =e^{-a i x} \int \frac{\sin a x}{\cos a x} \cos 2 x \cdot d x+i \int \frac{\sin ^{2} a x}{\cos a x} d x
\end{align*}
$$

$$
\begin{aligned}
& =e^{-a i x}\left[\frac{-\cos a x}{a}+i \int \sec a x d x-i \int \cos a x d x\right] \\
& =e^{-a i x}\left[\frac{-1}{a} \cos a x+i \frac{\log (-\sec a x+\tan a x)}{a}+i \cdot \frac{\sin a x}{a}\right) \\
& =e^{-a i x}\left[\frac{-1}{a} \cos a x+\frac{i}{a} \log (\sec a x+\tan a x)-\frac{i}{a} \sin a x\right]
\end{aligned}
$$

$$
\begin{aligned}
& P I_{2}=\frac{1}{D-a i} \tan a x \\
& =e^{a i x} \int \tan a x e^{-a i x} d x \text {. } \\
& =e^{a i x} \int \tan a x(\cos a x-i \sin a x) \cdot d x \\
& =e^{\operatorname{aix}} \int \frac{\sin a x}{\cos a x} \cos a x-i \cdot \int \frac{\sin ^{2} a x}{\cos a x} d x \\
& =e^{a^{i x}} \cdot\left[-\frac{\cos a x}{a}-i \int \sec a x d x+i \int \cos a x d x\right] \\
& =e^{\text {aix }}\left[\frac{1}{a} \cos a x-i \frac{\log (\sec a x+\tan a x)}{a}+i \frac{\sin a x}{a}\right] \\
& =e^{a i x}\left[\frac{-1}{a} \cos a x-\frac{i}{a} \log (\sec a x+\tan a x)+\frac{i}{a}(\sin a x)\right] \\
& \text { P.I }=\frac{-1}{2 a i}\left[e^{-a i n}\left[\frac{-1}{a} \cos a x+\frac{i}{a} \log (\sec a x+\tan a x)-\frac{i}{a} \sin a x\right]-\right. \\
& \left.e^{\text {aix }}\left[\frac{-1}{a} \cos a x-\frac{i}{a} \log (\sec a x+\tan a x)+\frac{i}{a} \sin a x\right]\right] \\
& =\frac{-1}{2 a i}\left[\frac{-1}{a} e^{-a i x} \cos a x+\frac{i}{a} e^{-a i x} \log (\sec a x+\tan a x) \frac{-i}{a} e^{-a i x}, \sin a x\right. \\
& \left.+\frac{1}{a} e^{a i x} \cos a x+\frac{9}{a} e^{a i n} \log (\sec a x+\tan a x)-\frac{i}{a} e^{a i x} \sin a x\right] \\
& =\frac{-1}{2 a i}\left[\frac{1}{a} \cos a x\left[e^{a i x}-e^{-a i n}\right]+\frac{i}{a} \log (\sec a x+\tan a x)\left(e^{a i x}+e^{-a i x}\right]\right. \\
& \left.-\frac{i}{a} \sin a x\left[e^{a i x}+e^{-a i x}\right]\right] \\
& =\frac{-1}{2 a i}\left[\frac{1}{a} \cos a x 2 \cdot \sin a x+\frac{i}{a} \log (\sec a x+\tan a x) 2 \cos a x\right. \text {. } \\
& \left.\frac{-p}{a} \sin a x 2 \cos a x\right] \\
& =\frac{-1}{a^{2}} \sin a x \cos a x-\frac{1}{a^{2}} \cdot \log (\cdot \sec a x+\tan a x)+\frac{1}{a^{2}} \cdot \sin a x \cos a x \\
& P \cdot I=-\frac{1}{a^{2}} \log (\sec a x+\tan a x)
\end{aligned}
$$

Now the solution of equn(1) is $y=C \cdot F+P \cdot I^{\prime}$

$$
y=e^{\cos x}\left[c_{1} \cos a x+c_{2} \sin a x\right]-\frac{1}{a^{2}} \log (\sec a x+\tan a x)
$$

(2) $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$

Sor Gquen D is $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$

$$
\begin{aligned}
& d x^{2} \\
& 0 y+y=\cos x \\
& \left(D^{2}+1\right) y=\cos x \rightarrow \text { (1) }
\end{aligned}
$$

- An Auxiliary equn is

$$
\begin{aligned}
& m^{2}+1=0 \\
& m^{2}=-1 \\
& m= \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
c \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]
$$

$$
\begin{align*}
& P-I=\frac{1}{D^{2}+1} \cos a x \operatorname{cosec} x \\
&=\frac{1}{(D+i)(D-i)} \cos a x \operatorname{cosec} x \\
&=\left[\frac{1}{D+a i}-\frac{1}{D-i}\right] \operatorname{cosax} \operatorname{cosec} x \\
&=\frac{-1}{2 i}\left[\frac{1}{D+i}-\frac{1}{D-i}\right] \cos a x \operatorname{cosec} x \\
&=\frac{-1}{2 i}\left[\frac{1}{D+i} \operatorname{cosec} x-\frac{1}{D-i} \operatorname{cosec} x\right] \\
& P I_{1} \quad P I_{2} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
P I_{1} & =\frac{1}{D-(-i)} \operatorname{cosec} x \\
& =e^{-i x} \int \operatorname{cosec} x \cdot e^{i x} d x \\
& =e^{-i x} \int \operatorname{cosec} x(\operatorname{cis} x+i \sin x) d x \\
& =e^{-i x} \int \frac{1}{\sin x} \cos x+i \int \frac{1}{\operatorname{sen} x} \cdot \sin x d x \\
& =e^{-i x} \int \cot x d x+i \int(1) d x \\
& =e^{-i x}[\log (\sin x)+i x] \\
P I_{2} & =\frac{1}{D-i} \operatorname{cosec} x \\
& =e^{i x} \int \operatorname{cosec} x \cdot e^{-i x} d x \\
& =e^{i x} \int \operatorname{cosec} x(\cos x-i \sin x) d x \\
& =e^{i x} \int \cot x d x-i \int(i) d x
\end{aligned}
$$

$$
\begin{aligned}
& =e^{i x}[\log (\sin x)-i x] \\
\text { P.I } & =\frac{-1}{2 i}\left[e^{-i x}[\log (\sin x)+i x]-e^{i x}[\log (\sin x)-i x]\right] \\
& =\frac{-1}{2 i}\left[e^{-i x} \log (\sin x)+i x e^{-i x}-e^{i x} \log (\sin x)+e^{i x} i x\right] \\
& =\frac{-1}{2 i}\left[\log (\sin x)\left(e^{-i x}-e^{i x}\right)+i x \cdot\left(e^{i x}+e^{-i x}\right)\right] \\
& =-\frac{1}{2 i}[\log (\sin x) \cdot(-2 i \sin x)+i x 2 \cos x] \\
& =+\log \cdot(\sin x) \cdot \sin x-x \cdot \cos x \\
P \cdot I & =\sin x \cdot \log (\sin x)-x \cdot \cos x
\end{aligned}
$$

Now the solution of squ ${ }^{n}(1)$ is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\sin x \cdot \log (\sin x)-x \cos x
$$

* M.O.V.O.P: continuous:
where $v_{1}=-\int \frac{y_{2} x}{w} d x$ and $v_{2}=-\int \frac{y_{1} x}{w 1} d x$.

$$
\text { Wronskin } \begin{aligned}
W & =\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left\lvert\, \begin{array}{cc}
e^{3 x} & x e^{3 x} \\
3 e^{3 x} & \left.\begin{array}{ll}
3 x e^{3 x}
\end{array}\right|_{x e^{3 x}(3)+e^{3 x}} \\
& =\left|\begin{array}{cc}
e^{3 x} & x e^{3 x} \\
3 e^{3 x} & e^{3 x}(1+3 x)
\end{array}\right| \\
& =e^{3 x} \cdot e^{3 x}(1+3 x)-3 x e^{3 x} \cdot e^{3 x} \\
& =e^{6 x}+3 x e^{6 x}-3 x e^{6 x} \\
W & =e^{6 x}
\end{array}\right.,=\text { : }
\end{aligned}
$$

$$
\begin{aligned}
U_{1} & =-\int \frac{\int e^{3 x} \cdot \frac{e^{3 x}}{x}}{e^{6 x}} d x \\
& =-\int \frac{\frac{1}{x} e^{6 x}}{e^{6 x}} d x \\
& =-\int \frac{1}{x} d x \\
& =-\log x
\end{aligned}
$$

$$
u_{2}=-\int \frac{e^{3 x^{1}} \frac{e^{3 x}}{x^{2}}}{e^{6 x}} d x
$$

$$
=-\left(\frac{x^{-1}}{-1}\right)
$$

$$
=\frac{1}{x}
$$

Now the $P-I=-\log x e^{3 x}+\frac{1}{x} \cdot \not x e^{3 x}=e^{3 x}(1-\log x)$.
Now thane solutition of equax(1) \&s $y=1 \angle / F A T P I$
Now the solution of equnct is $y=C \cdot F .+P \cdot I$

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}+e^{3 x}(1-\log x)
$$

(4)

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x .
$$

Given D.E is $x^{2}+2 M x+\infty$

$$
\begin{align*}
& D^{2}+2 D y+y=e^{x} \log x \\
& \left(D^{2}-2 D+t y=e^{x} \log x\right. \tag{1}
\end{align*}
$$

An Auxiliary que is $m^{2}-2 m+1=0$

$$
\begin{aligned}
& (m-1)^{2}=0 \\
& (m-1)(m-1)=0 \\
& m=1,1
\end{aligned}
$$

\therefore The roots are real and complex.

$$
C \cdot F=c_{1} e^{x}+c_{2} x e^{x}
$$

pet us take $y_{1}=e^{x}, y_{2}=x e^{x}$.
The P.I is of the form $P I=u_{1} y_{1}+b_{2} y_{2}$
where $v_{1}=-\int \frac{y_{2} x}{w} d x$ and $U_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\begin{aligned}
\text { Wronskin } & =\left|\begin{array}{ll}
e^{x} & x e^{x} \\
e^{x} & x \cdot e^{x}+e^{x}
\end{array}\right| \cdots \\
& =\left|\begin{array}{ll}
e^{x} & x e^{x} \\
e^{x} & e^{x}(1+x)
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x} e^{x}(1+x)-e^{x} \cdot x e^{x} \\
& =e^{2 x}+x e^{2 x}-x e^{2 x} \text {. } \\
& \omega \mid=e^{2 x} \\
& u_{1}=-\int \frac{x e^{x} \cdot e^{x \log x}}{e^{2 x}} d x \\
& u_{2}=-\int \frac{e^{x} \cdot e^{x \log x}}{e^{2 x}} d x \\
& =-\int x \log x d x \\
& =-\int \log x d x \\
& =-(x \log x-x) \\
& =-x \log x+x \\
& =-\left[\frac{x^{2}}{2} \log x-\frac{1}{2} \int x d x\right] \\
& =-\left[\frac{x^{2}}{2} \log x-\frac{1}{2} \frac{x^{2}}{2}\right] \\
& =-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4} \\
& \text { PhI }=\left(-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}\right) e^{x}+(-x \log x+x) x \cdot e^{x} \text {. } \\
& =-\frac{x^{2}}{2} \log x \cdot e^{x}+\frac{x^{2}}{4} e^{x}+-x \log x x e^{x}+x \cdot x e^{x} \\
& =-\frac{x^{2}}{2} \log x \cdot e^{x}+\frac{x^{2}}{4} e^{x}-x^{2} \log x e^{x}+x^{2} e^{x} \text {. } \\
& =\log x-e^{x}\left(\frac{-x^{2}}{2}-x^{2}\right)+x^{2} e^{x}\left(\frac{1}{4}+1\right) \\
& =\log x-e^{x}\left(\frac{-x^{2}-2 x^{2}}{2}\right)+x^{2} e^{x}\left(\frac{1+4}{4}\right) \\
& P I=e^{x} \cdot \log x\left(\frac{-3 x^{2}}{2}\right)+x^{2} e^{x}\left(\frac{5}{4}\right)
\end{aligned}
$$

Now the solution of Equal C is $y=C-F+P . I$

$$
y=\cdot c_{1} e^{x}+c_{2} x e^{x}-e^{x} \log x \cdot\left(\frac{3 x^{2}}{2}\right)+\frac{5}{4} x^{2} e^{x}
$$

(b) $\frac{d^{2} y}{d x^{2}}+y=\frac{1}{1+\sin x}$.

Given $D-E$ is $D^{2} y+y=\frac{1}{1+\sin x}$

$$
\begin{equation*}
\left(0^{2}+1\right) y=\frac{1}{1+\sin x} \tag{1}
\end{equation*}
$$

An Auxiliary equal is $m^{2}+1=0$

$$
\begin{aligned}
& m^{2}=-1 \\
& m= \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
c \cdot F=e^{(0) x}\left[c_{1} \cos x+c, \sin x\right]
$$

Let us take $y_{1}=\cos x$ and $y_{2}=\sin x$.
The P.I is of the form $P \cdot T=u_{1} y_{1}+u_{2} y_{2}$
where $y_{1}=-\int \frac{y_{2} x}{x_{1}} d x \quad$ and $\quad u_{2}=-\int \frac{y_{1} x}{w_{1}} d x$

$$
\begin{aligned}
& \text { Wronskin }(I N)=\left|\begin{array}{cc}
\cos x & \operatorname{sen} x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos x \cdot \cos x+\sin x \cdot \sin x \\
& =\cos ^{2} x+\sin ^{2} x \\
& w=1 \\
& u_{1}=-\int \frac{\sin x \cdot \frac{1}{1+\sin x}}{1} d x \\
& U_{2}=-\int \frac{\cos x \frac{1}{1+\sin x}}{1} d x \\
& =-\int \sin x \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} d x \\
& =-\int \cos x \frac{1}{1+\sin x} x \frac{1-\sin x}{1-\sin x} \\
& =-\int \sin x\left(\frac{1-\sin x}{1-\sin ^{2} x}\right) d x \\
& =-\int \cos x \cdot\left(\frac{1-\sin x}{\cos x x}\right) d x \\
& =-\int \sin x\left(\frac{1-\sin x}{\cos ^{2} x}\right) d x \\
& =-\int \sec x d x+\int \tan x d x \\
& =-\int\left(\frac{\sin x}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}\right) d x \text {. } \\
& =-\log (\sec x+\tan x)+\log (\sec \\
& =-\int \sec x \cdot \tan x \cdot d x+\int \tan ^{2} x \cdot d x \text {. } \\
& =-\sec x+\int\left(\sec ^{2} x-1\right) d x \\
& =-\sec x+\int \sec ^{2} x d x-\int \cos d x \\
& =-\sec x+\tan x-x \text {. } \\
& \text { P.I.I }=(-\sec x+\tan x-x) \cos x+[-\log (\sec x+\tan x)+\log (\sec x)] \sin x \\
& =-\sec x \cdot \cos x+\tan x \cdot \cos x-x \cos x-\log (\sec x+\tan x) \sin x \\
& +\log (\sec x) \sin x \\
& \therefore=-1+\cos x \cdot \tan x-x \cos x-\sin x[\log (\sec x+\tan x)-\log (\sec x)]
\end{aligned}
$$

Now the solution of equnco is $y=C \cdot F-P \cdot I$

$$
\begin{aligned}
y= & e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\cos x \tan x:-(x \cos x+1) \\
& \quad-\sin x[\log (\sec x+\tan x)-\log (\sec x)] \\
= & e^{(\cos x}\left[c_{1} \cos x+c_{2} \sin x\right]+\sin x-(x \cos x+1)-\sin x \cdot \log \cdot\left(\frac{\sec x+\tan x}{\tan x}\right)
\end{aligned}
$$

(10) $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=\frac{1}{x^{3}} e^{-3 x}$.
sole Given $D E$ is $D^{2} y+6 D y+9 y=\frac{1}{x^{3}} e^{-3 x}$.

$$
\begin{equation*}
\left(D^{2}+6 D+9\right) y=\frac{1}{x^{3}} e^{-3 x} \rightarrow \tag{c}
\end{equation*}
$$

An Auxiliary equn is $m^{\prime}+6 m+9=0$

$$
\begin{aligned}
& (m+3)^{2}=0 \\
& (m+3)(m+3)=0 \\
& m=-3,-3
\end{aligned}
$$

\therefore The roots are seal and repeat.

$$
c \cdot F=c_{1} e^{-3 x}+c_{2} x e^{-3 x}
$$

羋et is take $y_{1}=e^{-3 x}, y_{2}=x e^{-3 x}$.
The P.I is of the form P-I $=U_{1} y_{1}+u_{2} y_{2}$
PR IS Where $u_{1}=-\int \frac{y_{2} x}{w} d x, \quad u_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\begin{aligned}
\text { Wronskin (|N }) & =\left|\begin{array}{cc}
e^{-3 x} & x e^{-3 x} \\
-3 e^{-3 x} & x \cdot e^{-3 x}(-3)+e^{-3 x}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{-3 x} & x e^{-3 x} \\
-3 e^{-3 x} & e^{-3 x}(-3 x+1)
\end{array}\right| \\
& =e^{-3 x} \cdot e^{-3 x}(-3 x+1)+3 x e^{-3 x} \cdot e^{-3 x} \\
& =-3 x \cdot e^{-6 x}+e^{-6 x}+3 x e^{-69} \\
x & =e^{-6 x}
\end{aligned}
$$

$$
\begin{aligned}
u_{1} & =-\int \frac{-8 x e^{-3 x} \frac{1}{x+e^{-3 x}}}{e^{-6 x}} d x v_{2}
\end{aligned}=-\int \frac{e^{-3 x} \frac{1}{x^{3}} e^{-3 x}}{e^{-6 x}} d x ~\left(\begin{array}{rl}
& =-\int x^{-3} d x \\
& =-\int x^{-2} d x \\
& =-\left(\frac{x^{-1}}{-1}\right) \\
& =\frac{1}{x} \\
& =\frac{1}{2 x^{2}} \\
\text { PIT } & =\frac{1}{x} e^{-3 x}+\frac{1}{2 x}+\cdot x \cdot e^{-3 x}
\end{array}\right.
$$

Now the solution of equine is $y=C \cdot F+P-I$

$$
\begin{aligned}
& y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+e^{-3 x} \frac{1}{x}\left(1+\frac{1}{2}\right) \\
& y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+\frac{e^{-3 x}}{x}(3 / 2) .
\end{aligned}
$$

(1) $\frac{d^{2} y}{d x^{2}}+4 y=4 \sec ^{2} 2 x$.

Sol. Given DEE is $D y+c l y=4 \sec ^{2} 2 x$.

$$
\begin{equation*}
\left(D^{2}+4\right) y=4 \sec ^{2} 2 x \tag{i}
\end{equation*}
$$

An Auxiliary $e q \mu^{n}$ is $m^{2}+4=0$

$$
\begin{aligned}
m^{2} & =-4 \\
m & = \pm 2 i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
C \cdot F=e^{(0) x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]
$$

Let as take $y_{1}=\cos 2 x, y_{2}=\sin 2 x$
The P.I is of the form P.I $=v_{1} y_{1}+v_{2} y_{2}$
where $\quad u_{1}=-\int \frac{y_{2} x}{w} d x \quad$ and $\quad u_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\begin{aligned}
\text { Wronskin value }(w) & =\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos 2 x & \sin 2 x \\
-2 \sin 2 x & 2 \cos 2 x
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =2 \cos ^{2} 2 x+2 \sin ^{2} 2 x \\
& =2\left[\cos ^{2} 2 x+\sin ^{2} 2 x\right] \\
& =2(1) \\
& W=2 \\
& U_{1}=-\int \frac{\sin 2 x y^{2} \cdot \sec ^{2} 2 x}{\psi} d x \\
& U_{2}=-\int \frac{\cos 2 x \cdot x^{2} \sec ^{2} 2 x}{\mu} d x \\
& =-2 \int \sin 2 x(1+\sqrt{\tan } 2 / 2 x) d x \\
& =-2 \int \cos 2 x \cdot \frac{1}{\cos t_{2} x} d x \\
& =-k\left[\int \sin \alpha x d x+\int \sin 2 x+\operatorname{cin}^{2} 2 x d x y\right] . \\
& =-2 \int \sec 2 x d x \\
& =-f \frac{\log (\sec 2 x+\tan 2 x)}{2} \\
& =-\log (\sec 2 x+\tan 2 x) \\
& =-2 \int \tan 2 x \sec 2 x \cdot d x \\
& =-7 \frac{\sec 2 x}{y}=-\sec 2 x \\
& \text { PhI }=-\sec 2 x \cos 2 x+(-\log (\sec 2 x+\tan 2 x) \sin 2 x) \text {. } \\
& =-1-\log (\sec 2 x+\tan 2 x) \sin 2 x \\
& =-[\operatorname{sen} 2 x \cdot \log (\sec 2 x+\tan 2 x)+1]
\end{aligned}
$$

Now the solution of equn Q is $y=C \cdot F+P-I$

$$
y=e^{0} x\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]-[\sin 2 x \log (\sec 2 x+\tan 2 x)+1]
$$

(3) $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$.

Sol-- Given $D E$ is $D^{2} y+y=\operatorname{cosec} x$

$$
\begin{equation*}
\left(D^{2}+1\right) y=\operatorname{cosec} x \tag{1}
\end{equation*}
$$

An: Auxiliary equi is - $m^{2}+1=0$

$$
\begin{aligned}
m^{2} & =-1 \\
m & = \pm i
\end{aligned}
$$

\therefore The roots are consoler and distinct.

$$
C-F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]
$$

Let us take $y_{1}=\cos x \quad, y_{2}=\sin x$.
The P.I is of the form P.I. $=U_{1} y_{1}+U_{2} y_{2}$.
where $u_{1}=-\int \frac{y_{2} x}{k \mid} d x$ and $u_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\text { Wronskin value } \begin{aligned}
&(w)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
&=\cos ^{2} x+\sin ^{2} x \\
& \quad \begin{array}{l}
w
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
U_{1} & =-\int \frac{\sin x \operatorname{cosec} x}{1} d x & U_{2} & =-\int \frac{\cos x \cdot \operatorname{cosec} x}{1} d x \\
& =-\int(1) d x & & =-\int \cot x d x \\
& =-x . & &
\end{aligned}
$$

$$
\begin{aligned}
P-I & =-x \cdot \cos x-\log (\sin x)^{\prime} \cdot \sin x \\
& =-[x \cos x-\sin x \cdot \log (-\sin x)]
\end{aligned}
$$

Now the solution of squid (1) is $y=C \cdot F+P \cdot I$

$$
y=e^{(0) x}\left[9 \cos x+c_{2} \sin x\right]-[x \cos x-\sin x-\log (\sin x)]
$$

(5) $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$

Solve Given D.E is $D^{2} y-y=\frac{2}{1+e^{x}}$

$$
\begin{equation*}
\left(0^{2}-1\right) y=\frac{2}{1+e^{x}} \tag{1}
\end{equation*}
$$

An Ariniliary equn is $m^{2}-1=0$

$$
\begin{aligned}
m^{2} & =1 \\
m & = \pm 1
\end{aligned}
$$

\therefore The roots are real and distinct.

$$
c \cdot F=c_{1} e^{x}+c_{2} e^{-x}
$$

Let us take $y_{1}=e^{x}, y_{2}=e^{-x}$
The P.I is of the form $P-I=U_{1} y_{1}+0_{2} y_{L}$

Where $v_{1}=-\int \frac{y_{2} x}{w} d x \quad$ and $\quad v_{2}=-\int \frac{y_{1} x}{|\alpha|} d x$.

$$
\begin{aligned}
& \text { Wronskin value }=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right| \\
& =-e^{x} \cdot e^{-x}-e^{x} \cdot e^{-x} \\
& =-1-1 \\
& \omega=-2 \\
& v_{1}=-\int \frac{e^{-x} \cdot \frac{\not 2}{1+e^{x}}}{-\nsim} d x \\
& U_{2}=-\int \frac{e^{x} \frac{x}{1+e^{x}}}{-4} d x . \\
& =\int \frac{e^{x}}{1+e^{x}} \cdot d x \\
& =\int \frac{e^{x}}{1+e^{x}} d x \\
& 7 \sqrt{e^{4 M}} \cdot \frac{1}{1 x e^{d x}} d x \\
& =\int \frac{e^{-x} \cdot e^{x}}{e^{-x}+1} d x \\
& =\int \frac{1}{e^{2 x}+1 e^{e x x}} d x \\
& =\int \frac{e^{-x} \cdot e^{-x}}{1+e^{x}} d x\left[\begin{array}{l}
1+e^{-x}=t \\
-e^{-x} d x=d t \\
e^{-x} d x=-d t
\end{array}\right] \\
& =\frac{\log \left(e^{-x}+1\right)}{-e^{-x}}\left(-x^{x} x\right) \\
& =\int \frac{t-1}{t} \cdot(-d t) \\
& =-\int\left(1-\frac{1}{t}\right) d t \\
& =-\int(1) d t+\int \frac{1}{t} d t \\
& =-t+\log t \\
& =-\left(1+e^{-x}\right)+\log \left(1+e^{-x}\right) \\
& \text { PhI }=\left[-\left(1+e^{-x}\right)+\log \left(1+e^{-x}\right)\right] e^{x}+\left[-e^{x} \cdot \log \left(e^{-x}+1\right)\right] e^{-x} \\
& =-e^{x}-e^{-x} e^{x}+e^{x} \cdot \log \left(1+e^{-x}\right)-e^{x} \cdot \log \left(e^{-x}+1\right) e^{-x} \\
& =-e^{x}-1+e^{x} \log \left(1+e^{-x}\right)-\log \left(1+e^{-x}\right) \\
& =-e^{x}\left[1-\log \left(1+e^{-x}\right)\right]-1\left[1+\log \left(1+e^{-x}\right)\right]
\end{aligned}
$$

Now the solution of Equn(1) is $y=C \cdot F+P \cdot I$

$$
y=c_{1} e^{x}+c_{2} e^{-x}-e^{x}\left(1-\log \left(1+e^{-x}\right)-\left(1+\log \left(1+e^{-x}\right)\right.\right.
$$

(7) $\frac{d^{2} y}{d x^{2}}+y=\tan x$.

Sot:- Given $D-E$ is $D y+y=\tan x$

$$
\begin{equation*}
\left(D^{2}+1\right) y=\tan x \tag{1}
\end{equation*}
$$

In Auxiliary equn is $m^{2}+1=0$

$$
\begin{aligned}
& m^{2}=-1 \\
& m= \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
c \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]
$$

Let us take $y_{1}=\cos x$ and $y_{2}=\sin x$
The PII is of the form P.I $=U_{1} y_{1}+U_{2} y_{2}$
Where $U_{1}=-\int \frac{y_{2} x}{w} d x$ and $U_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\begin{array}{rlr}
& \text { Wronskin value }(W)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x+\sin ^{2} x
\end{array} \quad \begin{aligned}
& U_{1}=-\int \frac{\sin x \cdot \tan x}{1} d x \\
&=-\int \frac{\sin ^{2} x}{\cos x} d x \\
&=-\int \frac{1-\operatorname{sos}^{2} x}{\cos x} d x \\
&=-\int \sec x d x+\int \cos x d x \\
&=-\log (\sec x+\tan x)+\sin x \\
&=-\int \sin x \cdot \frac{\sin x}{\cos x} d x \\
& P \cdot I x \\
&=-(-\log (\sec x+\cos x)+\sin x) \cos x+\cos x \sin x \\
&=-\log (\sec x+\tan x)+\sin x \cdot \cos x+\sin x \cdot \cos x \\
&=2 \sin x \cos x-\log (\sec x+\tan x) \\
& P \cdot I=\sin 2 x-\log (\sec x+\tan x)
\end{aligned}
$$

Now the solution of Equn(1) is $y=C F+P$.I

$$
y=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\sin 2 x-\log (\sec x+\tan x)
$$

(8) $y^{\prime \prime}+y=\sec ^{2} x$.

Sol:- Given $D E$ is $D^{2} y+y=\sec ^{2} x$.

$$
\begin{equation*}
\left(D^{2}+1\right) y=\sec ^{2} x \tag{1}
\end{equation*}
$$

An Auxiliary equine is $m^{2}+1=0$

$$
\begin{aligned}
& m^{2}=-1 \\
& m= \pm i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
c \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]
$$

Let us take $y_{1}=\cos x, y_{2}=\sin x$
The P-I is of the form P.I $=U_{1} y_{1}+U_{2} y_{2}$
where $\quad u_{1}=-\int \frac{y_{2} x}{1 N} d x \quad$ and $\quad v_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\begin{aligned}
\text { Wronskin value (nt) } & =\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x+\sin ^{2} x \\
w & =1
\end{aligned}
$$

$$
U_{1}=-\int \frac{\sin x \sec ^{2} x}{1} d x
$$

$$
U_{2}=-\int \frac{\cos x \cdot \sec ^{2} x}{1} d x
$$

$$
=-\int \sin x\left(1+\tan ^{2} x\right) d x
$$

$$
=-\int \cos \pi \cdot \frac{1}{\cos ^{3} \cdot x} \cdot d x
$$

$$
=-\int \sin x d x-\int \sin x \cdot \frac{\sin ^{2} x}{\cos ^{2} x} \cdot d x
$$

$$
=-(-\cos x)-\int \sin x \cdot\left(\frac{1-\cos ^{2} x}{\cos ^{2} x}\right) d x
$$

$$
=\cos x-\int \sin x \cdot \frac{1}{\cos ^{2} x} d x+\int \sin x d x
$$

$$
=\cos x-\int \sec x \cdot \operatorname{Tan} x d x+(-\cos x)
$$

$$
=\cos x-\sec x-\cos x
$$

$$
\begin{aligned}
U_{1} & =-\int \sin x \cdot \sec ^{2} x \cdot d x \\
& =-\int \sec x \cdot \tan x d x \\
& =-\sec x
\end{aligned}
$$

$$
\begin{aligned}
\text { PI } & =-\sec x \cdot \cos x+[-\log (\sec x+\tan x)] \sin x \\
& =-[1+\sin x \cdot \log (\sec x+\tan x)]
\end{aligned}
$$

Now -the solution of equn(1) is $y=C . F+P . I$

$$
y=e^{(o) x}\left[c_{1} \cos x+c_{2} \sin x\right]-[1+\sin x \cdot \log (\sec x+\tan x)]
$$

(9) $\frac{d^{2} y}{d x^{2}}+y=x \sin x$.

Sols- Given D-E is $D^{2} y+y=x \sin x$

$$
\begin{equation*}
\left(D^{2}+1\right) y=x \sin x \tag{1}
\end{equation*}
$$

An Auxiliary sequin is $m^{2}+1=0$

$$
\begin{aligned}
m^{2} & =-1 \\
m & = \pm i
\end{aligned}
$$

\therefore The roots are reed complex and distinct.

$$
c \cdot F=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]
$$

Let us take $y_{1}=\cos x, y_{2}=\operatorname{sen} x$
The P.I is of the form P.I $=v_{1} y_{1}+v_{2} y_{2}$
where $u_{1}=-\int \frac{y_{2} x}{w} d x$ and $u_{2}=-\int \frac{y_{1} x}{w} d x$

$$
\text { Wronskin value } \begin{aligned}
(w) & =\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x+\sin ^{2} x \\
w & =1
\end{aligned}
$$

$$
\begin{aligned}
& U_{1}=+\int \frac{\sin x)(x \sin (i)}{x} d x \\
& =r-\int x \cdot \sin ^{2} x \cdot 1 d x \text {. } \\
& 7+\left[x \cdot \frac{\left(\operatorname{sen}(x)^{3}\right.}{36}+\left[\left(6 \frac{(\sin x)^{3}}{3} d x\right]\right.\right. \\
& =+\left[2 x \cdot \frac{(\sin x)^{3}}{3}-\frac{1}{6} \int \sin ^{3} 3 x \cdot d x\right] \text {. } \\
& 71\left[x \cdot \frac{(\sin x)^{3}}{v^{3}}{ }^{2}+\left[\frac{(\sin x-\sin 3 x)}{4}\right) d x\right] \\
& F-1\left[x, \frac{\sin x x^{3}}{3}-\frac{x}{3} \times \frac{x}{4} \int \sin x d x+\frac{1}{12} f+2 n 3 x \cdot \cos x\right] \\
& \neq+\left[\frac{\pi}{3}(\sin x)^{3}-\frac{1}{4}(-\cos x)+\frac{1}{12}\left(-\frac{\cos 3 x}{3}\right)\right] \\
& =+\frac{x}{3}(\operatorname{sen} x)^{3}+\frac{1}{4} \cos x-\frac{x}{36} \cos 3 \pi x^{\circ} \\
& v_{2}=-\int \frac{\cos x \cdot x \sin x}{1} d x \\
& =-\frac{1}{2} x \cdot \sin 2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{2}-\left[x \cdot\left(-\frac{\cos 2 x}{2}\right)-\int(1)\left(\frac{\cos 2 x}{2}\right) d x\right] \\
& =-\frac{1}{2}\left[-\frac{x}{2} \cos 2 x+\frac{1}{2} \int \cos 2 x d x\right] \\
& =\frac{-1}{2}\left[\frac{-x}{2} \cos 2 x+\frac{1}{2} \frac{\sin 2 x}{2}\right] \\
& =-\frac{1}{2}\left[-\frac{x}{2} \cdot \cos 2 x+\frac{1}{4} \operatorname{sen} 2 x\right] \text {. } \\
& =\frac{1}{4}\left[x \cdot \cos 2 x-\frac{1}{2} \sin 2 x\right] \\
& \text { P.T }=1\left(-\frac{x}{3}\left(\left[\sin (x)^{3}+\frac{1}{4} \cdot \cos x+\frac{1}{36} \cos 3 x\right) \cos x\right. \text {. }\right. \\
& +\frac{1}{4}\left(x \cos 2 x+\frac{1}{2} \sin 2 x\right) \sin x \text {. } \\
& =-\frac{x}{3}(\sin x)^{3} \\
& =-\frac{x}{3}(\sin x)^{3}+\frac{1}{4} \cos x+\frac{1}{4} \cos ^{2} x=\frac{1}{36} 7(\cos 3 x) \text {, } \\
& +\frac{1}{4} x \cos 2 x \cdot \sin y-\frac{1}{8} \sin 2 x \cdot \sin x \\
& =-\frac{x}{3}(\sin \alpha x)^{3} \cdot \cos x \text {. }
\end{aligned}
$$

Nour $\#$,

$$
\begin{aligned}
u_{1} & =-\int \sin 2 x \cdot x \cdot \sin x d x \\
& =-\int x \cdot \sin ^{2} x=-\int x \cdot\left(\frac{1-\cos 2 x}{2}\right)=-\int \frac{x}{2} d x+\int \frac{\cos 2 x}{2} \cdot d x \\
& =-\frac{1}{2} x d x+\frac{1}{2} \int \cos 2 x \cdot d x+-\frac{1}{2} \frac{x^{2}}{4}+\frac{1}{2}<\frac{\sin 2 x}{2}+\frac{0}{x}-\frac{1}{\cos 2 x} \\
& =-\frac{1}{2} \frac{x^{2}}{2}+\frac{1}{2}\left[x-\frac{\sin 2 x}{2}+\frac{\cos 2 x}{4} \frac{1}{2}\right)-\frac{x^{2}}{4}+\frac{1}{4} \sin 2 x \\
& =-\frac{x^{2}}{4}+\frac{1}{2}\left[\frac{x}{2} \sin 2 x+\frac{\cos 2 x}{4}\right] \\
& =-\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x+\frac{1}{8} \cos 2 x \\
P . I & =\left(-\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x+\frac{1}{8} \cos 2 x\right) \cos 2+\frac{1}{4}\left(x \cos 2 x-\frac{1}{2} \sin 2 x\right) \sin x
\end{aligned}
$$

Now the solution of equ" (O) is $y=C \cdot F+P \cdot T$

$$
\begin{aligned}
& y=e^{(0) x}\left[c_{1} \cos x+c_{2} \sin x\right]+\left(-\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x+\frac{1}{8} \cos 2 x\right) \cos x \\
&+\frac{1}{4}\left(x \cos 2 x-\frac{1}{2} \sin 2 x\right) \sin x .
\end{aligned}
$$

thurs Applications of Higher order dee:
(1)

The equation of the L.C.R circuit is

$$
L \frac{d^{2} q}{d t} L+R \cdot \frac{d q}{d t}+\frac{q}{c}=0 .
$$

Since $L=0.1, R=20, \quad C=25 \times 10^{-6}$

$$
\begin{align*}
& \frac{d^{2} q}{d t^{L}}+\frac{R}{L} \frac{d q}{d t}+\frac{q}{L C}=0 \\
& \frac{d^{2} q}{d t^{2}}+\frac{20}{0.1} \cdot \frac{d q}{d t}+\frac{q}{(0.1)\left(25 \times 10^{-6}\right)}=0 \\
& \frac{d^{2} q}{d t^{2}}+200 \frac{d q}{d t}+\$ 00000 q=0 \tag{1}
\end{align*}
$$

sEquin (1) is Higher order homogeneous dee.:
\therefore The solution is $q=$ complementary function.

$$
\begin{aligned}
& D^{2} q+200 D q+400000 q=0 \\
& \quad\left(D^{2}+2000+400000\right) q=0 .
\end{aligned}
$$

An Auxiliary equn is $m^{2}+200 m+400000=0$.

$$
\begin{aligned}
m & =\frac{-200 \pm \sqrt{(200)^{2}-4(1) 400000}}{2(1)} \\
& =\frac{-200 \pm \sqrt{40000-1600000}}{2} \\
& =\frac{-200 \pm \sqrt{-1560000}}{2} \quad \because 1248.9996 \\
& =\frac{-200 \pm .1249 i}{2} \\
m & =-100 \pm .624 .5 i
\end{aligned}
$$

\therefore The roots are complex and distinct.

$$
c \cdot F=e^{-\cot t}\left[c_{1} \cos (624.5) t+c_{2} \sin (624.5) t\right]
$$

Now the solution of sequin (1) is $g=C . F$

$$
q=e^{-100 t}\left[c_{1} \cos (624,5) t+c_{2} \sin (6.24 .5) t\right]
$$

Given that at $t=0, q=0.05, i=0$

$$
\begin{aligned}
& \text { at } t==q=0.05 \\
& 0.05= e^{-100(0)}\left[c_{1} \cos (624.5) 0+c_{2} \sin (624.5) 0\right] \\
& 0.05= e^{(0)}\left[c_{1}(1)+c_{2}(0)\right] \\
&\left.c_{1}=0.05\right] \\
& i=\frac{d q}{d t}= e^{-100 t}(-100)\left[c_{1} \cos (624.5) t+c_{2} \sin (624.5) t\right] \\
&+e^{-100 t}\left[c_{1}(-\sin (624.5) t)(624.5)+c_{2} \cos (624.5) t \cdot(624.5)\right]
\end{aligned}
$$

at $t=0, \quad i=0$

$$
\begin{aligned}
& 0=e_{(-100)}^{-100(0)}\left[c_{1} \cos (624.5) 0+c_{2} \sin (624.5) 0\right] \\
& +e^{-100 t}\left[-c_{1} \sin \left[(624.5) g+(624.5)+c_{2} \cos [(624.5) 0] \cdot(624.5)\right]\right. \\
& 0=-100 \cdot\left[c_{1}(1)+c_{2}(0)\right]+e^{-100(0)}\left(0+c_{2} 624.5\right) \\
& 0=-c^{100}+c_{2} \cdot 624.5 \\
& 0=-0.05^{(100)}+c_{2} 624.5 \Rightarrow 0 \approx 5+c_{2} 624.5 \\
& C_{2} 624.15 \% 18.015 \\
& e_{I}=\frac{0105}{62455} \\
& c_{2}=\frac{-5}{624-5} \\
& c_{2}=0.008006405 \\
& c_{2}=0.008 \text {. }
\end{aligned}
$$

(3)

The equn of the L.C.R. circlit in

$$
\begin{array}{r}
L \cdot \frac{d^{2} q}{d t^{2}}+R \cdot \frac{d q}{d t}+\frac{q}{L c}=O \cdot E \sin \omega t \\
\frac{d^{2} q}{d t^{2}}+\frac{R \cdot \frac{d q}{L}+\frac{q}{L C}=\frac{E}{L} \sin \omega t}{} \begin{array}{r}
\frac{d^{2} q}{d t^{2}}+2 s \frac{d q}{d t}+w^{2} q=\frac{E}{L} \sin \omega t \cdot \\
\text { where } \omega^{2}=\frac{1}{L} c \\
2 s=\frac{R}{L}
\end{array}
\end{array}
$$

$$
\begin{aligned}
b^{2} q+2 S D q+\omega^{2} q & =\frac{E}{L} \sin \omega t \\
\left(D^{2}+2 D s+\omega^{2}\right) q & =\frac{E}{L} \sin \omega t
\end{aligned}
$$

An Auxiliary $\varepsilon q u^{n}$ is $m^{2}+25 m+w^{2}=0$

$$
\begin{aligned}
m & =\frac{-2 s \pm \sqrt{4} 4 s^{2}-4(1) \omega^{2}}{2} \\
& \Rightarrow \frac{-2 s \pm \sqrt{4 s^{2}-4 \omega^{2}}}{2} \\
& =\frac{\&\left(-s \pm \sqrt{s^{2}-\omega^{2}}\right)}{2} \\
& =-s \pm \sqrt{s^{2}-\omega^{2}}
\end{aligned}
$$

late have $\quad R^{2}<\frac{4 L}{C}$.

$$
\begin{aligned}
& \frac{R^{2}}{4 L}<\frac{1}{C} \\
& \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \\
& \left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}<0 \\
& s^{2}-\omega^{2}<0
\end{aligned}
$$

$$
m=-\delta \pm \sqrt{2}
$$

\therefore The roots are complex and distinct.
Let $p=\sqrt{s^{2}-\omega^{2}}$

$$
\begin{gathered}
m=-\delta \pm p i \\
c \cdot F=e^{-s t}\left[c_{1} \cos p t+c_{2} \sin p t\right) .
\end{gathered}
$$

The particular integral is of the form $=\frac{1}{f(0)} x$

$$
\begin{aligned}
& =\frac{1}{D^{2}+2 D S+\omega^{2}} \cdot \frac{E}{L} \sin \omega t . \\
& =\frac{E}{L} \frac{1}{D^{2}+2 S D+\omega^{2}} \sin \omega t \\
& =\frac{E}{L} \frac{1}{-\omega^{2}+2 S D+\omega^{2}} \sin \omega t \\
& =\frac{E}{L} \cdot \frac{1}{2 S}\left(\frac{1}{D} \sin \omega t\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E}{2 L \delta}\left(-\frac{\cos \omega t}{\omega}\right) \\
P \cdot 1 & =-\frac{E}{2 L s \omega}(\cos \omega t) \\
& =-\frac{E}{R \omega}(\cos \omega t)
\end{aligned}
$$

$$
\begin{aligned}
2 S=\frac{R}{L} \Rightarrow S & =\frac{R}{2 L} \\
R & =21 S
\end{aligned}
$$

Now the solution for equal（1）隹 $q=C . F+p-q$

$$
\begin{equation*}
q=e^{-S t}\left[c_{1} \cos p t+c_{2} \sin p t\right) 亡 \cdot \frac{E}{R \omega}(\cos \omega t) \tag{2}
\end{equation*}
$$

we have $t=0, q=0$

$$
\begin{aligned}
& 0=e^{-S(0)}\left[c_{1} \cos p(0)+c_{2} \sin p(6)\right)-\frac{E}{R \omega} \cos \omega(0) \\
& 0=(1)\left[c_{1} \cos (1)+c_{2}(0)\right]-\frac{E}{R \omega}(1) \\
&\left.c_{1}=\frac{E}{R \omega}\right] \\
& i= \frac{d q}{d t}=e^{-S t}(-s)\left[c_{1} \cos p t+c_{2} \sin p t\right]+e^{-s t}\left(c_{1}(-\sin p t(p))+c_{2}\right. \\
& i=-s e^{-s t}\left[c_{1} \cos p t+c_{2} \sin p t\right]+e^{-s t}\left[-p c_{1} \sin p t+\frac{E}{R \psi} \cdot \sin \omega t((x)]\right. \\
&\left.+p c_{2} \cos p t\right]+\frac{E}{R} \sin \omega t .
\end{aligned}
$$

we have $t=0, i=0$

$$
\begin{aligned}
& 0=-S e^{-S(0)}\left[C_{1} \cos P(0)+C_{2} \sin P(0)\right)+e^{-\delta(0)}\left[-P-C_{1} \sin P(0)+P C_{2} \operatorname{cosp(0)}\right]+\frac{E}{R} \sin c(0) \\
& 0=-S(1)\left[G(1)+C_{2}(6)\right]+(t)\left[P C_{1}(0)+P C_{2}(1)\right]+\frac{E}{R}(0) \\
& 0=-S C_{1}+P C_{2}+\gamma \\
& 0=-\delta \frac{E}{R \omega}+P C_{2} \\
& P C_{2}=\frac{\delta E}{R \omega} \\
& C_{2}=\frac{S E}{P R \omega}
\end{aligned}
$$

from (2),

$$
\begin{aligned}
& q=e^{-S t} \cdot\left[c_{1} \cos p t+c_{2} \sin p t\right]-\frac{E}{R \omega} \cos 40 t: \\
& =e^{-S t}\left[\frac{E E}{R \omega} \cos p t+\frac{E S}{P R \omega} \sin p t\right]-\frac{E}{R \omega} \cos \omega t \\
& \left.=\frac{E}{R \omega}\left[e^{-s t}\left(\cos p t+\frac{s}{p} \sin p t\right)\right\}-\cos \omega t\right] \\
& =\frac{E}{R \omega}-r \cos \cot +e^{R t} \\
& q=\frac{E}{R \omega}\left[-\cos \omega t+e^{-\frac{R t}{2 L}}\left(\cos p t+\frac{R}{2 L p} \sin p t\right)\right] \\
& \left.-t=\frac{d \phi}{d t} \neq e^{-s t}(-s) r c_{1} \cos p t+c_{2} \sin p t\right] * e^{-s t}\left[c_{1}(-\sin p t) p+c_{22}(\cos p t\right.
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{d q}{d t}=\frac{E}{R \omega}\left[e^{-8 t} \cos p \sin \omega t \omega+e^{-R / 2 t} \cdot\left(\frac{-R}{2 L}\right)\left(\cos p t+\frac{R}{2 L p} \sin p t\right.\right. \\
& \left.+e^{\frac{-R t}{2 L}}\left[-\sin p t(p)+\frac{R}{2 L \phi} \cos (p t) p\right]\right] \\
& =\frac{E}{R \omega}\left[\omega \cdot \sin \omega t-e^{-\frac{R t}{2 L}}\left(\frac{t R}{2 L}\right)\left(\cos p t+\frac{R}{2 L p} \sin p t\right)\right. \\
& \left.-e^{\frac{-R t}{2 L}} \cdot p \cdot \sin p t+e^{\frac{-R t}{2 L}} \cdot \frac{R}{2 L} \cdot \cos p t\right] \\
& =\frac{E}{R \omega}\left[\omega \sin \omega t-e^{-\frac{R t}{2 L}} \frac{R}{2 L} \cos p t-e^{-\frac{R t}{2 L}} \cdot \frac{R}{2 L} \cdot \frac{R}{2 L p} \sin p t\right. \\
& -e^{-\frac{R t}{L L}} p \cdot \sin p t+e^{\left.-\frac{R t}{2 L} \cdot \frac{R}{2 L} \cos p t\right]} \\
& =\frac{E}{R \omega}\left[\omega-\sin \omega t-e^{-\frac{R t}{2 L}} \frac{R^{2}}{G L^{2} P} \sin P t-e^{\frac{-R t}{2 L}} \cdot p \cdot \sin p t\right] \\
& =\frac{E}{R \omega}\left[\omega \cdot \sin \omega t-e^{\frac{-R t}{2 L}} \sin p t\left(\frac{s^{2}}{p}+P\right)\right] \\
& =\frac{E}{R \omega}\left[\omega \sin \omega t-e^{\frac{-R t}{2 L}} \sin p t\left(\frac{s^{2}+p^{2}}{p}\right)\right] \\
& =\frac{E}{R \omega}\left[\omega-\sin \omega t-e^{\frac{-R t}{2 L}} \sin p t\left(\frac{8^{x}+\omega^{2}-\phi^{2}}{P}\right)\right] \text {. } \\
& =\frac{E}{R \omega}\left[\omega \cdot \sin \omega t-e^{-\frac{R t}{2 L}} \sin \operatorname{pt}\left(\frac{\omega^{2}}{P}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E}{R \omega} \omega\left[\sin \omega t-e^{-\frac{R t}{2 L}} \frac{\omega}{P} \sin p t\right] \\
& i=\frac{E}{R}\left[\sin \omega t-e^{\frac{R t}{2 L}} \frac{1}{P \sqrt{L C}} \sin p t\right]
\end{aligned}
$$

(4)

The equn of the L.C.R circuit is

$$
\begin{aligned}
& L \frac{d^{2} q}{d t^{2}}+R \cdot \frac{d q}{d t}+\frac{q}{C}=E \sin \omega t \\
& \frac{d^{2} q_{v}}{d t^{2}}+\frac{R}{L} \frac{d q}{d t}+\frac{q}{L c}=\frac{E}{L} \sin \omega t \\
& \frac{d^{2} q}{d t^{2}}
\end{aligned}
$$

(2) An uncharged condenser..

Given that, $k d y$.
The equn of the L.C.R circuit is

$$
L \frac{d^{2} q}{d t^{2}}+\frac{R}{d q} \frac{d q}{d t}+\frac{q}{c}=E \sin \frac{t}{\sqrt{t} c}
$$

Given that resistance is negligible.
Then, $L \frac{d^{2} q}{d t^{2}}+\frac{q}{c}=E \sin \frac{t}{\sqrt{L C}}$.

$$
\begin{align*}
& \frac{d t^{2} q}{d t^{2}}+\frac{q}{L C}=\frac{E}{L} \sin \frac{t}{\sqrt{L C}} \\
& D^{2} q+w^{2} q=\frac{E}{L} \sin \frac{t}{\sqrt{L C}} \\
& \left(D^{2}+w^{2}\right) q=\frac{E}{L} \sin \frac{t}{\sqrt{L C}} \tag{1}
\end{align*}
$$

An Auxiliary sequin is

$$
\begin{aligned}
m^{2}+\omega^{2} & =0 \\
m_{1}^{2} & =-\omega^{2} \\
m & = \pm w i
\end{aligned}
$$

\therefore The roots, are complex and distinct.

$$
\begin{aligned}
C \cdot F & =e^{(0) t}\left[C_{1} \cos \omega t+c_{2} \sin \omega t\right] \\
P \cdot I & =\frac{1}{D^{2}+\omega^{2}} \frac{E}{L} \sin \frac{t}{\sqrt{L C}} \\
& =\frac{E}{L} \cdot \frac{1}{D^{2}+\omega^{2}} \sin \omega t .
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{E}{L} \frac{t}{2 D+0} \sin \omega t \\
& =\frac{E t}{2 L} \frac{1}{D} \sin \omega t \\
& =\frac{E t}{2 L} \frac{-\cos \omega t}{\omega} \\
P \cdot I & =\frac{-E t}{2 L \omega} \cos \omega t
\end{aligned}
$$

Now the solution of $\varepsilon q u^{n}(1)$ is $q=C \cdot F+P \cdot I$

$$
\begin{equation*}
q=c_{1} \cos \omega t+c_{2} \sin \omega t-\frac{E t}{2 L \omega} \cos \omega t \tag{2}
\end{equation*}
$$

At $t=0, q=0$

$$
\begin{aligned}
& t=0, q=0 \\
& 0=c_{1} \cos \omega(0)+c_{2} \sin \omega(0)-\frac{E(0)}{2 L \omega} \cos \omega(0) \\
& 0=c_{1}(1)+c_{2}(0)-0 \\
& \Rightarrow c_{1}=0
\end{aligned}
$$

from (2),

$$
\begin{aligned}
& q=c_{2} \sin \omega t-\frac{E t}{2 L \omega} \cos \omega t . \\
& i=\frac{d q}{d t}=c_{2} \cos \omega t(\omega)-\frac{E}{2 L \omega}[t \cdot(-\operatorname{Sin} \omega t) \omega+\cos \omega t(1)] \\
& i=c_{2} \omega \cdot \cos \omega t+\frac{E t}{2 L} \sin \omega t-\frac{E}{2 L \omega} \cos \omega t
\end{aligned}
$$

At $t=0, i=0$

$$
\begin{aligned}
& 0=c_{2} \omega \cdot \cos \omega(0)+\frac{E(0)}{2 l} \sin \omega(0)-\frac{E}{2 L \omega} \cos \omega(0) \\
& 0=c_{2} \omega+0-\frac{E}{2 L \omega} \\
& c_{2} \omega=\frac{E}{2 L \omega} \Rightarrow C_{2}=\frac{E}{2 L \omega^{2}}
\end{aligned}
$$

from (3),

$$
\begin{aligned}
q & =\frac{E}{2 L \omega^{2}} \sin \omega t-\frac{E t}{2 L \omega} \cos \omega t \\
& =\frac{E L C}{2 \psi} \sin \theta t \\
\sqrt{L C} & -\frac{E t \sqrt{L C}}{2 L} \cos \omega t \\
& =\frac{E C}{2}\left[\sin \frac{t}{\sqrt{L C}}-\frac{E t \sqrt{L C}}{2 L C} \cos \frac{t}{\sqrt{L C}}\right] \\
q & =\frac{E C}{2}\left[\sin \frac{t}{\sqrt{L C}}-\frac{t}{\sqrt{L C}} \cos \frac{t}{\sqrt{L C}}\right]
\end{aligned}
$$

* Simple Harmonic Motion

$$
\begin{aligned}
& a^{2}=\text { suten-aty } \\
& \text { velocity }(v)=\frac{d y}{d t} \\
& \text { Yacictuation }(a)=\frac{d y}{d t}
\end{aligned}
$$

*(1) A particle is said to execute S. HM if. it moves in a straight line such that its acceleration is always directed towards a fixed point in the line and is proportional to the distance of the particle from, the fixed point.

\rightarrow Let ' O ' be the fixed point in the line $A A$ '.
\rightarrow Let ' P ' be the position of the particle at any time ' t '.
\rightarrow Where $\quad O P=x$.
\rightarrow "Since the acceleration is always directed towards the point ' O; ie, the acceleration is in the direction opposite to that in which ' x 'increases.
\therefore Thee.
\rightarrow Therefore. the equn of the motion of the particle is

$$
\frac{d^{2} x}{d \cdot t^{2}}=-\mu^{2} x
$$

(or)

$$
\frac{d^{2} x}{d t^{2}}+\mu^{2} x=0
$$

(or)

$$
\begin{align*}
& D^{2} x+\mu^{2} x=0 \\
& \left(D^{2}+\mu^{2}\right) x=0 \tag{i}
\end{align*}
$$

where $D=\frac{d}{d t}$
\rightarrow It is a linear differential squen with constant coefficient.
ice.,

$$
\begin{array}{ll}
& D^{2}+\mu^{2}=0 \\
\Rightarrow & D^{2}=-\mu^{2} \\
\Rightarrow & D= \pm \mu i
\end{array}
$$

$$
x \neq 0
$$

\therefore The solution of equn (1) is

$$
\begin{equation*}
x=c_{1} \cos \mu t+c_{2} \sin \mu t . \tag{2}
\end{equation*}
$$

\therefore The velocity of the particle at a point ' p ' can be written as $\frac{d x}{d t}=\frac{d}{d t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right)$

$$
\begin{equation*}
v=\frac{d x}{d t}=-c_{1} \mu \sin \mu t+c_{2} \mu \cos \mu t \tag{3}
\end{equation*}
$$

\rightarrow If the particle starts from the rest at ' A ', when $O A=a$.
\rightarrow Therefore from
At $t=0, x=a$

$$
\begin{array}{rl}
a & =c_{1} \cos \mu(0)+c_{2} \sin \mu t \\
& =c_{1}(1)+c_{2}(0) \\
\Rightarrow a & a=c_{1}
\end{array}
$$

$\rightarrow \quad a \not c c_{1}$ from(3) At $t=0, v=0, \frac{d x}{d t}=0$

$$
\begin{align*}
V=\frac{d x}{d t} & =-c_{1} \mu \sin \mu(0)+c_{2} \mu^{\prime} \cos \mu(p) \\
\frac{d x}{d t} & =-c_{1} \mu(0)+c_{2} \mu(1) \tag{1}
\end{align*}
$$

Substitution ' c ', and ' c_{2} ' value in (1)

$$
\begin{equation*}
\text { * } x=a \cos \mu t \tag{4}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\therefore \text { velocity }=\frac{d x}{d t} & =-a \mu \sin \mu t t \tag{5}\\
\quad v & =\frac{d x}{d t}
\end{array}=-a \mu \sqrt{1-\operatorname{sos}^{2} \mu t}\right)
$$

Let $\cos \mu t=\frac{x}{a}$. then above sun can be written

$$
\begin{align*}
& a s=-a \mu \sqrt{1-\cos ^{2} \mu t} \\
& \frac{d x}{d t}=-a \mu \sqrt{1-\frac{x^{2}}{a^{2}}} \\
& \frac{d x}{d t}=-\alpha \mu \sqrt{\frac{a^{2}-x^{2}}{a^{2}}} \\
& \frac{d x}{d t}=-\mu \sqrt{a^{2}-x^{2}} \tag{6}
\end{align*}
$$

Time Period:
The time taken for one perfect oscillation is called sine period which is denoted T
\rightarrow The tine period can be written as $T=\frac{2 \pi}{\mu}$
Frequency of the oscillators:
The no of oscillations fore second is called frequency of the oscillator.
\rightarrow Which is denoted by $N \in \frac{A}{T} \quad n=\frac{1}{T}$

$$
\begin{aligned}
& n=\frac{1}{2 \pi / \mu} \\
& n=\frac{\mu}{2 \pi}
\end{aligned}
$$

(1) A particle is executing S.H.M
solis
Given amplitude $=20 \mathrm{~cm}$ time $(T)=4$ seconds

We know that, $T=\frac{2 \pi}{\mu}$

$$
\begin{aligned}
& \mu=\frac{2 \pi}{\mu} \\
& \mu=\pi / 2
\end{aligned}
$$

We know that, $x=a \cos \mu t$

Case (i)
At $x_{1}=5 \mathrm{~cm}, \mu=\pi / 2, a=20^{\circ} \mathrm{cm}$

$$
\begin{aligned}
& x_{1}=a \cos \mu t \\
& 5=20 \cos \pi / 2 t \\
& 1 / 4=\cos \pi / 2 t \\
& \cos ^{-1}(1 / 4)=\pi / 2 t \\
& t_{1}=\frac{2}{\pi} \cos ^{-11 / 4}
\end{aligned}
$$

case(ii),

$$
\begin{aligned}
& \text { At } x_{2}=15 \mathrm{~cm}, \mu=\pi / 2, a=200 \\
& x_{2}=a \cos \mu t \\
& \text { is }=20 \cos \pi / 2 t \\
& 3 / 4=\cos \pi / 2 t \\
& \cos ^{-1}(3 / 4)=\pi / 2 t \\
& t=\frac{2}{\pi} \cos ^{-1} 3 / 4
\end{aligned}
$$

$$
\begin{aligned}
\therefore t_{2}-t_{1} & =\frac{2}{\pi} \cos ^{-1} 3 / 4-\frac{2}{\pi} \cos ^{-1} 1 / 4 \\
& =\frac{2}{\pi}\left[\cos ^{-1}(3 / 4)-\cos ^{-1}(1 / 4)\right] \\
& =\frac{2}{180}[41.40962211-75.5224878 .1] \\
& =\frac{1}{90} \cdot[-34.112865 .7] \\
& =-0.1379 \\
t_{2}-t_{1} & \approx-0.38 \text { s seconds }
\end{aligned}
$$

(2) A particle moving of a straight line...

Sori:- Given $x=a \cos \mu t$.
We know that the velocity, $V=-\operatorname{ar\mu sin} \mu t$
(or)

$$
v=-\mu \sqrt{a^{2}-x^{2}}
$$

case (i)
At displacement $=x_{1}$
case(ii)

$$
\text { At displacement }=x_{2}
$$

$$
\text { velocity }=v_{1}
$$

$$
v_{1}=-\mu \sqrt{a^{2}-x_{1}{ }^{2}}
$$

$$
v_{1}^{2}=\mu^{2}\left(a^{2}-x_{1}^{2}\right)
$$

$$
\therefore v_{2}^{2}-v_{1}^{2}=\mu^{2}\left(a^{2}-x_{2}^{2}\right)-\mu^{2}\left(a^{2}-x_{1}^{2}\right)
$$

$$
=a^{2} \mu^{2}-\mu^{2} x_{2}^{2}-\mu^{2} / a^{2}+x_{1}^{2} \cdot \mu^{2}
$$

$$
v_{2}^{2}-v_{1}^{2}=\mu^{2}\left(x_{1}^{2}-x_{2}^{2}\right)
$$

$$
\frac{v_{2}^{2}-v_{1}^{2}}{x_{1}^{2}-x_{2}^{2}}=\mu^{2}
$$

$$
\mu=\left[\sqrt{\frac{v_{2}^{2}-v_{1}^{2}}{x_{1}^{2}-x_{2}^{2}}}\right]
$$

We know that Tine period $T=\frac{2 \pi}{\mu}$.

$$
\begin{aligned}
& T=\frac{2 x \pi}{\sqrt{\frac{v_{2}^{2}-v_{1}^{2}}{x_{1}^{2}-x_{2}^{2}}}} \\
& T=2 \pi \sqrt{\frac{x_{1}^{2}-x_{2}^{2}}{v_{2}^{2}-v_{1}^{2}}}
\end{aligned}
$$

(3) At the end of the three successive seconds. The distances of a point moving with S.H.M from its mean position are x_{1}, x_{2}, x_{3} respectively. Show that the time of a complete oscillation is $\frac{2 \pi}{\cos \left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$
Solve Given that x_{1}, x_{2}, x_{3} are the distances.
Let at the positions the times can be taken as $t, t+1, t+2$ seconds respectively. seconds.

We know that, $x=a \cos \mu \mathrm{t}$

$$
\begin{align*}
& x_{1}=a \cos \mu t \tag{1}\\
& x_{2}=a \cos \mu(t+1) \tag{2}\\
& x_{3}=a \cos \mu(t+2) \tag{3}
\end{align*}
$$

By adding equ" (1) \& (3)
We get $\quad x_{1}+x_{3}=a \cos \mu t+a \cos \mu(t+2)$

$$
\begin{aligned}
x_{1}+x_{3} & =a[\cos \mu t+\cos \mu(t+2)] \\
x_{1}+x_{3} & =a 2 \cos \left(\frac{\mu t+\mu(t+2)}{2}\right) \cos \left(\frac{\mu t-\mu(t+2)}{2}\right) \\
& =2 \pi \cos \left(\frac{\mu t+\mu t+2 \mu}{2}\right) \cos \left(\frac{\mu t-\mu t-2 \mu}{2}\right) \\
& =2 a \cos \left(\frac{2 \mu t+2 \mu}{2}\right) \cos \left(\frac{-1 \mu}{2 \mu}\right) \\
& =2 a \cos \left(\frac{2 \mu(t+1)}{4}\right) \cos (-\mu) \\
x_{1}+x_{3} & =2 a \cos \mu(t+1) \cos \mu \\
x_{1}+x_{3} & =2 \cdot \cos \mu[a \cos \mu(t+1)] \\
x_{1}+x_{3} & =2 \cos \mu x_{2} \\
\cos \mu & =\frac{x_{1}+x_{3}}{2 x_{2}} \\
\mu & =\cos -1\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)
\end{aligned}
$$

We know that,

$$
\begin{aligned}
\text { Time period }(T) & =\frac{2 \pi}{\mu} \\
T & =\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}
\end{aligned}
$$

(4) A particle is executing s.tim.

Solve Given amplitude $=5$ meters.

$$
\text { time }(T)=4 \text { seconds }
$$

$W \cdot K \cdot T, \quad T=\frac{2 \pi}{\mu}$

$$
\begin{aligned}
& Y^{2}=\frac{2 \pi}{\mu} \\
& M=\pi / 2
\end{aligned}
$$

W.R.T, $\quad x=a \cos \mu t_{i}$
case (i)

$$
\begin{array}{ll}
\text { At } x_{1}=4 m, \mu=\pi / 2, a=5 m, & \frac{\text { case(ii) }}{A t}, x_{2}=2 m, \mu=\pi / 2, a=5 \\
x_{1}=a \cos \mu t_{1} & \\
y=5 \cos \pi / 2 t_{1} . & 2=a \cos \mu t_{2} \\
y=5 \cos \pi / 2 t_{2}
\end{array}
$$

$$
\begin{aligned}
& 4 / 5=\cos \pi / 2 t \\
& \cos ^{-1}(4 / 5)=\pi / 2 t \quad 2 / 5=\cos \pi / 2 \cdot t_{2} \\
& t_{1}=\frac{2}{\pi} \cos ^{-1}(4 / 5) \quad \cos ^{-1}(2 / 5)=\pi / 2 t_{2} \\
& \therefore t_{2}-t_{1}=\frac{2}{\pi} \cos ^{-1}(2 / 5)-\frac{2}{\pi} \cos ^{-1}(4 / 5) \\
&=\frac{2}{180}\left[\cos ^{-1}(2 / 5)-\cos ^{-1}(4 / 5)\right] \\
&=\frac{2}{180}[66.42-36.86] \\
&=\frac{2}{180} \times 29.56 \\
&=0.3284 \\
& t_{2}-t_{1} \cong 0.33 \text { seconds. } \\
&=0.3
\end{aligned}
$$

(5) At the end of the three successive seconds, -
sole Given that $x_{1}=1, x_{2}=5, x_{3}=5$

$$
\text { Time period }(T)=\frac{2 \pi}{\theta}
$$

Let at the positions the times can be taken as, $t, t+1, t+2$ seconds respectively.
W.K:T,

$$
\begin{align*}
& x=a \cos \mu t \\
& x_{1}=a \cos \mu t \Rightarrow 1=a \cos \mu t \tag{1}\\
& x_{2}=a \cos \mu(t+1) \Rightarrow 5=a \cos \mu(t+1) \rightarrow \tag{2}\\
& x_{3}=a \cos \mu(t+2) \Rightarrow 5=a \cos \mu(t+2) \tag{3}
\end{align*}
$$

By adding qu (1) E(3)

$$
\begin{aligned}
1+5 & =a \cos \mu t+a \cos \mu(t+2) \\
6 & =a[\cos \mu t+\cos \mu(t+2)] \\
6 & =a 2 \cos \left(\frac{\mu t+\mu(t+2)}{2}\right) \cos \left(\frac{\mu t-\mu(t+2)}{2}\right) \\
6 & =2 a \cos \left(\frac{\mu t+\mu t+2 \mu}{2}\right) \cos \left(\frac{\mu t-\mu t-2 \mu}{2}\right) \\
6 & =2 a \cos \left(\frac{2 \mu t+2 \mu}{2}\right) \cos \left(\frac{-\mu \mu}{2}\right) \\
3 & =a \cos \frac{f(\mu t+\mu)}{2} \cos (-\mu)
\end{aligned}
$$

$$
\begin{aligned}
& 3=a \cos \mu(t+1) \cos \mu \\
& 3=5 \cos \mu \\
& \cos \mu=\frac{3}{5} \\
& \therefore \cos \theta=\frac{3}{5}
\end{aligned}
$$

unit - 4
Partial Derivatives

1. Homogeneous function, Euler's Theorem, Total derivatives, chain rule, Jackobean, Functionally dependents; Ty Taylor's and Machtarries expansions with two variables.
Applications: Maxima and minima with constants and without constants, Lagrange
(1)
(3) If $u=\operatorname{Tin}^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$ (or) prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.

Sol:-
Given $\quad U=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$

$$
\begin{aligned}
& \tan U=\frac{x^{3}+y^{3}}{x+y} \\
& \tan U=\frac{x^{8^{2}}\left(1+\frac{y^{3}}{x^{3}}\right)}{x\left(1+\frac{y}{x}\right)} \\
& \tan U=x^{2}\left[\frac{1+\left(\frac{y}{x}\right)^{3}}{\left(1+\frac{y}{x}\right)}\right] \\
& \tan U=x^{2} \cdot f\left(\frac{y}{x}\right)
\end{aligned}
$$

\rightarrow Tan is homogeneous of degree" 2 ".
By Euler's Theorem,

$$
\begin{array}{r}
x \cdot \frac{\partial \tan u}{\partial x}+y \cdot \frac{\partial \tan u}{\partial y}=2 \cdot \tan u \\
x \cdot \sec ^{2} u \cdot \frac{\partial u}{\partial x}+y \sec ^{2} u \frac{\partial u}{\partial y}=2 \cdot \tan u \\
\sec ^{2} u\left(x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}\right)=2 \cdot \tan u \\
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{2 \cdot \tan u}{\sec ^{2} u} \\
x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=2 \cdot \frac{\sin u}{\cos u} \times \cos ^{2} w \\
{\left[x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=\sin 2 u\right.}
\end{array}
$$

(4) If $u=\sin ^{-1}\left(\frac{x+2 y+3 z}{\sqrt{x^{8}+y^{8}+z^{8}}}\right)$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial U}{\partial z}=-3 \tan u$
sol:
Given

$$
\begin{aligned}
& U=\sin ^{-1}\left(\frac{x+2 y+3 z}{\sqrt{x^{8}+y^{8}+z^{8}}}\right) \\
& U=\sin ^{-1}\left(\frac{x\left(1+2 \frac{y}{x}+3 \frac{z}{x}\right)}{x^{43} \sqrt{1+\frac{y}{x}^{8}+\frac{z^{8}}{x^{8}}}}\right) \\
& \sin U=x^{-3}\left[\frac{1+2 \cdot \frac{y}{x}+3\left(\frac{z}{x}\right)}{\sqrt{1+\left(\frac{y}{x}\right)^{8}+\left(\frac{z}{x}\right)^{8}}}\right) \\
& \left.\sin U=x^{-3}-f\left(\frac{y}{x}\right) \frac{z}{x}\right)
\end{aligned}
$$

$\therefore \sin U$ is homogeneous of degree " -3 ".
By Euler's theorem,

$$
\begin{aligned}
& x \cdot \frac{\partial \sin u}{\partial x}+y \cdot \frac{\partial \sin u}{\partial y}+z \frac{\partial \sin u}{\partial z}=-3 \sin u \\
& x \cdot \cos u \cdot \frac{\partial u}{\partial x}+y \cdot \cos u \frac{\partial u}{\partial y}+z \cdot \cos u \frac{\partial u}{\partial z}=-3 \sin u \\
& \cos u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \cdot \frac{\partial u}{\partial z}\right)=-3 \sin u \\
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \cdot \frac{\partial u}{\partial z}=-3 \sin u \\
& x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}+z \cdot \frac{\partial u}{\partial z}=-3 \tan u .
\end{aligned}
$$

(5). $u=\log \left[\frac{x^{4}+y^{4}}{x+y}\right]$ show that $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial v}{\partial y}=3$.

Sol
Given $u=\log \left(\frac{x^{4}+y^{4}}{x+y}\right)$

$$
\begin{aligned}
& e^{u}=\frac{x^{4} 3\left(1+\frac{y^{4}}{x 4}\right)}{x\left(x+\frac{y}{x}\right)} \\
& e^{u}=x^{3}\left(\frac{1+(y / x)^{4}}{1+y / x}\right) \\
& e^{u}=x^{3} \cdot f\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore e^{U}$ is homogeneous of degree " 3 ".
By Euler's. Theorem,

$$
x \cdot \frac{\partial e^{u}}{\partial x}+y \cdot \frac{\partial e^{u}}{\partial y}=3 \cdot e^{u}
$$

$$
\begin{array}{r}
x \cdot e^{u} \frac{\partial u}{\partial x}+y e \frac{u \partial}{\partial y}=3 \cdot e^{u} \\
e^{\psi}\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)=3 \cdot e^{y} \\
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3
\end{array}
$$

(7) $U=x f\left(\frac{y}{x}\right)$ prove that $x \frac{\partial U}{\partial x}+y \frac{d U}{d y}=U$.

Given $u=x f\left(\frac{y}{x}\right)$
$\therefore U$ is the homogeneous of degree " 1 ".
By Euler's theorem,

$$
\begin{aligned}
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n \cdot u \\
& x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=(1) u . \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u
\end{aligned}
$$

(i) $v=\left(x^{1 / 2}+y^{1 / 2}\right)\left(x^{n}+y^{n}\right)$ verify the Euler's Theorem.

Given $u=\left(x^{1 / 2}+y^{1 / 2}\right)\left(x^{n}+y^{n}\right)$

$$
\begin{aligned}
U & =\left(x^{1 / 2}+x^{1 / 2}\right. \\
u & \left.=x^{1 / 2}\left(1+\frac{y^{1 / 2}}{x^{1 / 2}}\right) x^{n}\right) \\
& =x^{n+1 / 2}\left[\left(1+\left(\frac{y}{x}\right)^{1 / 2}\right)\left(1+\left(\frac{y}{x}\right)^{n}\right)\right] \\
U & =x^{n+1 / 2}+\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore U$ is the homogeneous of degree " $n+\frac{1}{2}$ ".
By Euler's Theorem,

$$
\begin{aligned}
& x \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=n \cdot u \\
& \left(x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=\left(n+\frac{1}{2}\right) u\right)
\end{aligned}
$$

We have to prove that $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=\left(n+\frac{1}{2}\right) u$.

$$
\begin{aligned}
\frac{\partial}{\partial x}(u) & =\frac{\partial}{\partial x}\left[\left(x^{1 / 2}+y^{1 / 2}\right)\left(x^{n}+y^{n}\right)\right] \\
& =\left(x^{1 / 2}+y^{1 / 2}\right)\left(n x^{n-1}+0\right)+\left(x^{n}+y^{n}\right)\left(\frac{1}{2} x^{-1 / 2}+0\right) \\
& =\left(x^{1 / 2}+y^{1 / 2}\right) n x^{n-1}+\left(x^{n}+y^{n}\right) \frac{1}{2} x^{-1 / 2} \\
x \cdot \frac{\partial U}{} & =n \cdot x^{n}\left(x^{1 / 2}+y^{1 / 2}\right)+\frac{1}{2} x^{1 / 2}\left(x^{n}+y^{n}\right)
\end{aligned}
$$

Similarly, $\frac{\partial U}{\partial y}=n \cdot y^{n-1}\left(x^{1 / 2}+y^{1 / 2}\right)+\frac{1}{2} y^{-1 / 2} \cdot\left(x^{n}+y^{n}\right)$.

$$
y \cdot \frac{\partial u}{\partial y}=n \cdot y^{n}\left(x^{1 / 2}+y^{1 / 2}\right)+\frac{1}{2} y^{1 / 2}\left(\cdot x^{n}+y^{n}\right)
$$

L.H.S

$$
\begin{aligned}
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \\
= & n \cdot x^{n} \cdot\left(x^{1 / 2}+y^{1 / 2}\right)+\frac{1}{2} x^{1 / 2}\left(x^{n}+y^{n}\right)+n y^{n}\left(x^{1 / 2}+y^{1 / 2}\right)+\frac{1}{2} y^{1 / 2}\left(x^{n}+y^{n}\right) \\
= & n \cdot\left(x^{1 / 2}+y^{1 / 2}\right)\left(x^{n}+y^{n}\right)+\frac{1}{2}\left(x^{n}+y^{n}\right)\left(x^{1 / 2}+y^{1 / 2}\right) \\
= & \left(x^{n}+y^{n}\right)\left(x^{1 / 2}+y^{1 / 2}\right)\left(n+\frac{1}{2}\right) \\
= & \left(n+\frac{1}{2}\right) u \\
= & \text { R.H.S }
\end{aligned}
$$

\therefore Euler's Theorem verified.
(2) $u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)$. verify the Euler's Theorem

Given

$$
\begin{aligned}
U & =\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right) \\
& =\operatorname{cosec}^{-1}\left(\frac{y}{x}\right)+\tan ^{-1}\left(\frac{y}{x}\right) \\
U & =x^{0}\left[\operatorname{cosec}^{-1}\left(\frac{y}{x}\right)+\tan ^{-1}\left(\frac{y}{x}\right)\right] \\
U & =x^{0} f\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore U$ is homogeneous of degree " 0 .
By Euler's theorem,

$$
\begin{aligned}
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & =n \cdot u \\
& =(0) u=0 .
\end{aligned}
$$

We have to prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$.
KAHn

$$
\begin{aligned}
\frac{\partial}{\partial x}(v) & =\frac{\partial}{\partial x}\left[\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)\right] \\
& =\frac{1}{\sqrt{1-\left(\frac{x}{y}\right)^{2}}}\left(\frac{1}{y}\right)+\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{y}{\left(-\frac{1}{x}\right)}\right. \\
& =\frac{1}{y} \frac{1}{\sqrt{\frac{y^{2}-x^{2}}{y^{2}}}}+\frac{-y}{x^{2}} \frac{1}{\frac{x^{2}+y^{2}}{x^{2}}} \\
& =\frac{1}{y \frac{\sqrt{y^{2}-x^{2}}}{y}}+-\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{1}{\sqrt{y^{2}-x^{2}}}-\frac{y}{x^{2}+y^{2}} \\
& \rightarrow x \cdot \frac{\partial u}{\partial x}=\frac{x}{\sqrt{y^{2}-x^{2}}}-\frac{x y}{x^{2}+y^{2}} \\
& \frac{\partial}{\partial y}(u)=\frac{\partial}{\partial y}\left[\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right)\right] \\
&=\frac{1}{\sqrt{1-\left(\frac{1}{y}\right)^{2}}} x\left(\frac{-1}{y^{2}}\right)+\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{1}{x} \\
&=\frac{-x}{y^{4} \sqrt{y^{2}-x^{2}}}+\frac{1}{y^{2}} \\
& \frac{\partial u}{\partial y}\left.=\frac{-x}{y \sqrt{x^{2}-x^{2}+y^{2}}} \frac{x}{x t}\right) \\
& \Rightarrow y \frac{x}{x^{2}+y^{2}} \\
&=\frac{-x y^{\prime}}{y \cdot \sqrt{y^{2}-x^{2}}}+\frac{x y}{x^{2}+y^{2}} \\
&=\frac{-x}{\sqrt{y^{2}-x^{2}}}+\frac{x y}{x^{2}+y^{2}}
\end{aligned}
$$

L.H.S

$$
\begin{aligned}
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \\
= & \frac{x}{\sqrt{y^{2}-x^{2}}}-\frac{x y}{x^{2}+y^{2}}-\frac{x}{\sqrt{y^{2}-x^{2}}}+\frac{x y}{x} 2+y^{2} \\
= & 0 \\
= & \text { R.H-S }
\end{aligned}
$$

\therefore Euler's Theorem verified.
(6) $U=\log \cdot\left(\frac{x^{2}+y^{2}}{x y}\right)$ verify the Euler's theorem.

Sol) Given $u=\log \left(\frac{x^{2}+y^{2}}{x y}\right)$

$$
\begin{aligned}
& e^{U}=\frac{x+\left(1+\frac{y^{2}}{x^{2}}\right)}{x y} \\
& e^{U}=\frac{x\left(1+\left(\frac{y}{x}\right)^{2}\right)}{x \cdot(y / x)} \\
& e^{U}=x^{0} f\left(\frac{y}{x}\right)^{3}
\end{aligned}
$$

$\therefore e^{U}$ is homogeneous of degree \circ°.
By Eulets theorem, $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=n \cdot u$

$$
=(0) U=0
$$

We have to. prove that, $x \frac{d u}{d x}+y \cdot \frac{d u}{\partial y}=0$.

$$
\begin{aligned}
& \frac{\partial}{\partial x}(u)=\frac{\partial}{\partial x}\left(\log \left(\frac{x^{2}+y^{2}}{x y}\right)\right) \\
& =\frac{1}{\frac{x^{2}+y^{2}}{x y}}\left[\frac{x y(2 x+0)-\left(x^{2}+y^{2}\right) \cdot y}{(x y)^{2}}\right] \\
& \left.=\frac{x+5}{x^{2}+y^{2}} \frac{\left(x y(2 x)-\left(x^{2}+y^{2}\right) y\right.}{(x y)^{4}}\right] \\
& =\frac{1}{x^{2}+y^{2}}\left[\frac{2 x^{2} y-x^{2} y-y^{3}}{x y}\right] \\
& =\frac{1}{x^{2}+y^{2}}\left[\frac{x^{2} y-y^{3}}{x y}\right] \\
& =\frac{1}{x^{2}+y^{2}} \frac{y}{} \frac{\left(x^{2}-y^{2}\right]}{x y} \\
& \frac{d u}{d x}=\frac{x^{2}-y^{2}}{x\left(x^{2}+y^{2}\right)} . \\
& \Rightarrow x \cdot \frac{\partial U}{\partial x}=\frac{x \cdot\left(x^{2}-y^{2}\right)}{x\left(x^{2}+y^{2}\right)}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
& \frac{\partial}{\partial y}(u)=\frac{\partial}{\partial x}\left[\log \left(\frac{x^{2}+y^{2}}{x y}\right)\right] \\
& =\frac{1}{\frac{x^{2}+y^{2}}{x y}}\left[\frac{x y(0+2 y)-\left(x^{2}+y^{2}\right) \cdot x}{(x y) 4}\right] \\
& =\frac{1}{x^{2}+y^{2}}\left[\frac{2 x y^{2}-x^{3}-x y^{2}}{x y}\right] \\
& =\frac{1}{x^{2}+y^{2}}\left(\frac{x y^{2}-x^{3}}{x y}\right) \\
& =\frac{1}{x^{2}+y^{2}} \frac{x\left(y^{2}-x^{2}\right)}{x y} \\
& \frac{\partial u}{\partial y}=\frac{y^{2}-x^{2}}{y\left(x^{2}+y^{2}\right)} \\
& \Rightarrow y \cdot \frac{\partial U}{\partial y}=\text { (y) } \frac{y^{2}-x^{2}}{y\left(x^{2}+y^{2}\right)}=\frac{y^{2}-x^{2}}{x^{2}+y^{2}} \\
& \text { L.H.S } \\
& x \frac{d v}{d x}+y \cdot \frac{d v}{d y} \text {. } \\
& =\frac{x^{2}-y^{2}}{x^{2}+y^{2}}+\frac{y^{2}-x^{2}}{x^{2}+y^{2}} \\
& =\frac{x^{2}-y^{2}+y^{2}-x^{2}}{x^{2}+y^{2}} \\
& \begin{aligned}
=\frac{0}{x^{2}+y^{2}} & =\text { O. } \\
& =\text { R.H.S }
\end{aligned}
\end{aligned}
$$

\therefore Euler's thearem verified.
(8) $U=\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}$. verify the Euler's theorem.
sod Given $u=\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}$

$$
\begin{aligned}
& U=\frac{x^{1 / 4}\left[1+\frac{y^{1 / 4}}{x^{1 / 4}}\right]}{x^{1 / 5}\left[1+\frac{y^{1 / 5}}{x^{1 / 5}}\right]} \\
& U=x^{1 / 4} \cdot x^{-1 / 5}\left[\frac{1+(y / x)^{1 / 4}}{1+(y / x)^{1 / 5}}\right] \\
& U=x^{1 / 4-1 / 5}\left[\frac{1+(y / x)^{1 / 4}}{1+(y / x)^{1 / 5}}\right] \\
& U=x^{\frac{5-4}{20}}\left[\frac{1+(y / x)^{1 / 4}}{1+(y / x)^{1 / 5}}\right] \\
& U=x^{1 / 20}\left\{f\left(\frac{y}{x}\right)\right.
\end{aligned}
$$

\& $\therefore U$ is homogeneous of degree " $1 / 20^{\circ}$.
By Euler's theorem,

$$
\begin{aligned}
& x \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=n \cdot u \\
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{20} U .
\end{aligned}
$$

We have to prove that,

$$
\begin{aligned}
& x \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial y}=\frac{1}{20} u \\
& \frac{\partial}{\partial x}(u)=\frac{\partial}{\partial x}\left[\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}\right] \\
&=\frac{\left(x^{1 / 5}+y^{\prime} / 5\right]\left[\frac{1}{4} x^{1 / x^{-1}}+0\right)-\left(x^{1 / 4}+y^{1 / 4}\right)\left(\frac{1}{5} x^{1 / 5}-1\right.}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
& \therefore \frac{\partial u}{\partial x}=\frac{\frac{1}{4} x^{-3 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} \cdot x^{-4 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
& \Rightarrow x \cdot \frac{\partial u}{\partial x}=\frac{\frac{1}{4} x^{-3 / 4+1}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} x^{-4 / 5+1}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
&=\frac{\frac{d x}{1 / 4} x^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} x^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial y}(u) & =\frac{\partial}{\partial y}\left[\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}\right) \\
& =\frac{\left(x^{1 / 5}+y^{1 / 5}\right)\left(0+\frac{1}{4} y^{1 / 4-1}\right)-\left(x^{1 / 4}+y^{1 / 4}\right)\left(0+\frac{1}{5} y^{1 / 5}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right){ }^{2}} \\
\frac{\partial u}{\partial y} & =\frac{\frac{1}{4} \cdot y^{-3 / 4} \cdot\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} y^{-4 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
\Rightarrow y \frac{\partial u}{\partial y} & =\frac{\frac{1}{4} y^{-3 / 4+1}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} y^{-4 / 5+1}\left(x^{\left.1 / 4+y^{1 / 4}\right)}\right.}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
& =\frac{\frac{1}{4} y^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)+\frac{1}{5} y^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}}
\end{aligned}
$$

L.H.S

$$
\begin{aligned}
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \\
= & \frac{\frac{1}{4} x^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} x^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}}+\frac{\frac{1}{4} y^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} y^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
= & \frac{\frac{1}{4} x^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} x^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)+\frac{1}{4} y^{1 / 4}\left(x^{1 / 5}+y^{1 / 5}\right)-\frac{1}{5} y^{1 / 5}\left(x^{1 / 4}+y^{1 / 4}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
= & \frac{\frac{1}{4}\left(x^{1 / 5}+y^{1 / 5}\right)\left[x^{1 / 4}+y^{1 / 4}\right)-\frac{1}{5}\left(x^{1 / 4}+y^{1 / 4}\right)\left(x^{1 / 5}+y^{1 / 5}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}} \\
= & \frac{\left(x^{1 / 4}+y^{1 / 4}\right)\left(x^{1 / 5}+y^{1 / 5}\right)\left(\frac{1}{4}-\frac{1}{5}\right)}{\left(x^{1 / 5}+y^{1 / 5}\right)^{2}}
\end{aligned}=\frac{\left(x^{1 / 4}+y^{1 / 4}\right)\left(x^{1 / 5}+y^{1 / 5}\right)\left(\frac{1}{20}\right)}{\left(x^{\left.1 / 5+y^{1 / 5}\right)^{4} 4}\right.}=\frac{x^{1 / 4} \cdot \frac{1}{20}\left(\frac{x^{1 / 4}+y^{1 / 4}}{x^{1 / 5}+y^{1 / 5}}\right)}{=} \begin{aligned}
20 & \frac{1}{20} \\
= & \text { R.H.S }
\end{aligned}
$$

\therefore Euler's theorem 'verifid.
pridgs (II)
(9) If $u=\frac{x^{2} y}{x+y}$. show that $\cdot x \frac{\partial v}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial y \partial x}=2 \cdot \frac{\partial u}{\partial x}$.

Soll
Given $u=\frac{x^{2} y}{x+y}$

$$
u=\frac{x+y}{x\left(1+\frac{y}{x}\right)}=x^{2}\left[\frac{\frac{y}{x}}{1+\frac{y}{x}}\right]
$$

$$
u=x^{2}\left[\frac{y / x}{1+y / x}\right]
$$

$\therefore U$ is homogenoous of degree " 2 ".
By Ecler's theorem $x \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial y}=20$.
diff. w. r. to ' x ' partially

$$
\begin{aligned}
& \text { (1) } \frac{\partial u}{\partial x}+\dot{x} \frac{\partial^{2} u}{\partial x^{2}}+\text { (a) } \frac{\partial u}{\partial y}+y \cdot \frac{\partial^{2} u}{\partial x \partial y}=2 \frac{\partial u}{\partial x} \\
& \frac{\partial u}{\partial x}+x \frac{\partial^{2} u}{\partial y^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=2 \cdot \frac{\partial u}{\partial x} \\
& x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=2 \frac{\partial u}{\partial x}-\frac{\partial u}{\partial x} \\
& \sqrt{x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}}=2 \frac{\partial u}{\partial x}
\end{aligned}
$$

(i6) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$ prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} y}{\partial x \partial y}+y^{2} \frac{\partial^{2} y}{\partial y^{2}}=$. $\sin 4 u-\sin 2 u=2 \cos 3 u \sin u$
2001
Given $U=\operatorname{Tan}^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$

$$
\begin{aligned}
& \operatorname{Tan} U=\frac{x^{3}\left[1+\left(\frac{y}{x}\right)^{3}\right]}{x\left(1+\frac{y}{x}\right)} \\
& \tan U=x^{2}\left[\frac{1+(y / x)^{3}}{1+(y / x)}\right]
\end{aligned}
$$

\therefore Tancs is homogeneocs of degree " 2 ".
By Euler's theorem, $x \frac{d u}{d x}+y \frac{d u}{d y}=n$

$$
\begin{align*}
& x \frac{\partial}{\partial x}(\operatorname{Tan} u)+y \cdot \frac{d}{\partial y}(\tan u)=2 \tan u \rightarrow 0 \tag{1}\\
& x \cdot \sec ^{2} u \cdot \frac{d u}{d x}+y \sec ^{2} u \cdot \frac{d u}{\partial y}=2 \tan u
\end{align*}
$$

$$
\begin{align*}
\sec ^{2} u\left[x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right] & =2 \tan u \\
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & =2 \cdot \frac{\sin u}{\cos u} \times \cos \psi u . \\
x \frac{d u}{\partial x}+y \frac{\partial u}{\partial y} & =\sin 2 u \tag{2}
\end{align*}
$$

diff. w. 9. to ' x ' partially.

$$
\text { (1) } \left.\begin{array}{rl}
\frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+y \cdot \frac{\partial^{2} u}{\partial x \cdot \partial y} & =\cos 2 u \\
\frac{\partial u}{\partial x}+x \frac{\partial u}{\partial x} \\
x x^{2}
\end{array}\right) y \frac{\partial^{2} u}{\partial x \partial y}=2 \cos 2 u \frac{\partial u}{\partial x} .
$$

from (2),

$$
\begin{equation*}
\text { tly, } \quad y \cdot \frac{\partial u}{\partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x y \frac{\partial^{2} u}{\partial y \partial x}=2 \cos u \cdot y \cdot \frac{\partial u}{\partial y} \tag{4}
\end{equation*}
$$

Adding (3) \& (4)

$$
\left.\left.\begin{array}{l}
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=2 \cos \left[x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right] \\
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=2 \cos 2 u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)-\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right. \\
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=2 \cos 2 u \sin 2 u-\sin 2 u . \\
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=\operatorname{sen} 2 u(2 \cos 2 u x \\
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=2 \cos \left(\frac{4 u+2 u}{2}\right) \cdot \operatorname{sen}(4 u-2 u \\
2
\end{array}\right)\right] \quad x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 \cos 3 u \sin u . .
$$

(17) If $u=\operatorname{Tan}^{-1}\left(\frac{y^{2}}{x}\right)$ show that $x^{2} \cdot \frac{\partial^{2} v}{\partial x^{2}}+2 x y \frac{\partial^{2} v}{\partial x \partial y}+y^{2} \frac{y^{2} u}{\partial y^{2}}=$

Sol:i Given $u=\tan ^{-1}\left(\frac{y^{2}}{x}\right)$. $\quad-\sin 2 u \cdot \sin ^{2} u$.

$$
\tan u=\frac{y^{2}}{x}
$$

$$
\begin{aligned}
& \tan u=\frac{x y^{2}}{x^{2}} \\
& \tan u=x\left(\frac{y}{x}\right)^{2} \rightarrow \tan u=x \cdot f\left(\frac{y}{x}\right)
\end{aligned}
$$

\therefore Tanu is homogeneous of degree " 1 ".
By Ealer's theorem, $x \frac{d u}{d x}+y \frac{d u}{d y}=n u$:

$$
\begin{gather*}
x \cdot \frac{\partial}{\partial x}(\tan u)+y \frac{\partial}{\partial y}(\tan u)=\tan u . \tag{1}\\
x \cdot \sec ^{2} u \frac{\partial v}{\partial x}+y \sec ^{2} u \frac{\partial u}{\partial y}=\tan u . \\
\sec ^{2} u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)=\tan u \\
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{\operatorname{sen} u}{\cos v} \times \cos t u \\
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin u \cdot \cos u . \\
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u \tag{2}
\end{gather*}
$$

diff. w. 9. to " x " partially

$$
\begin{align*}
& \text { diff. w. x. to } x \text { partiaury } \\
& \text { (1) } \frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=\frac{1}{2} \cos 2 u(z p) \frac{\partial u}{\partial x} \\
& \quad \frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=\cos 2 u \frac{\partial u}{\partial x} \tag{3}\\
& \quad x \cdot \frac{\partial u}{\partial x}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=x \cdot \cos 2 u \cdot \frac{\partial u}{\partial x}
\end{align*}
$$

from (2):
Uly,

$$
\begin{equation*}
y \frac{\partial u}{\partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=y \cos 2 v \frac{\partial u}{\partial x} \rightarrow \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (3) }+ \text { (4) } \\
& x \cdot \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial x y}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} v}{\partial x \partial y}=\cos 2 u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2}}{\partial y^{2}}=x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}(\cos 2 u-1) \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{2} \sin 2 u(\cos 2 u-1) \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial \omega}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{r}{2}\left[\frac{1}{2} \sin 2 \theta-\cos 0 \text { of ry }\right] \\
& \begin{array}{l}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial x^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{-1}{2} \sin 2 u\left(x-2 \sin 2 u \sin ^{2} \theta(2)\right.
\end{array} \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=-\sin 2 u \cdot \sin ^{2} u \text {. }
\end{aligned}
$$

If $u=\left(x^{2}+y^{2}\right)^{1 / 3}$. Show that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=\frac{-2 u}{9}$.
(0) If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)^{\prime}-y^{\prime} \tan ^{-1}\left(\frac{x}{y}\right)$. Then evaluate $x^{2} \frac{d y}{d x^{2}}+2 x y \frac{d y}{\partial y d y}$ $+y^{2} \frac{d^{2} u}{d y^{2}}$.
(20) If $u=\operatorname{cosec}^{-1}\left(\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}\right)^{1 / 2}$. Evaluate $x \frac{\partial^{2} u}{d x^{2}}+y^{2} \frac{d^{2} u}{d y^{2}}+2 x y \frac{\partial^{2} u}{\partial x d y}$.
(10) If $u=\cdot \sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ Prove that $\cdot x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=$
sol:-

$$
-\frac{\sin u \cos 2 u}{4 \cos ^{3} u}
$$

$$
\text { Given } \begin{aligned}
u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right) \\
\sin u=\frac{x(y+y / x)}{\sqrt{x}\left(1+\frac{\sqrt{y}}{\sqrt{x}}\right)} \\
\sin u=x \cdot x^{-1 / 2}\left[\frac{1+y / x}{1+\sqrt{y / x}}\right] \\
\sin u=x^{1 / 2} f\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore \sin 0$ is homogeneous of degree " $1 / 2$ ".
By Euler's theorem, $\quad x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n \cdot u$

$$
\begin{equation*}
x \frac{\partial}{\partial x}(\sin u)+y \frac{\partial}{\partial y}(\sin u)=\frac{1}{2} \sin u \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { (2) } x \cdot \cos u \frac{\partial u}{\partial x}+y \cos u \frac{\partial u}{\partial y}=\frac{1}{2} \sin u \\
& \therefore x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u \rightarrow \text { (2) } \tag{2}
\end{align*}
$$

diff w. 9. To " x partially.

$$
\begin{align*}
& \text { (1) } \frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}=\frac{1}{2} \sec ^{2} u \cdot \frac{\partial u}{\partial x} \\
& x \cdot \frac{\partial u}{\partial x}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=\frac{1}{2} x \cdot \sec ^{2} u \cdot \frac{\partial u}{\partial x} . \tag{3}
\end{align*}
$$

from(2)

$$
\begin{equation*}
d y_{1} \quad y=\frac{\partial 0}{\partial y}+y^{2} \frac{\partial v u}{\partial y^{2}}+x y \frac{\partial u}{\partial x \partial y}=\frac{1}{2} \sec ^{2} u \cdot y \frac{\partial v}{\partial y} \tag{4}
\end{equation*}
$$

(3) + (4)

$$
\begin{aligned}
& =\frac{1}{4} \frac{1}{\cos ^{2} u} \cdot \frac{\sin u}{\cos u}-\frac{1}{2}-\tan u \\
& =\frac{1}{4} \frac{\sin u}{\cos ^{3} u}-\frac{1}{2} \frac{\sin u}{\cos u} \\
& =\frac{\sin u \cdot-2 \sin u \cos ^{2} u}{4 \cos ^{3} u} \\
& =\frac{\sin u(1-2 \cos 2 u)}{4 \cos ^{3} u} \\
& =\frac{-\sin u(2 \cos u-1)}{4 \cos 3 u} \\
x^{2} \frac{d^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{d x d y}+y \frac{d^{2} u}{\partial y^{2}} & =\frac{-\sin u \cos 2 u}{4 \cos 3 u}
\end{aligned}
$$

(12) If $f(x, y)=\sqrt{x^{2}-y^{2}} \sin ^{-1}\left(\frac{y}{x}\right)$, prove that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=f(x, y)$. Given $f(x, y)=\sqrt{x^{2}-y^{2}} \cdot \sin ^{-1}\left(\frac{y}{x}\right)$

$$
\begin{aligned}
& f(x, y)=x^{\prime} \sqrt{x^{2}-\left(\frac{y}{x}\right)^{2}} \sin ^{-1}\left(\frac{y}{x}\right) \\
& f(x, y)=x^{\prime} f\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore f$ is homogeneous of degree " "
By using Euler's theorem, $x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n \cdot u$

$$
\begin{aligned}
& x \cdot \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=(1) f(x, y) \\
& x \cdot \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=f(x, y) .
\end{aligned}
$$

(13) If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$. Show that $x \frac{\partial u}{d x}+y \frac{d u}{d y}+\frac{1}{2} \cot u=0$

Given

$$
\begin{aligned}
& u=\cos ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}} \\
& \cos u=\frac{x(1+y / x)}{\sqrt{x}\left(1+\frac{\sqrt{y}}{\sqrt{x}}\right)} \\
& \cos u=x-x^{-1 / 2}\left(\frac{1+y / x}{1-\sqrt{y / x}}\right) \\
& \cos u=x^{1 / 2} \cdot f\left(\frac{y}{x}\right)
\end{aligned}
$$

$\therefore \cos 0$ is homogeneous of degree " $1 / 2$ ".
By using Eulerls theorem, $x \frac{d u}{\partial x}+y \frac{\partial v}{\partial y}=n: v$.

$$
\begin{equation*}
x \cdot \frac{\partial}{\partial x}(\cos u)+y \frac{\partial}{\partial y}(\cos u)=\frac{1}{2} \cos u \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
x(-\sin u) \frac{\partial u}{\partial x}+y \cdot(-\sin u) \frac{d u}{\partial y}=\frac{1}{2} \cos u . \\
x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=-\frac{1}{2} \cot u . \\
x \cdot \frac{d u}{\partial x}+y \cdot \frac{d u}{\partial y}+\frac{1}{2} \cot u=0 .
\end{gathered}
$$

(14) If $u=\sin ^{-1}\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)$ show that $\cdot \frac{\partial u}{\partial x}=-\frac{y}{x} \cdot \frac{\partial u}{\partial y}$

Sol:- Given

$$
\begin{aligned}
& u=\sin ^{-1}\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right) \\
& \sin u=\frac{\sqrt{x}(1-\sqrt{y} / \sqrt{x})}{\sqrt{x}(1+\sqrt{y} / \sqrt{x})} \\
& \sin u=x^{\circ}\left[\frac{1-\sqrt{y / x}}{1+\sqrt{y / x}}\right] \\
& \sin u=x^{\circ} \cdot f(y / x)
\end{aligned}
$$

$\therefore \sin U$ is homogeneous of degree "o.
By Euler's Theorem, $x \cdot \frac{d u}{d x}+y \cdot \frac{d u}{d y}=n \cdot u$

$$
\begin{gathered}
x \cdot \frac{\partial}{\partial x}(\sin u)+y \cdot \frac{\partial}{\partial y}(\sin u)=0 . \\
x \cdot \cos u \frac{\partial u}{\partial x}+y \cdot \cos u \frac{\partial u}{\partial y}=0 \\
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0 \\
x \frac{\partial u}{\partial x}=-y \frac{\partial u}{\partial y} \\
x \frac{\partial u}{\partial x}=-\frac{y}{x} \frac{\partial u}{\partial y}
\end{gathered}
$$

(15) Show that $x \cdot \frac{d u}{\partial x}+y \frac{d u}{\partial y}=2 u \log u$: where $\log v=\frac{x^{3}+y^{3}}{3 x+4 y}$

Sols

$$
\text { Given } \begin{aligned}
\log u & =\frac{x^{3}+y^{3}}{3 x+4 y} \\
\log u & =\frac{x^{2}\left(1+y^{3} / x^{3}\right)}{x(3+4(y / x))} \\
\log u & =x^{2}\left[\frac{1+(y / x)^{3}}{3+4(y / x)}\right] \\
\log u & =x^{2} \cdot f(y / x)
\end{aligned}
$$

$\therefore \log u$ is homógeneocts of degree " 2 ."
By Eccles's' theorem; $x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n \cdot u$
1

$$
x \frac{\partial}{\partial x}(\log v)+y \frac{\partial}{\partial y}(\log v)=2 \cdot \log v
$$

$$
\begin{gathered}
x \cdot \frac{1}{u} \cdot \frac{d u}{\partial x}+y \frac{1}{u} \frac{d u}{\partial y}=2 \log u \\
x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u .
\end{gathered}
$$

(18) If $u=\left(x^{2}+y^{2}\right)^{1 / 3}$. Show that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x d y}=\frac{-2 u}{9}$

Sol:- Given

$$
\begin{aligned}
& U=\left(x^{2}+y^{2}\right)^{1 / 3} \\
& U=\left[x^{2}\left(1+y^{1} / x^{2}\right)\right]^{1 / 3} \\
& U=x^{2 / 3}\left(1+\left(y^{1 / x}\right)^{2}\right)^{1 / 3} \\
& U=x^{2 / 3} \cdot f(y / x)
\end{aligned}
$$

$\therefore U$ is homogeneous of degree " $2 / 3$ ".
By Euler's theorem,

$$
\begin{align*}
& x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=n \cdot u \\
& x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=\frac{2}{3} u \tag{1}
\end{align*}
$$

diff. w. a. to "x partially

$$
\begin{align*}
& \text { (1) } \frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=\frac{2}{3} \frac{\partial u}{\partial x} \\
& x \frac{\partial u}{\partial x}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=\frac{2}{3}=x \frac{\partial u}{\partial x} \tag{2}
\end{align*}
$$

Uly, $\quad y \cdot \frac{\partial u}{\partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=\frac{2}{3} y: \frac{\partial u}{\partial x}$
(2) + (3)

$$
\begin{aligned}
& \Rightarrow x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x} \frac{\partial y}{}+x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{2}{3}\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \\
& x^{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \cdot \frac{\partial^{2} u}{\partial y^{2}}+2 x y \cdot \frac{\partial u}{\partial x \cdot \partial y}=\left(\frac{2}{3}-1\right)\left(x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right) \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=\left(\frac{2-3}{3}\right) \frac{2}{3} u \\
& x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=-\frac{2 u}{9} .
\end{aligned}
$$

(19)

Given $\quad v=x^{2} \cdot \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \cdot \tan ^{-1}(x / y)$

$$
\begin{aligned}
& U=x^{2} \tan ^{-1}(y / x)-y^{2} \cot ^{-1}(y / x) \\
& U=x^{2}\left[\tan ^{-1}(y / x)-\left(\frac{y}{x}\right)^{2} \cot ^{-1}(y / x)\right] \\
& U=x^{2}-f(y / x) .
\end{aligned}
$$

$\therefore U$ is homogeneous of degeel 2°.

By Euler's theorem, $x \cdot \frac{j u}{\partial x}+y \cdot \frac{j u}{\partial y}=n \cdot u$

$$
\begin{equation*}
x \cdot \frac{d u}{\partial x}+y \frac{\partial u}{d y}=2 u \tag{1}
\end{equation*}
$$

differ. w. r. to ' x ' partially

$$
\begin{align*}
& \text { (1) } \frac{d u}{d x}+x \cdot \frac{d^{2} u}{d x^{2}}+y \cdot \frac{d^{2} u}{d y \partial y}=2 \cdot \frac{d u}{d x} \text {. } \\
& x \cdot \frac{d u}{d x}+x^{2} \cdot \frac{d^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{d x y^{2}}=2 x \cdot \frac{d u}{d x} \tag{2}\\
& \text { dy, } \quad y \cdot \frac{\partial u}{\partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}=2 y \frac{\partial u}{\partial x} \text {. } \tag{3}
\end{align*}
$$

(2) + (3)
(20)

Given $\quad u=\operatorname{cosec}^{-1}\left(\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}\right)^{1 / 2}$

$$
\begin{array}{rlr}
\operatorname{cosec} u= & {\left[\frac{\left.x^{1 / 2}\left(1+y^{1 / 2 / x^{1 / 2}}\right)\right]^{1 / 2}}{x^{1 / 3}\left(1+y^{1 / 3 / x^{1 / 3}}\right)}\right]^{1 / 2}} \\
\operatorname{cosec} u & =\frac{x^{1 / 4}}{x^{1 / 6}}\left[\frac{1+(y / x)^{1 / 2}}{1+(y / x)^{1 / 3}}\right]^{1 / 2} & \\
& =\frac{2 f \frac{6 c y}{3 / 2}}{\operatorname{cosec} u}=x^{1 / 4} \cdot x^{-1 / 6} f(y / x) & \\
\operatorname{cosec} u=x^{1 / 12} f(y / x) & & =\frac{1}{12}
\end{array}
$$

$\therefore \operatorname{cosec} 0$ is homogeneous of degree " $1 / 12$ ".
By Euter's theorem, $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n \cdot v$

$$
\begin{align*}
& \quad x \cdot \frac{\partial}{\partial x}(\operatorname{cosec} u)+y \frac{\partial}{\partial y}(\operatorname{cosec} u)=\frac{1}{12} \cdot \operatorname{cosec} u . \\
& -x \cdot \operatorname{cosec} v \cdot \cot v \cdot \frac{\partial u}{\partial x}+y(-\operatorname{cosec} u \cdot \cot u) \frac{\partial v}{\partial y}=t_{2} \operatorname{cosec} u \\
& x \cdot \frac{\partial v}{\partial x}+y \cdot \frac{\partial v}{\partial y}=\frac{1}{12} \cdot \frac{\operatorname{cosec}(v}{-\operatorname{cosec}(u \cdot \cot v} \\
& x \cdot \frac{\partial v}{\partial x}+y \cdot \frac{\partial u}{\partial y}=\frac{-1}{12} \tan u \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

diff. w. r. to " x " partially,

$$
\begin{align*}
& \text { (1) } \frac{\partial u}{\partial x}+x \cdot \frac{\partial^{2} u}{\partial x^{2}}+y \cdot \frac{\partial^{2} u}{\partial x d y}=\frac{-i}{12} \sec ^{2} u \cdot \frac{d u}{\partial x} \\
& x \cdot \frac{\partial u}{\partial x}+x^{2} \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \cdot d y}=\frac{-1}{12} \sec ^{2} u \cdot x \cdot \frac{\partial u}{\partial x} \tag{2}
\end{align*}
$$

(ll) $\quad y \cdot \frac{d u}{d y}+y^{2} \frac{d^{2} u}{d y^{2}}+x y \cdot \frac{d^{2} u}{d x d y}=\frac{-1}{12} \sec ^{2} u \cdot y \cdot \frac{d u}{d y}$

$$
\Rightarrow \quad x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x d y}+x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{-1}{12} \sec ^{2} u\left(x \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial y}\right)
$$

(22) + (3)

$$
\frac{x^{2}-\partial 2 u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=\left[-\frac{1}{12} \sec ^{2} u-1\right)\left(x \cdot \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)
$$

$$
=\left(\frac{-1}{12} \sec ^{2} v-1\right)\left(\frac{-1}{12} \tan u\right)
$$

$$
=\frac{1}{144} \cdot \frac{\sin u}{\cos ^{3} u}+\frac{1}{12} \cdot \frac{\sin u}{\cos u}
$$

$$
=\frac{\sin u+12 \sin u \cos ^{2} u}{144 \cdot \cos 3 u}
$$

$$
=\frac{\sin v\left(1+12 \cos ^{2} u\right)}{144 \cos ^{3} u\left(1-\sin ^{2} v\right)}
$$

$$
=\frac{\sin u\left[\left[1+12\left(88 \csc ^{2}(x)-k\right)\right]\right.}{44 \cos ^{3} u}
$$

$$
=\frac{\sin u\left[1+12-12 \sin ^{2} u\right]}{144 \cos 3 u}
$$

$$
=\frac{11 \sin u-12 \sin 30}{144 \cdot \cos 30}
$$

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial u}{\partial y^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}=\frac{11}{14 y} \cdot \frac{\sin u}{\cos ^{3} u}-\frac{1}{12} \tan ^{3} u
$$

221119 Total Derivative and Chain Rule:

(1) If $u=\sin ^{-1}(x-y), x=3 t, y=4 t^{3}$. Show, that $\frac{d u}{d t}=\frac{3}{\sqrt{1-t^{2}}}$

Sol:- Given $u=\sin ^{-1}(x-y), x=3 t, y=4 t^{3}$
$\therefore B y$ using Total Derivative

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{\partial v}{\partial x} \cdot \frac{d y}{d t}+\frac{\partial v}{\partial y} \cdot \frac{d y}{d t} \\
& \frac{\partial u}{\partial x}=\frac{\partial}{\partial x} \sin ^{-1}(x-y) \Rightarrow \frac{1}{\sqrt{1-(x-y)^{2}}}(1-0)=\frac{1}{\sqrt{1-(x-y)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial U}{\partial y} & =\frac{\partial}{\partial y}\left[\sin ^{-1}(x-y)\right]=\frac{1}{\sqrt{1-(x-y)^{2}}}(0-1)=\frac{-1}{\sqrt{1-(x-y)^{2}}} \\
\frac{d x}{d t} & =\frac{d}{d t}(3 t)=3 . \quad \frac{d y}{d t}=\frac{d}{d t}\left(4 t^{3}\right)=12 t^{2} \\
\frac{d u}{d t} & =\frac{1}{\sqrt{1-(x-y)^{2}}(3)+\frac{-1}{\sqrt{1-(x-y)^{2}}}\left(12 t^{2}\right)} \\
& =\frac{3-12 t^{2}}{\sqrt{1-(x-y)^{2}}} \\
& =\frac{3 t-12 t^{2}}{\sqrt{1-x^{2}-y^{2}+2 x y}} \\
& =\frac{31-12 t^{2}}{\sqrt{1-9 t^{2}-16 t^{6}+24 t^{4}}} \\
& =\frac{3\left(1-4 t^{2}\right)}{\sqrt{-16 t^{6}+24 t^{4}-9 t^{2}+1}} \\
& =\frac{3\left(1-4 t^{2}\right)}{\sqrt{-16 x^{3}+24 x^{2}-9 x+1}} \\
& =\frac{3\left(1-4 t^{2}\right)}{\sqrt{(1-x)(1-4 x)^{2}}} \\
& =\frac{3\left(1-4 t^{2}\right)}{\sqrt{1-x^{3}}\left(1-4 x^{2}\right)} \\
& =\frac{3\left(1-4 t^{2}\right)}{\sqrt{1-t^{2}\left(1-4 x^{2}\right)}} \\
& =\frac{3}{\sqrt{1-t^{2}}}
\end{aligned}
$$

(10) If $u=\tan ^{-1}(y / x), x=e^{t} e^{-t}, y=e^{t}+e^{-t}$ then find $\frac{d u}{d t}$.

Sol Given $U=\tan ^{-1}(y / x)$
By using Total Derivative,

$$
\begin{aligned}
& \quad \frac{d u}{d t}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d t} \\
& \frac{\partial}{\partial x}\left[\tan ^{-1}(y / x)\right]=\frac{1}{1+\frac{y^{2}}{x^{2}}} y^{\prime}\left(\frac{-1}{x^{2}}\right)=\frac{-y}{x^{2}} \frac{1}{\frac{x^{2}+y^{2}}{x^{2}}}=\frac{-y}{x^{2}+y^{2}} \\
& \frac{\partial}{\partial y}\left[\tan ^{-1}(y / x)\right]=\frac{1}{1+y^{2} / x^{2}} \frac{1}{x}=\frac{1}{x^{x}} \frac{1}{\frac{x^{2}+y^{2}}{x^{2}}}=\frac{x}{x^{2}+y^{2}} \\
& \frac{d x}{d t}=\frac{d}{d t}\left(e^{t}-e^{-t}\right)=e^{t}-e^{-t}(-1)=e^{t}+e^{-t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t}\left(e^{t}+e^{-t}\right)=e^{t}+e^{-t}(-1)=e^{t}-e^{-t} \\
\frac{d u}{d t} & =\frac{-y}{x^{2}+y^{2}}\left(e^{t}+e^{-t}\right)+\frac{x}{x^{2}+y^{2}}\left(e^{t}-e^{-t}\right) \\
& =\frac{-y(y)+x(x)}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
& =\frac{\left(e^{t}+e^{-t}\right)^{2}-\left(e^{t}+e^{-t}\right)^{2}}{\left(e^{t}-e^{-t}\right)^{2}+\left(e^{t}+e^{-t}\right)^{2}} \\
& =\frac{e^{2 t}+e^{-2 t}-2-e^{2 t}-e^{-2 t}+2}{e^{2 t}+e^{-2 t}-2}+e^{2 t}+e^{-2 t}+y \\
& =\frac{-y 2}{f\left(e^{2 t}+e^{-2 t}\right)} \\
x & =\frac{-1}{e^{2 t}+e^{-2 t}}=\frac{-1}{2}=-\operatorname{sech} 2 t
\end{aligned}
$$

(14) If $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$ prove that $\left(y^{2}-z x\right) \frac{\partial u}{\partial x}+\left(x^{2}-y z\right) \frac{\partial u}{\partial y}$

Sol Given $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$

$$
+\left(z^{2}-x y\right) \frac{\partial u}{\partial z}=0
$$

$$
U=f(r, s) \quad \text { where } r=x^{2}+2 y z, S=y^{2}+2 z x
$$

By using chain Rule, $u<r<r, y, z$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial x}+\frac{\partial u}{\partial s} \cdot \frac{\partial S}{\partial x} \times \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial z} \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial S} \cdot \frac{\partial S}{\partial y} \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial z}+\frac{\partial u}{\partial s} \cdot \frac{\partial S}{\partial z} \\
& \frac{\partial u}{\partial r}=\frac{\partial f}{\partial r} ; \frac{\partial u}{\partial S}=\frac{\partial f}{\partial S} \\
\Rightarrow & \frac{\partial r}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+2 y z\right)=2 x+0 \\
\Rightarrow & \frac{\partial r}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+2 y z\right)=(0+2 z)=2 z \\
\Rightarrow & \frac{\partial r}{\partial z}=\frac{\partial}{\partial z}\left(x^{2}+2 y z\right)=(0+2 y)=2 y \\
\Rightarrow & \frac{\partial S}{\partial x}=\frac{\partial}{\partial x}\left(y^{2}+2 z x\right)=(0+2 z)=2 z . \\
\Rightarrow & \frac{\partial S}{\partial y}=\frac{\partial}{\partial y}\left(y^{2}+2 z x\right)=(2 y+0)=2 y \\
\Rightarrow & \frac{\partial S}{\partial z}=\frac{\partial}{\partial z}\left(y^{2}+2 z x\right)=(0+2 x)=2 x .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\frac{\partial f}{\partial r}(2 x)+\frac{\partial f}{\partial S}(2 z) \\
& \frac{\partial U}{\partial y}=\frac{\partial f}{\partial r}(2 z)+\frac{\partial f}{\partial S}(2 y) \\
& \frac{\partial U}{\partial z}=\frac{\partial f}{\partial r}(2 y)+\frac{\partial f}{\partial S}(2 x)
\end{aligned}
$$

$$
\text { Now, } \begin{aligned}
&\left(y^{2}-z x\right) \frac{\partial u}{\partial x}+\left(x^{2}-y z\right) \frac{\partial u}{\partial y}+\left(z^{2}-x y\right) \frac{\partial u}{\partial z} \\
&=\left(y^{2}-z x\right)\left(\frac{\partial f}{\partial r} 2 x\right.\left.+\frac{\partial f}{\partial s} 2 z\right)+\left(x^{2}-y z\right)\left(\frac{\partial f}{\partial r} 2 z+\frac{\partial f}{\partial s}, 2 y\right) \\
&+\left(z^{2}-x y\right)\left(\frac{\partial f}{\partial r} 2 y^{2}+\frac{\partial f}{\partial s} 2 x\right) \\
&= 2 x y^{2} \cdot \frac{\partial f}{\partial r}-2 x^{2} z \cdot \frac{\partial f}{\partial r}+2 z y^{2} \cdot \frac{\partial f}{\partial s}-2 z^{2} / x \cdot \frac{\partial f}{\partial s}+2 x^{2} z \cdot \frac{\partial f}{\partial r}-2 z^{2} y \cdot \frac{\partial f}{\partial r} \\
&+2 y x^{2} / \frac{\partial f}{\partial s}-2 y^{2} z \cdot \frac{\partial f}{\partial s}+2 y z^{2} / \frac{\partial f}{\partial r}=2 x y^{2} \frac{\partial f}{\partial r}+2 x z^{2} \frac{\partial f}{\partial s}-2 x^{2} y \frac{\partial f}{\partial s}
\end{aligned} \quad \begin{aligned}
& =0 .
\end{aligned}
$$

(2) If z is a function of x and y where $x=e^{u}+e^{-v}$ and $y=e^{-v}-e^{v}$. show that $\frac{\partial z}{\partial v}-\frac{\partial z}{\partial v}=x \cdot \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$.
Sols
Given $z=f(x, y), \quad x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$.
By using chain Rule,

$$
\begin{aligned}
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \\
& \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x} \quad, \frac{\partial z}{\partial y}=\frac{\partial f}{\partial y} . \\
& \frac{d z}{d z} \\
& \left.\frac{d x}{\partial v}=e^{u}+c+1\right)(\theta) \\
& =e^{u}+{ }^{-1} \\
& \frac{d x}{d V}=0+e^{-V}(-1) \\
& =-e^{-V} \\
& \frac{\partial z}{\partial u}=\frac{\partial f}{\partial x}\left(e^{u}\right)+\frac{\partial f}{\partial y}\left(-e^{-u}\right)=\frac{\partial f}{\partial x} e^{u}-\frac{\partial f}{\partial y} e^{-u} \\
& \frac{\partial z}{\partial v}=\frac{\partial f}{\partial x}\left(-e^{-v}\right)+\frac{\partial f}{\partial y}\left(-e^{v}\right)=-\left(\frac{\partial f}{\partial x} e^{-v}+\frac{\partial f}{\partial y} e^{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{\partial z}{\partial u}-\frac{\partial z}{\partial v} & =\frac{\partial f}{\partial x} e^{u}-\frac{\partial f}{\partial y} e^{-u}+\frac{\partial f}{\partial x} e^{-v}+\frac{\partial f}{\partial y} e^{v} \\
& =\left(e^{u}+e^{-v}\right) \frac{\partial f}{\partial x}+\left(e^{v}-e^{-u}\right) \frac{\partial f}{\partial y} \\
& =\left(e^{u}+e^{-v}\right) \frac{\partial f}{\partial x}-\left(e^{-u}-e^{v}\right) \frac{\partial f}{\partial y} \\
& =x \cdot \frac{\partial z}{\partial x}-y \cdot \frac{\partial z}{\partial y}
\end{aligned}
$$

(3) If $u=f(y-z, z-x, x-y)$ peove that $\frac{d u}{\partial x}+\frac{\partial u}{\partial y}+\frac{d u}{\partial z}=0$.

Given $u=f(y-z, z-x,(x-y)$

$$
u=f(a, b, c)
$$

Where $a=y-z, \quad b=z-x, \quad c=x-y$
By using chain Rule,

$$
=0
$$

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\frac{\partial U}{\partial a} \cdot \frac{\partial a}{\partial x}+\frac{\partial U}{\partial b} \cdot \frac{\partial b}{\partial x}+\frac{\partial U}{\partial c} \cdot \frac{\partial c}{\partial x} \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial y}+\frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial y}+\frac{\partial u}{\partial c} \cdot \frac{\partial c}{\partial y} \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial z}+\frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial z}+\frac{\partial u}{\partial c} \cdot \frac{\partial c}{\partial z} \text {. } \\
& \frac{\partial u}{\partial a}=\frac{\partial f}{\partial a} \quad, \quad \frac{\partial u}{\partial b}=\frac{\partial f}{\partial b} \quad, \quad \frac{\partial u}{\partial c}=\frac{\partial f}{\partial c} \\
& \begin{array}{l|l|l}
\frac{\partial a}{\partial x}=\frac{\partial}{\partial x}(y-z)=0 & \frac{\partial b}{\partial x}=\frac{\partial}{\partial x}(z-x)=-1 & \frac{\partial c}{\partial x}=\frac{d}{\partial x} \cdot(x-y)=1 \\
\frac{\partial a}{\partial y}=\frac{\partial}{\partial y}(y-z)=1 & \frac{\partial b}{\partial y}=\frac{d}{\partial y}(z-x)=0 & \frac{\partial c}{\partial y}=\frac{\partial}{\partial y}(x-y)=-1 \\
\frac{\partial a}{\partial z}=\frac{\partial}{\partial z}(y-z)=-1 & \frac{\partial b}{\partial z}=\frac{\partial}{\partial z}(z-x)=1 & \frac{\partial c}{\partial z}=\frac{\partial}{\partial z}(x-y)=0
\end{array} \\
& \frac{\partial u}{\partial x}=\frac{\partial f}{\partial a}(0)+\frac{\partial f}{\partial b}(-1)+\frac{\partial f}{\partial c}(1)=-\frac{\partial f}{\partial b}+\frac{\partial f}{\partial c} \\
& \frac{\partial U}{\partial y}=\frac{\partial f}{\partial a}(-1)+\frac{\partial f}{\partial b}(0)+\frac{\partial f}{\partial C}(-1)=\frac{\partial f}{\partial a}-\frac{\partial f}{\partial c} . \\
& \frac{\partial U}{\partial z}=\frac{\partial f}{\partial a}(-1)+\frac{\partial f}{\partial b}(1)+\frac{\partial f}{\partial c}(0)=\frac{-\partial f}{\partial a}+\frac{\partial f}{\partial b} \\
& \therefore \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{d u}{\partial z} \\
& =-\frac{\partial f}{\partial b}+\frac{\partial f}{\partial c}+\frac{\partial f}{\partial a}-\frac{\partial f}{\partial c}-\frac{\partial f}{\partial a}+\frac{\partial f}{\partial b}
\end{aligned}
$$

(4) If $w=f(x, y), x=r \cos \theta, y=r \sin \theta$. Show that

$$
\left(\frac{\partial \omega}{\partial r}\right)^{2}+\frac{1}{\gamma^{2}}\left(\frac{\partial \omega}{\partial q}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} .
$$

sole-
Given $w=f(x, y)$
and $x=r \cos \theta, \quad y=r \sin \theta$.
By using chain Rule, $\omega<y>r, \theta$.

$$
\begin{align*}
& \frac{\partial \omega}{\partial r}=\frac{\partial f}{\partial x} \cdot(\cos \theta)+\frac{\partial f}{\partial y} \sin \theta \cdot \rightarrow \text { (1) } \\
& \frac{\partial \omega}{\partial \theta}=\frac{\partial f}{\partial x}(-\sin \theta)+\frac{\partial f}{\partial y} r \cos \theta: \rightarrow \text { (2) } \tag{9}
\end{align*}
$$

$$
\begin{aligned}
\text { (1) } \Rightarrow & \left(\frac{\partial \omega}{\partial r}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \cdot \cos ^{2} \theta+\left(\frac{\partial f}{\partial y}\right)^{2} \sin ^{2} \theta+2 \frac{\partial f}{\partial x}-\frac{\partial f}{\partial y} \cdot \sin ^{2} \theta-\cos \theta \\
(2) & \left(\frac{\partial \omega}{\partial \theta}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \cdot r^{2} \cdot \sin 2 \theta+\left(\frac{\partial f}{\partial y}\right)^{2} r^{2} \cos ^{2} \theta-2 r^{2} \cdot \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y} \cdot \sin \theta \cdot \cos \theta \\
& \left(\frac{\partial \omega}{\partial \theta}\right)^{2}=\frac{\partial^{2}}{r^{2}}\left(\frac{\partial f}{\partial x}\right)^{2}-\sin ^{2} \theta+\left(\frac{\partial f}{\partial y}\right)^{2} \cdot \cos ^{2} \theta-2 \frac{\partial \partial f}{\partial x}-\frac{\partial f}{\partial y} \cdot \sin \theta \cdot \cos \theta \\
& \frac{1}{\gamma^{2}}\left(\frac{\partial \omega}{\partial \theta}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \cdot \sin ^{2} \theta+\left(\frac{\partial f}{\partial y}\right)^{2} \cdot \cos ^{2} \theta-2 f f
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow\left(\frac{\partial 0}{\partial r}\right)^{2}+\frac{1}{r 2}\left(\frac{\partial \omega}{\partial \theta}\right)^{2} & =\left(\frac{\partial f}{\partial x}\right)^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]+\left(\frac{\partial f}{\partial y}\right)^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{\gamma^{2}}\left(\frac{\partial \omega}{\partial \theta}\right)^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \cdot \sin ^{2} \theta+\left(\frac{\partial f}{\partial y}\right)^{2} \cdot \operatorname{co} \\
& \begin{aligned}
\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \omega}{\partial \theta}\right)^{2} & =\left(\frac{\partial f}{\partial x}\right)^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]^{2}+ \\
& =\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}
\end{aligned}
\end{aligned}
$$

(5) If f is the function. $v ; v$ and $u=x^{2}-y^{2}, v=2 x y$, then Show that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=4\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} \theta}{\partial v^{2}}+\frac{\partial^{2} \theta}{\partial v^{2}}\right)$.
Solve Given $\&+(U, N) f=\theta(u, v)$

$$
u=x^{2}-y^{2} ; \quad v=2 x y
$$

By using Chain Rule,

$$
\begin{aligned}
& \frac{\partial \omega}{\partial r}=\frac{\partial \omega}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial \omega}{\partial y} \cdot \frac{\partial y}{\partial \phi \gamma} \\
& \frac{\partial \omega}{\partial \theta}=\frac{\partial \omega}{\partial y x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial \omega}{\partial y} \cdot \frac{\partial y}{\partial \theta} \\
& \frac{\partial \omega}{\partial x}=\frac{\partial f}{\partial x}, \quad \frac{\partial \omega}{\partial y}=\frac{\partial f}{\partial y} \\
& \frac{\partial x}{\partial r}=\frac{\partial}{\partial r}(r \cos \theta)=r \cos \theta \left\lvert\, \quad \frac{\partial y}{\partial r}=\frac{\partial}{\partial r}(r \sin \theta)=\sin \theta\right. \text {. } \\
& \begin{aligned}
\frac{\partial x}{\partial \theta}=\frac{\partial}{\partial \theta}(r \cdot \cos \theta) & =r(\sin \theta) \\
& =-r \sin \theta
\end{aligned} \quad \frac{\partial y}{\partial \theta}=\frac{\partial}{\partial \theta}(r \sin \theta)=r \cos \theta .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f f}{\partial x}=\frac{\partial f}{\partial U} \cdot \frac{\partial U}{\partial x}+\frac{\partial f}{\partial v} \cdot \frac{\partial V}{\partial x} \\
& \frac{\partial \theta f}{\partial y}=\frac{\partial \partial f}{\partial u} \cdot \frac{\partial U}{\partial y}+\frac{\partial \Delta f}{\partial v} \cdot \frac{\partial V}{\partial y} \\
& \frac{\partial f}{\partial U}=\frac{\partial \theta}{\partial U}, \quad \frac{\partial f}{\partial V}=\frac{\partial \theta}{\partial V} \\
& \frac{\partial U}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}-y^{2}\right)=2 x \quad \left\lvert\, \begin{array}{l}
\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}(2 x y)=2 y \\
\frac{\partial U}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}-y^{2}\right)=-2 y \quad \frac{\partial v}{\partial y}=\frac{\partial}{\partial y}(2 x y)=2 x
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial \theta}{\partial v}(2 x)+\frac{\partial \theta}{\partial v}(2 y) \\
& \frac{\partial f}{\partial y}=\frac{\partial \theta}{\partial v}(-2 y)+\frac{\partial \theta}{\partial v}(2 x) \\
& \frac{\partial f}{\partial x} \neq 2 \frac{\partial f}{\partial x} x+2 \cdot \frac{\partial f}{\partial x} y .
\end{aligned}
$$

diff. w. A.to " x " partatally

$$
\begin{aligned}
& \frac{\partial^{2} \theta}{\partial x^{2}} \neq 2 \cdot \frac{\partial f}{\partial x}(1)+2 x \frac{\partial^{2} f}{\partial v^{2} x}+2 y \frac{\partial^{2} f f}{\partial x x}+2 \frac{\partial f f}{\partial v}(x) \\
& =2 \cdot \frac{\partial f}{\partial x}+2 x \cdot \frac{\partial^{2} f f}{\partial x \cdot d x}+2 y \frac{\partial^{2} f}{\partial x} \text {. }
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial f}{\partial x}=2 x \cdot \frac{\partial \theta}{\partial U}+2 y \frac{\partial \theta}{\partial v} \tag{1}\\
& \frac{\partial f}{\partial x}=2\left[x \cdot \frac{\partial \theta}{\partial v}+y \cdot \frac{\partial \theta}{\partial V}\right] \\
& \frac{\partial f}{d x}=2\left[x \cdot \frac{d}{d v}+y \cdot \frac{d}{\partial v}\right]^{\theta} \\
& \frac{d}{d x}=2\left[x \cdot \frac{d}{d v}+y \cdot \frac{d}{d v}\right] \tag{2}\\
& \Rightarrow \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \\
& =2\left[x \cdot \frac{\partial}{\partial v}+y \cdot \frac{\partial}{\partial V}\right] 2\left(x \cdot \frac{\partial \dot{\theta}}{\partial v}+y \cdot \frac{\partial \theta}{\partial v}\right) \quad[\because \text { from (1) \& (2) }] \\
& =4 \cdot\left(x^{2} \cdot \frac{\partial^{2} \theta}{\partial v^{2}}+x y \cdot \frac{\partial^{2} \theta}{\partial v \cdot \partial v}+x y \frac{\partial^{2} \theta}{\partial v \cdot \partial v}+y^{2} \cdot \frac{\partial^{2} \theta}{\partial v^{2}}\right) \\
& \frac{\partial^{2} f}{\partial x^{2}}=4\left(x^{2} \cdot \frac{\partial^{2} \theta}{\partial u^{2}}+2 x y \frac{\partial^{2} \theta}{\partial v-\partial v}+y^{2} \frac{\partial \theta}{\partial v^{2}}\right)^{\prime} \tag{3}
\end{align*}
$$

(6) If $u=x^{2}+y^{2}+z^{2}$ and $x=e^{2 t}, y=e^{2 t}, \cos 3 t, z=e^{2 t} \sin 3 t$ find du

Sole Given $u=x^{2}+y^{2}+z^{2}$
and $x=e^{2 t}, y=e^{2 t} \cdot \cos 3 t, z=e^{2 t} \cdot \sin 3 t$
By using Total Aorinative)

$$
\frac{d u}{d t}=\frac{d u}{d x} \cdot \frac{d x}{d t}+\frac{d u}{d y} \cdot \frac{d y}{d t}+\frac{d u}{d z} \cdot \frac{d z}{d t} .
$$

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right) \\
& =2 x \\
\frac{d x}{d t} & =\frac{d}{d t}\left(e^{2 t}\right) \\
& =2 \cdot e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d u}{d t} & =2 x\left(2 \cdot e^{2 t}\right)+2 y\left(-3 e^{2 t} \cdot \sin 3 t+2 \cdot e^{2 t} \cos 3 t\right)+2 z\left(3 e^{2 t} \cdot \cos 3 t+2 e^{2 t} \sin 3 t\right) \\
& =4 x \cdot e^{2 t}-6 y e^{2 t} \sin 3 t+4 y e^{2 t} \cdot \cos 3 t+6 z e^{2 t} \cdot \cos 3 t+4 z e^{2 t} \cdot \sin 3 t \cdot \\
& =4 x \cdot e^{2 t}-e^{2 t} \cdot \sin 3 t(6 y-4 z)+e^{2 t} \cdot \cos 3 t(4 y+6 z) \\
& =4 x \cdot e^{2 t}-e^{2 t} \cdot \sin 3 t\left(6 e^{2 t} \cos 3 t-4 e^{2 t} \sin 3 t\right)+e^{2 t} \cos 3 t\left(4 e^{2 t} \cos 3 t+6 e^{2 t} \sin 3\right] \\
& =4 e^{2 t} \cdot e^{2 t}-6 e^{4 t} \cdot \sin 34 \cos 3 t+4 e^{4 t} \cdot \sin ^{2} 3 t+4 e^{4 t} \cdot \cos ^{2} 3 t+6 e^{4 t}-\sin 3 t(t) s \\
& =4 \cdot e^{4 t} \cdot\left(1+\sin ^{2} 3 t+\cos ^{2} 3 t\right) \\
& =4 \cdot e^{4 t}(1+1)=4 \cdot e^{4 t}(2)=8 \cdot e^{4 t}
\end{aligned}
$$

(7) If $u=\sin \left(\frac{x}{y}\right), x=e^{t}, y=t^{2}$ then find $\frac{d u}{d t}$.

Given $u=\sin \left(\frac{x}{y}\right)$

$$
x=e^{t}, \quad y=t^{2}
$$

By using Total Derivative, $\quad u<x \leq t$.

$$
\begin{array}{ll}
\frac{d u}{d t}=\frac{\partial u}{\partial x} \cdot \frac{d y}{d t}+\frac{d u}{\partial y} \cdot \frac{d y}{d t} \\
\frac{d u}{d x}=\cos \frac{x}{y}\left(\frac{1}{y}\right) & \frac{d u}{d y}=\cos \left(\frac{x}{y}\right) x\left(\frac{-1}{y}\right) \\
\frac{d x}{d t}=e t & \frac{d y}{d t}=2 t
\end{array}
$$

$$
\begin{aligned}
& =-3 e^{2 t} \sin 3 t+2 e^{2 t}-\cos 3 t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{t}}{t^{2}} \cos \left(\frac{e^{t} t}{t^{2}}\right)-\frac{e^{t}}{t^{4}} \cdot \cos \left(\frac{e^{t}}{t^{2}}\right) 2 t \\
& =\frac{e^{t}}{t^{2}}\left(\cos \left(\frac{e t}{t^{2}}\right)\left[1-\frac{2 t}{t^{2}}\right]\right. \\
& =\frac{e^{t}}{t^{2}} \cos \left(\frac{e^{t}}{t^{2}}\right)\left(\frac{t^{2}-2 t}{t^{2}}\right) \\
& \frac{d u}{d t}=\frac{e^{t}\left(t^{2}-2 t\right)}{t^{4}} \cdot \cos \left(\frac{e^{t}}{t^{2}}\right) \Rightarrow \frac{d u}{d t}=\frac{e^{t}(t-2)}{t^{3}} \cdot \cos \left(\frac{e^{t}}{t^{2}}\right)
\end{aligned}
$$

(8) If $u=x^{3}+y^{3}$ where $x=a \cos t, y=b \sin t$.fend $\frac{d u}{d t}$. Given $u=x^{3}+y^{3}, \quad x=a \cos t, y=b \sin t$.

By using, Total Derivative, $u<x>t$

$$
\begin{aligned}
& \frac{d u}{d t}=\frac{d u}{\partial x} \cdot \frac{d x}{d t}+\frac{d u}{\partial y} \cdot \frac{d y}{d t} \\
& \frac{d u}{\partial x}=3 x^{2} \quad \frac{d u}{\partial y}=3 y^{2} \\
& \frac{d x}{d t}=-a \sin t \quad \frac{d y}{d t}=b \cos t \\
& \frac{d u}{d t}=3 x^{2}(-a \sin t)+3 y^{2} \cdot b \cos t \\
&=-3\left(x^{2} \cdot a \sin t-y^{2} b \cos t\right) \\
&=-3\left(a^{2} \cdot \cos ^{2} t \cdot a \sin ^{2} t b^{2} \sin ^{2} t \cdot b \cdot \cos t\right) \\
&=-3\left(a^{3} \cdot \sin t \cdot \cos ^{2} t-b^{3} \sin ^{2} t \cdot \cos t\right) \\
&=-3 \sin t \cdot \cos t\left(a^{3} \cos t-b^{3} \sin t\right) \\
&=-\frac{3}{2} \cdot \sin 2 t\left(a^{3} \cos t-b^{3} \sin t\right)
\end{aligned}
$$

(9) If $z=u^{2}+v^{2}, v=r \cos \theta, v=r \operatorname{sen} \theta$. Find $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial \theta}$.

Gold Given $z=u^{2}+v^{2}=f(u, v)$

$$
u=r \cos \theta \quad v=r \sin \theta
$$

By using chain Rule, \# $\left\langle\begin{array}{l}u>r o \\ v\end{array}\right.$

$$
\begin{aligned}
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial r}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial r} \\
& \frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial U} \cdot \frac{\partial U}{\partial \theta}+\frac{\partial z}{\partial V} \cdot \frac{\partial V}{\partial \theta} \\
& \frac{d z}{d u}=2 u \text {. } \\
& \frac{d u}{d r}=\cos \theta \text {. } \\
& \frac{d z}{d V}=2 V \\
& \frac{d V}{d r}=\sin \theta \quad \left\lvert\, \frac{d V}{d \theta}=r \cos \theta\right. ;
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial z}{d r} & =2 u \cos \theta+2 v(-r \sin \theta) \\
& =2(r \cos \theta) \cos \theta-2(r \sin \theta)(r \sin \theta) \\
& =2 r \cos ^{2} \theta+2 r^{2} \sin ^{2} \theta \\
& =2 r\left(\cos ^{2} \theta+r \cdot \sin ^{2} \theta\right) \\
\frac{d z}{d \theta} & =2 u \sin \theta+2 v(r \cos \theta) \\
& =2(r \cos \theta)(\sin \theta)+2(r \sin \theta) r \cos \theta \\
& =r \cdot 2 \cos \theta \cdot \cos \theta+r^{2} \cdot 2 \sin \theta \cdot \cos \theta \\
& =r \cdot \sin 2 \theta+r^{2} \cdot \sin 2 \theta \\
& =r \sin 2 \theta(1+r)
\end{aligned}
$$

(10) If $y=\tan ^{-1}(y / x) ; x=e^{t}-e^{-t}, y=e^{t}+e^{-t}$ find $\frac{d v}{d t}$.

Given $\forall x \operatorname{Tan}^{-1}(y t x)$

$$
x \not x e^{t}<e^{-t}
$$

(11) If $z=\log \left(u^{2}+v\right), u=e^{x^{2}+y^{2}}, v=x^{2}+y$ find $\frac{\partial z}{d x}, \frac{d z}{\partial y}$

Given $z=\log \left(u^{2}+v\right)$

$$
u=e^{x^{2}+y^{2}} \quad, \quad v=x^{2}+y
$$

By using chain Rule,

$$
\begin{aligned}
& \frac{d z}{\partial x}=\frac{\partial z}{\partial U} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\
& \frac{\partial z}{\partial y}=\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \text {. } \\
& \frac{d z}{d u}=\frac{1}{u^{2}+v}(2 u) \\
& \frac{d z}{d v}=\frac{1}{v^{2}+v}(1) \\
& \frac{d u}{d x}=e^{x^{2}+y^{2}}(2 x) \\
& \frac{\partial u}{\partial y}=e^{x^{2}+y^{2}}(2 y) \\
& \frac{d v}{\partial x}=2 x^{\circ} \\
& \% \frac{d V}{\partial y}=1 \\
& \frac{\partial z}{d x}=\frac{2 u}{v^{2}+v^{2}} \cdot e^{x^{2}+y^{2}}(2 x)+\frac{1}{u^{2}+v}(2 x) \\
& =\frac{2 x}{u^{2}+v}\left(2 u \cdot e^{x^{2}+y^{2}}+1\right) \\
& =\frac{2 x}{\left(e^{x^{2}+y^{2}}\right)^{2}+x^{2}+y}\left(2 \cdot e^{x^{2}+y^{2}} \cdot e^{\left(x^{2}+y y\right.}+1\right) \\
& =\frac{2 x}{e^{2\left(x^{2}+y^{2}\right)}+x^{2}+y}\left[2 \cdot e^{2\left(x^{2}+y^{2}\right)}+1\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{d z}{d y} & =\frac{2 u}{v^{2}+v} e^{x+y}(2 y)+\frac{1}{u^{2}+v} \\
& =\frac{4 y u \cdot e^{x^{2}+y^{2}}}{u^{2}+v}+\frac{1}{u^{2}+v} \\
& =\frac{4 y e^{x^{2}+y^{2}} \cdot e^{x^{2}+y^{2}}+1}{v^{2}\left(e^{\left.x^{2}+y^{2}\right)^{2}+x^{2}+y}\right.} \\
& =\frac{4 y \cdot e^{2\left(x^{2}+y^{2}\right)}+1}{e^{2\left(x^{2}+y^{2}\right)+x^{2}+y}}
\end{aligned}
$$

(12) If $u=f(r, s, t)$ and, $r=\frac{x}{y}, s=\frac{y}{z}, t=\frac{z}{x}$ prove that,

$$
x \frac{d u}{\partial x}+y \frac{d u}{\partial y}+z \frac{\partial u}{\partial z}=0
$$

Given $U=f(r, s, t)$

$$
r=\frac{x}{y}, \quad \delta=\frac{y}{z} ; \quad t=\frac{z}{x}
$$

By using chain Rule,

$$
u\left\langle\begin{array}{l}
\gamma \\
\delta \\
t
\end{array}\right\rangle x, y, z
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \delta} \cdot \frac{\partial s}{\partial x}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial t} \cdot \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial y} \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial z}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial z}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial z} \text {. }
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial U}{\partial x}=\frac{\partial f}{\partial r}\left(\frac{1}{y}\right)+\frac{\partial f}{\partial S}(0)+\frac{\partial f}{\partial t}\left(\frac{-z}{x^{2}}\right)=\frac{1}{y} \cdot \frac{\partial f}{\partial r}-\frac{z}{x^{2}} \cdot \frac{\partial f}{\partial t} \text {. } \\
& \Rightarrow x \cdot \frac{\partial v}{\partial x}=\frac{x}{y} \cdot \frac{\partial f}{\partial r}-\frac{z}{x} \cdot \frac{\partial f}{\partial t} \tag{1}\\
& \frac{\partial u}{\partial y}=\frac{\partial f}{\partial r}\left(\frac{-x}{y^{2}}\right)+\frac{\partial f}{\partial S}\left(\frac{1}{z}\right)+\frac{\partial f}{\partial t} \text { (0) } \\
& \Rightarrow y \cdot \frac{\partial v}{\partial y}=\cdot-\frac{x}{y} \cdot \frac{\partial f}{\partial r}+\frac{x}{z} \cdot \frac{\partial f}{\partial \rho} \text {. } \tag{2}\\
& \frac{\partial u}{\partial z}=\frac{\partial f}{\partial r} \cdot(0)+\frac{\partial f}{\partial \delta}\left(-\frac{y}{z^{2}}\right)+\frac{\partial f}{\partial t}\left(\frac{1}{x}\right)
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow z \cdot \frac{\partial U}{\partial z}=\frac{-y}{z} \frac{\partial f}{\partial s}+\frac{z}{x} \cdot \frac{\partial f}{\partial t} \tag{3}
\end{equation*}
$$

Adding (1) + (2) +(3)

$$
\begin{aligned}
& \Rightarrow x \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}+z \cdot \frac{\partial u}{\partial z} \\
& =\frac{x}{y} \frac{\partial f}{\partial r}-\frac{z}{x} \frac{\partial f}{\partial t}+\frac{x}{y} / \frac{\partial f}{\partial r}+\frac{\partial v}{z} \int \frac{\partial f}{\partial s}-\frac{y}{z} / \frac{\partial f}{\partial s}+\frac{z}{x} \cdot \frac{\partial f}{\partial t} \\
& =0 .
\end{aligned}
$$

(15) If $u=f(r, s), r=x+y, s=x-y$. show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=2 \cdot \frac{d u}{\partial r}$.

Given $u=f(r, s)$

$$
r=x+y, \quad s=x-y
$$

By using chain Rule,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial S} \cdot \frac{\partial S}{\partial x} \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y} \text {. } \\
& \frac{\partial v}{\partial \gamma}=\frac{\partial f}{\partial \gamma} \\
& \frac{d u}{\partial s}=\frac{\partial f}{\partial s} \\
& \frac{d r}{d x}=\frac{d}{d x}(x+y)=1 \\
& \frac{\partial r}{\partial y}=\frac{\partial}{\partial y}(x+y)=1 \\
& \frac{\partial s}{\partial x}=\frac{\partial}{\partial x}(x-y)=1 \quad, \quad \frac{\partial s}{\partial y}=\frac{\partial}{\partial y}(x-y)=-1 ; \\
& \frac{\partial u}{\partial x}=\frac{\partial f}{\partial r}(1)+\frac{\partial f}{\partial S}(i)=\frac{\partial f}{\partial r}+\frac{\partial f}{\partial S} \\
& \frac{\partial U}{\partial y}=\frac{\partial f}{\partial s}(1)+\frac{\partial f}{\partial S}(-1)=\frac{\partial f}{\partial r}-\frac{\partial f}{\partial S} \\
& \therefore \frac{\partial 0}{\partial x}+\frac{\partial 0}{\partial y}=\frac{\partial f}{\partial r}+\frac{\partial f}{\partial s}+\frac{\partial f}{\partial r}-\frac{\partial f}{\partial s} \\
& =2 \cdot \frac{\partial f}{\partial r} \\
& =2 \cdot \frac{\partial u}{\partial r}
\end{aligned}
$$

* (13) If $u=f(2 x-3 y ;(3 y-4 z), 4 z-2 x]$ Prove that

$$
\begin{aligned}
\frac{1}{2} \cdot \frac{\partial u}{\partial n}+\frac{1}{3} \frac{\partial u}{\partial y} & +\frac{1}{4} \frac{\partial u}{\partial z}=0 \\
\text { Given } u & =f(2 x-3 y, 3 y-4 z, 4 z-2 x) \\
u & =f(r, s, t)
\end{aligned}
$$

, where $r=2 x-3 y, \quad \delta=3 y-4 z, \quad t=4 z-2 x$.
By using chain Rule, $\left.u \lll{ }_{i}^{r}\right\rangle x, y$

$$
\begin{align*}
& \frac{\partial U}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \delta} \cdot \frac{\partial s}{\partial x}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial x} \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial y} \\
& \frac{\partial U}{\partial z}=\frac{\partial U}{\partial r} \cdot \frac{\partial r}{d z}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial q}+\frac{\partial U}{\partial t} \cdot \frac{\partial t}{\partial z} \text {. } \\
& \frac{\partial U}{\partial r}=\frac{\partial f}{\partial r} \\
& \frac{d \gamma}{\partial x}=\frac{\partial}{\partial x}(2 x-3 y)=2 \\
& \frac{\partial S}{\partial x}=\frac{\partial}{\partial x}(3 y-4 z)=0 \\
& \frac{\partial t}{\partial x}=\frac{\partial}{\partial x}(4 z-2 x)=-2 \quad \frac{\partial t}{\partial y}=\frac{\partial}{\partial y}(y z-2 x)=0 \\
& \frac{\partial u}{\partial x}=\frac{\partial f}{\partial \gamma}(2)+\frac{\partial f}{\partial s}(0)+\frac{\partial f}{\partial t}(-2) \\
& \Rightarrow \frac{1}{2} \cdot \frac{\partial v}{\partial x}=\frac{\partial f}{\partial \gamma}-\frac{\partial f}{\partial t} \tag{1}\\
& \frac{\partial u}{\partial y}=\frac{\partial f}{\partial r}(3)+\frac{\partial f}{\partial S}(3)+\frac{\partial f}{\partial t}(0) \\
& \rightarrow \frac{1}{3} \frac{\partial 0}{\partial y}=-\frac{\partial f}{\partial r}+\frac{\partial f}{\partial s} \tag{2}\\
& \frac{\partial \partial}{\partial z}=\frac{\partial f}{\partial r}(0)+\frac{\partial f}{\partial s}(-4)+\frac{\partial f}{\partial t}(4) \\
& \rightarrow \frac{1}{4} \frac{\partial 0}{\partial z}=-\frac{\partial f}{\partial s}+\frac{\partial f}{\partial t} \tag{3}
\end{align*}
$$

Adding (1) + (2) + (3)

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \frac{\partial v}{\partial x}+\frac{1}{3} \frac{\partial v}{\partial y}+\frac{1}{4} \frac{\partial 0}{\partial z} \\
& =\frac{\partial f}{\partial r}-\frac{\partial f}{\partial t}-\frac{\partial f}{\partial x}+\frac{\partial f}{\partial s}-\frac{\partial f}{\partial s}+\frac{\partial f}{\partial t} \\
& =0 . \\
& \quad \therefore \frac{1}{2} \frac{\partial u}{\partial x}+\frac{1}{3} \frac{\partial v}{\partial y}+\frac{1}{4} \frac{\partial v}{\partial z}=0 .
\end{aligned}
$$

(b) \rightarrow continuous:

$$
\begin{align*}
& \frac{\partial f}{\partial y}=-2 y \frac{\partial \theta}{\partial v}+2 x \frac{\partial \theta}{\partial v} \tag{4}\\
& \frac{\partial f}{\partial y}=2\left(x \cdot \frac{\partial \theta}{\partial v}-y \frac{d \theta}{\partial v}\right) \\
& \frac{d f}{d y}=2 \cdot\left(x \frac{\partial}{d v}-y \frac{\partial}{\partial v}\right) \theta \\
& \frac{d}{d y}=2\left(x \cdot \frac{d}{d V}-\Delta \frac{d}{d v}\right) \tag{5}\\
& \Rightarrow \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \\
& =2\left(x \frac{d}{\partial v}-y \cdot \frac{\partial}{\partial U}\right) 2\left(x \cdot \frac{\partial \theta}{\partial v}-y \cdot \frac{d \theta}{\partial U}\right) \\
& =4\left[x^{2} \frac{\partial^{2} \theta}{\partial v^{2}}-x y \frac{\partial^{2} \theta}{\partial 0 \cdot \partial v}-x y \frac{\partial^{2} \theta}{\partial v \cdot \partial v}+y^{2} \cdot \frac{\partial^{2} \theta}{\partial v^{2}}\right] \tag{6}
\end{align*}
$$

Adding (3) + (3)

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \\
& =4\left[x^{2} \frac{\partial^{2} \theta}{\partial v^{2}}+2 x y \frac{\partial^{2} \theta}{\partial u \cdot \partial v}+y^{2}-\frac{\partial \theta}{\partial v^{2}}\right]+4\left[x^{2}-\frac{\partial^{2} \theta}{\partial v^{2}}-2 x y \frac{\partial^{2} \theta}{\partial v \cdot \partial v}+y^{2} \frac{\partial^{2} \theta}{\partial \dot{v}^{2}}\right] \\
& =4\left[\frac{x^{2} \frac{2}{d} \theta}{\partial u^{2}}+2 x y \frac{\partial \psi}{\partial v \cdot d V}+y^{2} \frac{\partial^{2} \theta}{\partial v^{2}}+x^{2} \frac{\partial^{2} \theta}{\partial v^{2}}-2 x y \frac{\partial^{2} \theta}{\partial \theta \cdot \partial v}+y^{2}-\frac{\partial^{2} \theta}{d v^{2}}\right] \text {. } \\
& =4\left[\frac{\partial^{2} \theta}{\partial u^{2}} \cdot\left(x^{2}+y^{2}\right)+\frac{\partial^{2} \theta}{\partial v^{2}}\left(x^{2}+y^{2}\right)\right] \\
& =4\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} \theta}{\partial U^{2}}+\frac{\partial^{2} \theta}{\partial V^{2}}\right) \\
& \therefore \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=4\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} \theta}{\partial u^{2}}+\frac{\partial^{2} \theta}{\partial v^{2}}\right)
\end{aligned}
$$

$23 \mid 4119$
udo t Implicit Function:
(1) If $z=\sqrt{x^{2}+y^{2}}$ and $x^{3}+y^{3}+3 a x y=5 a^{2}$. Find the value of $\frac{d z}{d x}$ when. $x=y=a$.

Given $z=\sqrt{x^{2}+y^{2}}, \quad x^{3}+y^{3}+3 a x y=5 a^{2}$

$$
\begin{aligned}
& \frac{d z}{d x}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d x}+\frac{d z}{\partial y} \cdot \frac{d y}{d x} \\
& \frac{d z}{d x}=\frac{d z}{\partial x}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& z=\sqrt{x^{2}+y^{2}} \\
& \frac{d z}{\partial x}=\frac{1}{\not \partial \sqrt{x^{2}+y^{2}}}(x x)=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial z}{\partial y}=\frac{1}{\not x \sqrt{x^{2}+y^{2}}}(\partial y)=\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Given $\quad x^{3}+y^{3}+3 a x y-5 a^{2}=0$
differentiate with $9 \cdot-$ to ' x '.

$$
\begin{aligned}
& 3 x^{2}+3 y^{2} \frac{d y}{d x}+3 a\left[(1) y+y x \cdot \frac{d y}{d x}\right]=0 \\
& x^{2}+y^{2} \frac{d y}{d x}+a y+a x \cdot \frac{d y}{d x}=0 \\
& \left(y^{2}+a x\right) \frac{d y}{d x}=-\left(x^{2}+a y\right) \\
& \frac{d y}{d x}=\frac{-\left(x^{2}+a y\right)}{y^{2}+a x} \\
& \therefore \frac{d z}{d x}=\frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{y}{\sqrt{x^{2}+y^{2}}}\left(-\frac{-\left(x^{2}+a y\right)}{y^{2}+a x^{2}}\right) \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \overline{\frac{y}{4}} \frac{\left.y x^{2}+a y\right)}{\sqrt{x^{2}+y^{2}}\left(y^{2}+a x\right)} \\
& \text { at, } x=y=a \\
& \begin{array}{l}
=\frac{x\left(y^{2}+a x\right)-y\left(x^{2}+a y\right)}{\sqrt{x^{2}+y^{2}}\left(y^{2}+a x\right)} \\
=\frac{x y^{2}+a x^{2}-x^{2} y-a y^{2}}{\sqrt{x^{2}+y^{2}}\left(y^{2}+a x\right)}
\end{array} \\
& \frac{d z}{d x}=\frac{(a-a) a^{2}-(a-a) a^{2}}{\sqrt{a^{2}+a^{2}}\left(a^{2}+a^{2}\right)} \\
& =\frac{(x-a) y^{2}+y(a-y) x^{2}}{\sqrt{x^{2}+y^{2}}\left(y^{2}+a x\right)} \text {. } \\
& \frac{d z}{d x}=\frac{(x-a) y^{2}-(y-a) x^{2}}{\sqrt{x^{2}+y^{2}}\left(y^{2}+a x\right)} \\
& =\frac{0-0}{\sqrt{2 a^{2}}\left(2 a^{2}\right)} \\
& \frac{d z}{d x}=0
\end{aligned}
$$

(2) If $v=x \log (x y)$ where $x^{3}+y^{3}+3 x y=1$ find $\frac{d v}{d x}$.

Given $u=x \cdot \log (x y)$

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d x}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d x} \\
& \frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d x}
\end{aligned}
$$

$$
\begin{aligned}
u & =x \cdot \log (x y) \\
\frac{\partial u}{\partial x} & =x \cdot\left(\frac{1}{x+y}\right)(y)+\log (x y)(1) \\
& =1+\log (x y) \\
\frac{\partial u}{\partial y} & =x \cdot \frac{1}{x y}(x)=\frac{x}{y} .
\end{aligned}
$$

Qiven $x^{3}+y^{3}+3 x y=1$
diff. w. q. 70 ' x '.

$$
\begin{aligned}
& 3 x^{2}+3 y^{2} \frac{d y}{d x}+3\left[x \cdot \frac{d y}{d x}+y(1)\right]=0 \\
& \quad x^{2}+y^{2}-\frac{d y}{d x}+x \cdot \frac{d y}{d x}+y=0 \\
&\left(y^{2}+x\right) \frac{d y}{d x}=-\left(x^{2}+y\right) \\
& \quad \frac{d y}{d x}=\frac{-\left(x^{2}+y\right)}{y^{2}+x} \\
& \frac{d u}{d x}= 1+\log (x y)+\frac{x}{y} \cdot\left(-\frac{\left(x^{2}+y\right)}{y^{2}+x}\right) \\
&= 1+\log (x y)-\frac{x\left(x^{2}+y\right)}{y\left(y^{2}+x\right)} \\
&= \log (x y)+\frac{y^{3}+x y-x^{3}-x y}{y\left(y^{2}+x\right)} \\
&= \log (x y)+y^{3}-x
\end{aligned}
$$

(3) If $z=x^{2} y$ and $x^{2}+x y+y^{2}=1$, fend $\frac{d z}{d x}$.

Qiven $z=x^{2} y$

$$
\begin{aligned}
& \frac{d z}{d x}=\frac{\partial z}{d x} \cdot \frac{d x}{d x}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d x} \\
& \frac{d z}{d x}=\frac{d z}{\partial x}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d x} \\
& z=x^{2} y \\
& \frac{d z}{\partial x}=y(2 x)=2 x y \\
& \frac{\partial z}{\partial y}=x^{2}(1)=x^{2}
\end{aligned}
$$

Given $x^{2}+x y+y^{2}=1$

$$
\text { diff-w-x+ to } x!
$$

$$
\begin{gathered}
2 x+2\left(x \cdot \frac{d y}{d x}+y(1)\right)+2 y=0 \\
2 x+x \cdot \frac{d y}{d x}+3 y=0 \\
x \cdot \frac{d y}{d x}=-(\$ x+3 y) \\
\frac{d y}{d x}=-\frac{(2 x+3 y)}{x} \\
\frac{d z}{d x}=2 x y+x^{2} \frac{-(2 x+3 y)}{x} \\
=2 x y-x(2 x+3 y) \\
=2 x y-2 x^{2}+-3 x y=-2 x^{2}-x y \\
=-\left(2 x^{2}+x y\right)
\end{gathered}
$$

(5) If $x^{y}=y^{x}$ then find $\frac{d y}{d x}$

Given : $x^{y}=y^{x}$

$$
\begin{aligned}
& \quad x^{y}-y^{x}=0 \\
& \quad f(x, y)=x^{y}-y^{x} \\
& \therefore \frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
\end{aligned}
$$

differentiate $\varepsilon q u^{\prime \prime}(1)$ w. s. to " x " partially.

$$
\begin{aligned}
& \Rightarrow \frac{d f}{d x}=y \cdot x^{y-1} \text {-dlogax ry. } x^{y-1}-y^{x} \cdot \log y . \\
& \Rightarrow \text { diff } w \cdot x \cdot+0^{4} \cdot y^{4} \text { Partially. } \\
& \Rightarrow \frac{d f}{d y}=x^{y} \cdot \log x-x \cdot y^{x-1} \\
& \therefore \frac{d y}{d x}=-\frac{y \cdot x^{y-1}-y^{x} \cdot \log y}{x^{y} \cdot \log x-x \cdot y^{x-1}}
\end{aligned}
$$

(9) Find $\frac{d y}{d x}$ when $(\cos x)^{y}=(\sin y)^{x}$

Given $(\cos x)^{y}=(\sin y)^{x}$

$$
\begin{gather*}
(\cos x)^{y}-(\sin y)^{x}=0 \\
f(x, y)=(\cos x)^{y}(\sin y)^{x} \\
\frac{d y}{d x}=-\frac{\frac{\partial f}{d x}}{\frac{\partial f}{t y}}
\end{gather*}
$$

diff equn(1) w. r. to ' x ' partially,

$$
\begin{aligned}
\Rightarrow \frac{d f}{d x} & =y \cdot(\cos x)^{y-1} \cdot(-\sin x)-\sin y^{x} \cdot \log \sin y(\cos y)(\cos) \\
& =-y \sin x \cdot(\cos x)^{y-1}+\cos y \cdot(\sin y)^{\prime \prime} \cdot \operatorname{lon} y \sin y
\end{aligned}
$$

diff. Equ"(1) co respect to "y' partially.

$$
\begin{aligned}
& \left.\Rightarrow \frac{d y}{d y}=(\cos x)^{y} \cdot \log \cos x,(+8) x\right)-x \cdot(\sin y)^{x-1} \cos y \\
& =+\sin x(\cos x)^{y} \cdot \log (\cos x x)-\cos x \cdot(\sin y)^{x-1} \\
& \therefore \frac{d y}{d x}=\frac{t\left(\left[+y \sin x \cdot(\cos x)^{y-1}+\cos y \cdot(\sin y) \cdot \log \sin y\right]\right.}{+\left[\left(\sin x-(\cos x)^{y}-\log (\cos x)+x \cdot \cos y \cdot(\sin y)^{x-1}\right]\right.} \\
& ==\frac{\left(y \sin x \cdot(\cos x)^{y-x}+\cos y \cdot(\sin y)^{x} \cdot \log \cdot \sin y\right)}{\sin x \cdot(\cos x)^{y} \cdot \log \cos x+x \cdot \cos y \cdot(\sin y)^{x-4}}
\end{aligned}
$$

$x \frac{d y}{d x} \neq$
Equnco
diff. " ω. r. to ' x ' partially

$$
\Rightarrow \frac{\partial f}{\partial x}=y \cdot(\cos x)^{y-1} \cdot(-\sin x)-(\sin y)^{x} \cdot \log \sin y
$$

diff. धqun(1) $w .2$ to ' y ' partially.

$$
\begin{aligned}
\Rightarrow \frac{d f}{d y} & =(\cos x)^{y} \cdot \log (\cos x)-x \cdot(\sin y)^{x-1} \cdot \cos y \\
\therefore \frac{d y}{d x} & =\frac{-\left(-y \cdot \sin x \cdot(\cos x)^{y-1}-(\sin y)^{x} \cdot \log (\sin y)\right]}{(\cos x)^{y} \cdot \log (\cos x)-x \cdot(\sin y)^{y}} \cdot \cos y \\
& =\frac{y \cdot \sin y}{\left(\cos x \cdot(\cos x)^{y}+(\cos x)^{y} \log (\cos x)-x \cdot \log \sin ^{n}\right.} \\
& =\frac{\left.(\cos x)^{y} y\right)^{x} \cdot \cot y}{(\cos x)^{y} y[\operatorname{lon} x+\log \cos x-x \cdot \log \cdot(\sin y)]} \\
& =\frac{y \tan x+\log (\sin y)}{i \log (\cos x)-x \cdot \cot y}
\end{aligned}
$$

(4) If $x^{3}+3 x^{2} y+6 x y^{2}+y^{3}=1$. Find $\frac{d y}{d x}$

Given that

$$
\begin{aligned}
& \text { at } \quad x^{3}+3 x^{2} y+6 x y^{2}+y^{3}=1 \\
& x^{3}+3 x^{2} y+6 x y^{2}+y^{3}-1=0 \\
& f(x, y)=x^{3}+3 x^{4} y+6 x y^{2}+y^{3}-1
\end{aligned}
$$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \tag{1}
\end{equation*}
$$

dist equine w. s. to ' x ' partially

$$
\begin{aligned}
\Rightarrow \frac{d y f}{d x} & =3 x^{2}+3 y(2 x)+6 y^{2}(1)+0-0 \\
& =3 x^{2}+6 x y+6 y^{2}
\end{aligned}
$$

diff. equ'(1) w. h. to ' y ' partially.

$$
\begin{aligned}
\Rightarrow \frac{d f}{d y} & =0+3 x^{2}(1)+6 x(2 y)+3 y^{2}-0 \\
& =3 x^{2}+12 x y+3 y^{2} \\
\therefore \frac{d y}{d x} & =\frac{-\left(3 x^{2}+6 x y+6 y^{2}\right)}{3 x^{2}+12 x y+3 y^{2}} \\
& =-\frac{3\left(x^{2}+2 x y+2 y^{2}\right)}{8\left(x^{2}+4 x y+y^{2}\right)} \\
& =\frac{\left(x^{2}+2 x y+2 y^{2}\right)}{x^{2}+4 x y+y^{2}}
\end{aligned}
$$

(6) If $x^{3}+y^{3}-3 a x y=0$. Find $\frac{d y}{d x}$,

Given that $x^{3}+y^{3}-3 a x y=0$

$$
\begin{equation*}
f(x, y)=x^{3}+y^{3}-3 a x y \tag{1}
\end{equation*}
$$

diff $\operatorname{equ}^{n}(x)$, to ' x ' partially.

$$
\frac{\partial f}{d x}=3 x^{2}+0-3 a y(1)=3 x^{2}-3 a y
$$

diff. w. to ' y ' partially.

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=0+3 y^{2}-3 a x(1)=3 y^{2}-3 a x \\
& \therefore \frac{d y}{d x}=\frac{-\left(3 x^{2}-3 a y\right)}{\left(3 y^{2}-3 a x\right)}=\frac{-\left(x^{2}-a y\right)}{y^{2}-a x}
\end{aligned}
$$

(7) prove that find $\frac{d y}{d x}$: If $y^{3}-3 a x^{2}+x^{3}=0$.

Solve
Given that $y^{3}-3 a x^{2}+x^{3}=0$

$$
\begin{equation*}
f(x, y)=y^{3}-3 a x^{2}+x^{3} \tag{1}
\end{equation*}
$$

diff. put '(1) co. 2. to ' x ' partially.

$$
\frac{d f}{\partial x}=0-3 a(2 x)+3 x^{2}=3 x^{2}-6 a x
$$

diff-aunce w. r to 'y' partially:

$$
\begin{aligned}
\frac{d f}{d y} & =3 y^{2}-0+0 \\
\therefore \frac{d y}{d x} & =\frac{-\left(3 x^{2}-6 a x\right)}{3 y^{2}}=\frac{-3\left(\left(x^{2}-2 a x\right)\right.}{\not b y^{2}}=\frac{2 a x-x^{2}}{y^{2}}
\end{aligned}
$$

(8) Find $\frac{d y}{d x}$. when $x y+y^{x}=c$.

Given that $x^{y}+y^{x}=0$.

$$
\begin{gather*}
x^{y}+y^{y}-c=0 \\
f(x, y)=x^{y}+y^{x}-c \rightarrow \text { (1) } \tag{1}\\
\text { diff- equal wo to } x^{\prime} \text { partially. } \\
\frac{d f}{d x}=y \cdot x^{y-1}+y^{x} \log y-0=y x^{y-1}+y^{x} \log y
\end{gather*}
$$

diff equn(1) w. r to ' y ' partially

$$
\begin{aligned}
& \frac{d f}{d y}=x^{y} \cdot \log x+x \cdot y^{x-1}-0=x^{y} \log x+x \cdot y^{x-1} \\
& \therefore \frac{d y}{d x}=\frac{-\left(y x^{y-1}+y^{x} \cdot \log y\right)}{x^{y} \log x+x \cdot y^{x-1}}
\end{aligned}
$$

16) Taylor's (Expansion) Theorem:

* Expand the following functions.
(1) $f \cdot(x, y)=e^{x} \sin y$

By. Maclaurin's expansion,

$$
\begin{aligned}
& f(x, y)=f(0,0)+\left[x \cdot f_{x}(0,0)+y \cdot f_{y}(0,0) \cdot\right]+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+y^{2} f_{y y}(0,0)\right. \\
& \left.+2 x y f_{x y}(0,0)\right]+\ldots \\
& \text { Now, } f(x, y)=e^{x} \sin y
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f(0,0)=e^{0} \cdot \sin (0)=(1)(0)=0 . \\
& \Rightarrow f_{x}=\frac{\partial f}{\partial x}=\sin y \cdot e^{x} \Rightarrow f_{x}(0,0)=\sin (\theta) e^{0}=0 . \\
& \Rightarrow f_{y}=\frac{\partial f}{\partial y}=e^{x} \cdot \cos y \Rightarrow f_{y}(0,0)=e^{0} \cdot \cos (0)=1 \\
& \Rightarrow f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\sin y \cdot e^{x} \Rightarrow f_{n x}(0,0)=\sin (0) e^{(0)}=0 \\
& \Rightarrow f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=e^{x} .(-\sin y) \Rightarrow f_{y y}(0,0)=e^{0} \sin (0)=0 \text {. } \\
& \Rightarrow f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=e^{x} \cdot \cos y \Rightarrow f_{x y}(0,0)=e^{0} \cdot \cos 0=1 \\
& \therefore e^{x} \sin y=0+[x(0)+y(1)]+\frac{1}{2!}\left[x^{2}(0)+y^{2}(0)+2 x y(1)\right]+\cdots \\
& =0+0+y+0+0+\frac{1}{2} \cdot(f x y)+\ldots \\
& =y+x y+\cdots
\end{aligned}
$$

(2) $f(x, y)=\tan ^{-1}(y / x)$ in powers of $(x-1)$ and $(y-1)$ up to third degree terms. Hence compute $f(1-1 ; 0,9)$ appoxim ately.

By Taylor's expansion at the (a, b) is

$$
\begin{aligned}
& f(x, y)=f(a, b)+\left[(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)\right]+\frac{1}{2!}\left[(x-a)^{2} \cdot f_{x x}(a, b)+\right. \\
& \left.(y-a)^{2} f_{y y}(a, b)+2(x-a)(y-b) f_{x y}(a, b)\right]+\ldots \\
& \begin{array}{r}
\frac{1}{3!}\left[(x-a)^{3} \cdot f_{x x}(a, b)+(y-b)^{3} f_{y y y}(a, b)+3(x-a)(y-b) f_{x x}(a, b)+3(x-a)(y-b)^{2}\right. \\
\left.f_{\lg }(a, b) \cdot\right]+
\end{array} \\
& \text { at }(1,1) \text {. } \\
& f(x, y)=f(1,1)+\left[(x-1) f_{x}(1,1)+(y-1) f_{y}(1,1)\right)+\frac{1}{2!}\left((x-1)^{2} \cdot f_{x} \cdot(1,1)+(y-1)^{2} f_{y y}(1,1)\right. \\
& \left.+2(x-1)(y-1) x_{x}(1,1)\right]+\frac{1}{3}\left[(x-1)^{3} f_{x x x}(x 1)+(y-1)^{3} f y y y^{(1,1)}+3(x-1)^{2}(y-1)\right. \text {. } \\
& \left.f_{x x y}(1,1)+3(x-1)(y-1)^{2} f_{x y y}(1,1)\right] \nrightarrow 0
\end{aligned}
$$

We have $f(x, y)=\tan ^{-1}\left(y_{11}\right)$

$$
\begin{aligned}
& \Rightarrow f(1,1)=\tan ^{-1}(1 / 1)=\tan ^{-1}(1)=\pi / 4 . \\
& f(y)=\frac{d f}{d x}=\frac{1}{1+(y / x)} y^{y}\left(\frac{-1}{x^{2}}\right)=\frac{-y}{y^{2}+x^{2}} \Rightarrow f_{x}(1,1)=\frac{-1}{1+1}=\frac{-1}{2} \\
& f_{y}=\frac{\partial f}{\partial y}=\frac{1}{1+y^{2} / x^{2}} \frac{1}{x}(1)=\frac{x}{y^{2}+x^{2}} \quad \Rightarrow \delta y^{(1,1)}=\frac{1}{1+1}=\frac{1}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\alpha}{8 / 2}=\frac{1}{2} \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=x \cdot \frac{-1}{\left(x^{2}+y^{2}\right)^{2}}(2 y)=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \Rightarrow f_{y y}(1,1)=\frac{x}{(2 x) F}=\frac{-1}{2} \text {. } \\
& f_{x y}=\frac{\partial^{2} f}{\partial x+y}=\frac{1}{1+(y) x)}(x y)\left(\frac{f}{x} \frac{1}{x}\right) \frac{\left(y^{2}+x^{2}\right)(-1)-(-y) \cdot(2 y+0)}{\left(x^{2}+y\right)^{2}}=\frac{-x^{2}-y^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-\left(x^{2}+y^{2}+2 x(y)\right.}{\left(x^{2}+y^{2}\right)^{2}} \neq \frac{-\left(x+y^{2} y^{2}\right.}{\left(x^{2}+y^{2} y^{2}\right.} \\
& \Rightarrow f_{x(y)}(x, 1)=\frac{-(x+1)^{2}}{(1+1)^{2}}+\frac{-4}{-x} \\
& \Rightarrow f_{x y}(1,1)=\frac{-1-1+2}{(1+1)^{2}}=0 \text {. } \\
& f_{x x x}=\frac{\left(x^{2}+y^{2}\right)^{2}(2 y)(1)-2 x y 2\left(x^{2}+y^{2}\right)(2 x)}{\left[\left(x^{2}+y^{2}\right)^{2}\right]^{2}} \\
& =\frac{2 y\left(x^{2}+y^{2}\right)^{2}-8 x^{2} y \cdot\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{4}} \\
& \Rightarrow f_{x x x}(1,1)=\frac{2(1)(1+1)^{2}-81(1)(1+1)}{(1+1)^{4}}=\frac{8-16}{16}=\frac{-8}{16}=\frac{-1}{92} . \\
& f_{y y y}=\frac{\left.\left(x^{2}+y^{2}\right)^{2}-2 x\right)(1)+2 x y 2\left(x^{2}+y^{2}\right)(0+2 y)}{\left(\left(x^{2}+y^{2}\right)^{2}\right)^{2}} \\
& =\frac{-2 x\left(x^{2}+y^{2}\right)^{2}+8 x y^{2}\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right) 4} \\
& \Rightarrow f_{y y y^{\prime}}(1,1)=\frac{-2(4)+8(1+1)}{16}=\frac{-8+16}{16}=\frac{1}{16}=1 / 2 . \\
& f_{x x y}=2 x\left[\frac{\left(x^{2}+y^{2}\right)^{2}(+1)-y \cdot 2\left(x^{2}+y^{2} 2 y\right.}{\left[\left(x^{2}+y^{2}\right)^{2}\right]^{2}}\right] \\
& =2 x\left[\frac{\left(x+2 x^{2}-4 y^{2}+\right.}{\left(x^{2}+y^{3}\right)^{3}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f_{x x y}(1,1) \\
\|_{y} & =\notin\left[\frac{22-4}{\beta}\right]=\frac{-2}{4}=\frac{-1}{2} . \\
f_{x y y}(1,1) & =\frac{1}{2} .
\end{aligned}
$$

$$
\text { (4) } f(x, y)=e^{x} \log (1+x)
$$

Sol:- $f(x, y)=e^{x} \log (1+x)$

$$
\begin{aligned}
& f(x, y)=e^{x} \log (1+x) \\
& f(x, y)=f(0,0)+\left[x \cdot f_{x}(0,0)+y \cdot f_{y}(0,0)\right]+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+\right. \\
& \left.y^{2} \cdot f_{y y}(0,0)\right]
\end{aligned}
$$

$$
\left.y^{2} \cdot f_{y y}(0 ; 0)\right]
$$

We have,

$$
\begin{aligned}
& \text { We have, } \\
& f(x, y)=e^{y} \log (1+x) \Rightarrow f(0,0)=e^{0}[\log (1)]=0 \\
& f_{x}=\frac{\partial f}{\partial x}=e^{y} \frac{1}{1+x} \Rightarrow f_{x}(0,0)=e^{0} \frac{1}{1+0}=1 \\
& f_{y}=\frac{\partial f}{\partial y}=\log (1+x) e^{y} \Rightarrow f_{y}(0,0)=0 . \\
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=e^{y} \frac{-1}{(1+x)^{2}} \Rightarrow f_{x x}(0,0)=e^{0} \frac{-1}{(1+0)^{2}}=-1 \\
& f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{1}{1+x} e^{y} \Rightarrow f_{x y}(0,0)^{(0)}=\frac{1}{1+0} e^{(0)}=1 . \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\log _{x}(0+x)^{\prime} e^{y} \Rightarrow f_{y y}(0,0)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { from (1), } \\
& \tan ^{-1}(y / x)=\pi / 4+\left[(x-1)\left(\frac{-1}{2}\right)+(y-1)\left(\frac{1}{2}\right)\right]+\frac{1}{2!}\left[(x-1)^{2}\left(\frac{1}{2}\right)+(y-1)^{2}\left(\frac{-1}{2}\right)+2 \cdot(x-1)(y-1)(0)\right] \\
& f(x, y)= \\
& +\frac{1}{3 j}\left[(x-1)^{3} \cdot d\left(\frac{1}{2}\right)+(y-1)^{3}(-1 / 2)+3(x-1)^{2} \cdot(y-1)(-1 / 2)+3(x-1)(y-1)^{2} \cdot\left(\frac{1}{2}\right)\right] \\
& =\frac{\pi}{4}+\frac{1}{2} \cdot[-(x-1)+(y-1)]+\frac{1}{2!} \frac{1}{2}\left[(x-1)^{2}-(y-1)^{2}\right]+\frac{1}{3!} \frac{1}{2}[6-13] \\
& \left.+(y-1)^{3}+3(x-1)^{2}(y-1)+3(x-1)(y-1)^{2}\right] \text {. } \\
& =\frac{\pi}{4}+\frac{1}{2}[-(x-1)+(y-1)]+\frac{1}{4}\left[(x-1)^{2}+(y-1)^{2}\right]+\frac{1}{2 t}\left[(x-1)^{3}+(y-1)^{3}\right]^{3} \\
& \left.+3(x-1)^{2}(y-1)+3(x-1)(y-1)^{2}\right]+\cdots \cdot \\
& f(1.1,0.9)=\frac{\pi}{4}+\frac{1}{2}[-(11-1)+(0.9-1)]+\frac{1}{4}\left[(1.0-1)^{2}-(0.9 .1)^{2}\right]+\frac{1}{12}\left[(1.1-1)^{3}\right. \\
& \left.+(0.9-1)^{3}+3(1.1-1)^{2}(0.9-1)+3(1.1-1)(0.9-1)^{2}\right] \\
& =\frac{3.14}{4}+\frac{1}{2}[+0.2]+\frac{4}{4}[0.04]+\frac{1}{13}[+3.009) \\
& =0.785-0.1+\frac{1}{4}(0)+\frac{1}{12}[0.001-0.001+3 C \\
& =0.68533 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
e^{y} \log (1+x) & =0+[x(1)+y(0)]+\frac{1}{2!}\left[x^{2}(-1)+2 x\left(x(1)+y^{2}(0)\right]+.\right. \\
& =x+\frac{1}{2}\left(-x^{2}+2 x y\right)+\cdots \\
& =x-\frac{x^{2}}{2}+x y+\cdots
\end{aligned}
$$

(3) $f(x, y)=e^{x \log (1+y)}$.

Given $f(x, y)=e^{x} \log (i+y)$
By Macladrin's expansion

$$
\begin{aligned}
& f(x, y)=f(0,0)+\left[x \cdot f_{x}(0,0)+y f_{y}(0,0)\right]+\frac{1}{2!}\left[x^{2} f_{x x}(0,0)+y^{2} d y y^{(0,0)+2 x y} f_{x y}(0,0)\right]+ \\
& f(x, y)=e^{x} \log (1+y) \Rightarrow f(0,0)=e^{0} \log (1+0)=0 . \\
& f_{x}=\frac{\partial^{\prime}}{\partial x}=\log (1+y) e^{x} \Rightarrow f_{x}(0,0)=\log (1+0) e^{0}=0 . \\
& f_{y}=\frac{\partial f}{\partial y}=e^{x} \cdot \frac{1}{1+y} \Rightarrow f_{y}(0,0)=e^{0} \frac{1}{1+0}=1 . \\
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\log (1+y) e^{x} \Rightarrow f_{x x}(0,0)=\log (1+0) e^{0}=0 . \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=e^{x} \cdot \frac{-1}{(1+y)^{2}} \Rightarrow f_{y y}(0,0)=e^{0} \frac{1}{(1+0)^{2}}=-1 \\
& f_{x y}=\frac{\partial^{2} f}{\partial x \partial_{y}}=e^{x} \cdot \frac{1}{1+y} \Rightarrow f_{x y}(0,0)=e^{0} \frac{1}{1+0}=1 \\
& \text { froma, }
\end{aligned}
$$

$$
\begin{aligned}
e^{x} \cdot \log (1+y) & =0+[x \cdot(0)+y(1)]+\frac{1}{2!}\left[x^{2}(0)+y^{2}(-1)+2 x y(1)\right]+\cdots \\
& =y+\frac{1}{2}\left[-y^{2}+2 x y\right]+\cdots \\
& =y-\frac{y^{2}}{2}+x y+\cdots
\end{aligned}
$$

(9) Expand $x^{2} y+3 y-2$ in power of $(x-1)$ and $(y+2)$ using.

Taylorls theorem.
By Taylor's Expansion,

$$
\begin{aligned}
& f(x, y)=f(a, b)+\left[(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)\right)+\frac{1}{2!}\left[(x-a)^{2} f_{x x}(a, b)\right. \\
&+2(x-a)(y-b) f_{x y}\left((a, b)+(y-b)^{2} f_{y y}(a, b)\right]+\ldots \\
&=f(1 ;-2)+\left[(x-1) f_{x}(1,-2)+(y+2) f_{y}(1,-2)\right]+\frac{1}{2!}\left[(x,-1)^{2} f_{x x}(1-2)\right. \\
&\left.+2(x-1)(y+2) f_{x y}(1,-2)+(y+2)^{2} f_{y y}(1,-2)\right]+\ldots
\end{aligned}
$$

We have $f(x, y)=x^{2} y+3 y-2 \Rightarrow f(1,-2)=-2-6-2=-10$

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=y(2 x)+0-0 \Rightarrow f_{x}(1,-2)=-4 \\
& f_{y}=\frac{\partial f}{\partial y}=x^{2}(1)+3(1)-0 \Rightarrow f_{y}(1,-2)=1+3=4 \\
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=2 y(1) \Rightarrow f_{x x}(1,-2)=-4 \\
& f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=2 x(1) \Rightarrow f_{x y}(1,-2)=2 \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=0+0 \Rightarrow f_{y y}(1,-2)=0 .
\end{aligned}
$$

$$
\text { from (1), } \begin{aligned}
x^{2} y+3 y-2 & =-10+[(x-1)(-4)+(y+2)(+4)]+\frac{1}{2!}\left[(x-1)^{2}(-4)+2(x-1)(y+2) \cdot(2)\right. \\
& \left.+(y+2)^{2}(0)\right]+\cdots \\
& =-10 \text { f } \\
& =-10-4[(x-1)-(y+2)] \mp+\frac{4}{2}\left[(x-1)^{2}-(x-1)(y+2)\right]+\cdots \\
& =-10-4[(x-1)-(y+2)]-2\left[(x-1)^{2}-(x-1)(y+2)\right]+\cdots
\end{aligned}
$$

(8) Show that $\log \left(1+e^{x}\right)=\log 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x 4}{192}+$ and hence deduce that $\frac{e^{x}}{1+e^{x}}=\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+\cdots$

By Madaurints expansion,

$$
f(x)=f(0)+x \cdot f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime}(0)+\frac{x^{4}}{4!} f^{n(0)}+\cdots-\log \left(1+e^{0}\right)=\log 2
$$

we have $f(x)=\log \left(1+e^{x}\right) \Rightarrow f(0)=\log \left(1+e^{\circ}\right)=\log 2$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+e^{x}} \cdot e^{x} \Rightarrow f^{\prime}(0)=\frac{e^{0}}{1+e^{0}}=\frac{1}{2} \\
f^{\prime \prime}(x) & =\frac{\left(1+e^{x}\right) e^{x}-e^{x} e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}+e^{2 x}-e^{2 x}}{\left(1+e^{x}\right)^{\prime}} \Rightarrow f^{\prime \prime}(a)=\left(1+e^{0}\right)^{2}=\frac{1}{4} \\
f^{\prime \prime \prime}(x) & =\frac{\left(1+e^{x}\right)^{2} \cdot e^{x}-e^{x} \cdot 2\left(1+e^{x}\right) e^{x}}{\left[\left(1+e^{x}\right)^{2}\right]^{2}}=\frac{\left(1+e^{x}\right)\left[\left(1+e^{x}\right) e^{x}-2 e^{2 x}\right]}{\left(1+e^{x}\right)^{x} 3} \\
& =\frac{e^{x}+e^{2 x}-2 e^{2 x}}{\left(1+e^{x}\right)^{3}}=\frac{e^{x}-e^{2 x}}{\left(1+e^{x}\right)^{3}} \Rightarrow f^{H 1}(x)= \\
\Rightarrow f^{\prime \prime \prime}(0) & =\frac{e^{0}-e^{0}}{\left(1+e^{0}\right)^{3}}=0^{1} \\
f^{(x)}(x)^{\prime} & =\frac{\left(1+e^{x}\right)^{3}\left[e^{x}-e^{2 x}(2 \cdot)\right]-\left(e^{x}-e^{2 x}\right) 3\left(1+e^{x}\right)^{3} e^{x}}{\left(\left(1+e^{x}\right)^{3}\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime V}(x) & =\frac{\left(1+e^{x}\right)^{2}\left[1+e^{x}\left(e^{x}-2 e^{2 x}\right)-3 e^{x}\left(e^{x}-e^{2 x}\right)\right]}{\left(1+e^{x}\right)^{8} 4} \\
\Rightarrow f^{\prime V}(0) & =\frac{\left(1+e^{0}\right)\left(e^{0}-2 \cdot e^{0}\right)-3 \cdot e^{0}\left(e^{0}-e^{0}\right)}{\left(1+e^{0}\right)^{4}} \\
& =\frac{2 \cdot(1-2)-3(1)(1-1)}{(1+1)^{4}}=\frac{-2-0}{16}=\frac{-2}{16}=\frac{-1}{8} . \\
\log \left(1+e^{x}\right) & =\log 2+x \cdot \frac{1}{2}+\frac{x^{2}}{8!} \frac{1}{4}+\frac{x^{3}}{3!}(0)+\frac{x^{4}}{4!}\left(\frac{-1}{8}\right)+\cdots \\
\log \left(1+e^{x}\right) & =\log 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\cdots
\end{aligned}
$$

diff. w. r- to ' x '

$$
\begin{aligned}
\frac{1}{1+e^{x}} e^{x} & =0+\frac{1}{2}+\frac{1}{8}(2 x)-\frac{4 x^{3}}{42}+\cdots \\
\frac{e^{x}}{1+e^{x}} & =\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+
\end{aligned}
$$

(5) $f(x, y)=e^{x y}$ in powers of $(x-1)$ and $(y-1)$.

By Taylor's expansion,

$$
\begin{gathered}
f(x, y)=f\left((1,1)+\left[(x-1) f_{x}(0,1)+(y-1) f_{x y}(1,1)\right]+\frac{1}{2!}\left[(x-1)^{2} f_{x x}(1,1)+\right.\right. \\
\left.(y-1)^{2} f_{y y}(1,1)+2(x-1)(y-1) f_{x y}(1,1)\right]+\cdots
\end{gathered}
$$

We have $f(x, y)=e^{x} y \Rightarrow f(1,1)=\varepsilon^{(x)}=e$.

$$
\begin{aligned}
f_{x} & =\frac{\partial f}{\partial x}=e^{x y}(y) \Rightarrow f_{x} \cdot(1,1)=e^{(1)(1)}(1)=e \\
f_{y} & =\frac{\partial f}{\partial y}=e^{x y}(x) \Rightarrow f_{y} \cdot(1,1)=e^{2 n}(1)=e \\
f_{x x} & =\frac{\partial^{2} f}{\partial x^{2}}=y \cdot e^{x y} \cdot(y) \Rightarrow f_{x x}(1,1)=(1) e^{(x)(1)}(1)=e \\
f_{y y} & =\frac{\partial^{2} f}{\partial y^{2}}=x \cdot e^{x y}(x) \Rightarrow f_{y y}(1,1)=(1) e^{(1)(1)}(1)=e \\
f_{x y} & =\frac{\partial^{2} f}{\partial x \partial y}=e^{x y}(1)+y \cdot e^{x y}(-x) \Rightarrow f_{x y}(1,1)=e^{(x y}+e=2 e \\
e^{x y} & =e+[(x-1) e+(y-1) e]+\frac{1}{2!}\left[(x-1)^{2} e+(y-1)^{2} e+2(x-1)(y-1) 2 e\right]+- \\
& =e+e\left[[(x-1)+(y-1)]+\frac{e}{2!}\left[(x-1)^{2}+(y-1)^{2}+(q(x-1)(y-1)]+-\right.\right.
\end{aligned}
$$

(6) $f(x, y)=e^{x} \cos y$ about $(1, \pi / 4)$.

By Taylor's Expansion,

$$
\begin{aligned}
f(x, y)= & f(1, \pi / 4)+\left[(2-1) f_{x}(1, \pi / 4)+(y-\pi / 4) \cdot f_{y}(1, \pi / 4)\right]+\frac{1}{2!}\left[(x-1)^{2} f_{x x}(1, \pi / 4)\right. \\
& \left.+2(x-1)(y-\pi / 4) \cdot f_{x y}(1, \pi / 4)+(y-\pi / 4)^{2} f_{y y}(1, \pi / 4)\right]+\cdots
\end{aligned}
$$

We have $f(x, y)=e^{x} \cos y \Rightarrow \cdot f(1, \pi / 4)=e^{!} \cos \pi / 4=\frac{e}{\sqrt{2}}$.

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=\cos y \cdot e^{x} \Rightarrow f_{x}(1, \pi / 4)=\cos \pi / 4 \cdot e^{(1)}=\frac{e}{\sqrt{2}} \\
& f_{y}=\frac{\partial f}{\partial y}=e^{x} \cdot(-\sin y) \Rightarrow f_{y}(1, \pi / 4)=-e^{(1)} \sin \pi / 4=\frac{-e}{\sqrt{2}} \\
& f_{x x}=\cos y \cdot e^{x} \Rightarrow f_{x x}(1, \pi / 4)=\cos \pi / 4 \cdot e^{(1)}=\frac{e}{\sqrt{2}} \\
& f_{x y}=e^{x}\left(-\sin (y) \Rightarrow f_{x y}(1, \pi / 4)=-e^{(1)} \sin \pi / 4=\frac{-e}{\sqrt{2}}\right. \\
& f_{y y}=-e^{x} \cdot \cos y \Rightarrow f_{y y}(1, \pi / 4)=-e^{(1)} \cos \pi / 4=\frac{-e}{\sqrt{2}} \\
& \begin{aligned}
e^{x} \cdot \cos y & =\frac{e}{\sqrt{2}}+\left[(x-1) \frac{e}{\sqrt{2}}+(y-\pi / 4)\left(\frac{e}{\sqrt{2}}\right)\right]+\frac{1}{2!}\left[(x-1)^{2} \frac{e}{\sqrt{2}}+2(x-1)(y-\pi / 4)\left(\frac{e}{\sqrt{2}}\right)\right. \\
& =\frac{e}{\sqrt{2}}+\frac{e}{\sqrt{2}}[(x-1)-(y-\pi / 4)]+\frac{1}{2!} \frac{e}{\sqrt{2}}\left[(x-1)^{2} \cdot-2(x-1)(y-\pi / 4)^{2}-(y-\pi / y)\right]+- \\
& \left.=\frac{e}{\sqrt{2}}+\frac{e}{\sqrt{2}}[(x-1)-(y-\pi / 4)]+\frac{e}{2 \sqrt{2}}\left[(x-1)^{2}-2(x-1)(y-\pi / 4)-(y-\pi / 4)^{2}\right]+\cdots+\frac{e}{\sqrt{2}}\right]+
\end{aligned}
\end{aligned}
$$

(7) $f(x, y)=\sin x y$ in powers of $(x-1)$ and $(y-\pi / 2)$ up to second degree terms.

By Taylor's. Expansion,

$$
\begin{aligned}
& \text { By TayLor's expansion, } \\
& f(x, y)=f(1, \pi / 2)+\left[(x-1) f_{x}(1, \pi / 2)+(y-\pi / 2) f_{y}(1, \pi / 2)\right]+\frac{1}{2!}\left[(x-1)^{2} f_{x x}(1, \pi / 2)\right. \\
&\left.+2(x-1)(y-\pi / 2) f_{x y}(1, \pi / 2)+(y-\pi / 2)^{2} f_{y y}(1, \pi / 2)\right]+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have, } \\
& f(x, y)=\sin x y \Rightarrow f(1, \pi / 2)=\sin \pi / 2=1 \\
& f_{x}=\frac{\partial f}{\partial x}=\cos x y(y) \Rightarrow f_{x}(1 \pi / 2)=(\pi / 2) \cos \pi / 2=0 . \\
& f_{y}=\frac{\partial f}{\partial y}=\cos x y(x) \Rightarrow f_{y}(1, \pi / 2)=(1) \cos \pi / 2=0 . \\
& f_{x x}=y \cdot\left(\frac{y}{2} \sin x y\right)(y) \Rightarrow f_{x x}(1, \pi / 2)=\pi / 2 \cdot \pi / 2(\sin \pi / 2)=\frac{\pi^{2}}{4}\left(\frac{(100)}{}=\frac{-\pi^{2}}{4}\right.
\end{aligned}
$$

$$
\begin{aligned}
f_{\ddot{x} y}= & \frac{d^{2} f}{d x d y}=y \cdot(-\sin x y)(x)+\cos x y(1) \\
\Rightarrow & \Rightarrow f_{x y}(1, \pi / 2)=\pi / 2-\sin \pi / 2(1)+\cos \pi / 2 \\
& =-\pi / 2(1)+0 \quad-\pi / 2 \\
f_{y y}= & \frac{d^{3} f}{d y}=x \cdot(-\sin x y)(x)=(1)-\sin \pi / 2(1)=-1 \\
\sin x y & =1+[(x-1) 0+(y-\pi / 2) 0]+\frac{1}{2!}\left[(x-1)^{2}(-\pi / 4)+2(x-1)(y-\pi / 2)(-\pi / 2)\right. \\
& =1+[0+0)+\frac{1}{2}\left[(x-1)^{2}(-\pi / 4)-(y-\pi / 2)^{2}(-1)\right]+\cdots \\
\sin x y & =1-\frac{1}{2}\left[(x-1)(y-\pi / 2) \pi / 2+\pi / 4+(y-\pi / 2)^{2}\right]+\ldots
\end{aligned}
$$

2811119
Thurs dos Jacobian:
(2) If $x=r \sin \theta \cdot \cos \phi, y=r \sin \theta \cdot \sin \phi, z=r \cos \theta$. show that

$$
\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta .
$$

Sol:- $x=r \cos \theta \cos \phi \quad y=r \sin \theta \cdot \sin \phi \quad z=r \cos \theta$

$$
\begin{aligned}
& \quad \frac{x}{z}>+\theta \not x \\
& \frac{\partial^{\prime}(x y z)}{\partial(r \theta \phi)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(x y z)}{\partial(r \theta \phi)}=\left|\begin{array}{ccc}
(+1 & (-) & (+) \\
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \cdot \sin \phi & r \cos \theta \sin \phi & \\
\cos \theta & -r \sin \theta \cdot \cos \phi \\
& 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \theta \cdot \cos \phi\left[0+r^{2} \sin ^{2} \theta \cdot \cos \phi\right]-r \cos \theta \cdot \cos \phi[0-r \sin \theta \cos \theta \cos \phi] \\
& -r \sin \theta \cdot \sin \phi\left[-r \sin ^{2} \theta \cdot \sin \phi-r \cdot \cos 2 \cdot \sin \phi\right] \\
& =r^{2} \sin 3 \theta \cdot \cos ^{2} \phi+r^{2} \cdot \sin \theta \cdot \cos ^{2} \theta \cdot \cos ^{2} \phi-r \sin \theta \cdot \sin \phi \phi \\
& \\
& \quad\left[(-r \sin \phi)\left[\cdot \sin ^{2} \theta+\cos \theta\right]\right] \\
& =r^{2} \sin ^{3} \theta \cdot \cos ^{2} \phi+r^{2} \sin \theta \cdot \cos ^{2} \theta \cdot \cos ^{2} \phi+r^{2} \sin \theta \cdot \sin ^{2} \phi \\
& =r^{2} \sin \theta \cdot \cos ^{2} \phi\left[\sin ^{2} \theta+\cos ^{2} \theta\right]+r^{2} \sin \theta \cdot \sin ^{2} \phi \\
& =r^{2} \sin \theta \cdot \cos ^{2} \phi(1)+r^{2} \sin \theta \cdot \sin ^{2} \phi \\
& =r^{2} \sin \theta\left[\cos ^{2} \phi+\sin ^{2} \phi\right] \\
& =r^{2} \sin \theta .
\end{aligned}
$$

(3) If $u=\frac{x}{y-z}, v=\frac{y}{z-x} ; \dot{w}=\frac{z}{x-y}$, show that $\frac{\partial(u v w)}{\partial(x y z)}=0$.
solir urw $<\frac{x}{y}$

$$
\begin{align*}
& \frac{\partial(u v \omega)}{\partial(x y z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial \omega}{\partial z}
\end{array}\right| \\
& \begin{array}{l}
0 \\
v \\
w
\end{array}>x y z \tag{or}\\
& v=\frac{x}{y-z} \\
& \frac{d u}{d x}=\frac{1}{y-z} \\
& \frac{d u}{\partial y}=x \cdot \frac{-1}{(y-z)^{2}} \\
& \frac{d 0}{d z}=x \cdot \frac{-1}{(y-z)^{2}}{ }^{(0-1)} \\
& =\frac{x}{(y-z)^{2}} \\
& \frac{\partial(u \vee \omega)}{\partial(x y z)}=\left|\begin{array}{lll}
\frac{1}{+} & (-1 & f+ \\
\frac{1}{y-z} & \frac{-x}{(y-z)^{2}} & \frac{x}{(y-z)^{2}} \\
\frac{y}{(z-x)^{2}} & \frac{1}{z-x} & \frac{-y}{(z-x)^{2}} \\
\frac{-z}{(x-y)^{2}} & \frac{z}{(x-y)^{2}} & \frac{1}{x-y}
\end{array}\right| \\
& =\frac{1}{y-z}\left[\frac{1}{(x-y)(z-x)}+\frac{y z}{(x-y)^{2}(z-x)^{2}}\right]+\frac{x}{(y-z)^{2}}\left[\frac{y}{(x-y)(z-x)^{2}}\right. \\
& \left.-\frac{z y}{(x-y)^{2}(z-x)^{2}}\right]+\frac{\dot{x}}{(y-z)^{2}}\left[\frac{y z}{(z-x)^{2}(x-y)^{2}}+\frac{z=}{(x-y)^{2}(z-x)}\right]
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{y-z} \frac{1}{x-y} \frac{1}{z-x}\left[1+\frac{y z}{(x-y)(z-x)}\right]+\frac{x y}{(x-y)(y-z)^{2}(z-x)^{2}}\left[1-\frac{z}{x-y}\right] \\
& +\frac{x z}{(y-z)^{2}(z-x)(x-y)^{2}}\left[\frac{y}{z-x}+1\right] \\
& =\frac{1}{(x-y)(y-z)(z-x)}\left[\frac{(x-y)(z-x)+y z}{(x-y)(z-x)}\right]+\frac{x y}{(x-y)(y-z)^{2}(z-x)^{2}}\left[\frac{x-y-z}{x-y}\right] \\
& +\frac{x z}{(y-z)^{2}(z-x)(x-y)^{2}}\left[\frac{y+z-x}{z-x}\right] \\
& =\frac{1}{(x-y)^{2}(y-z)(z-x)^{2}}\left[x^{2} z-x^{2}-y^{\prime} z+x y+y z\right]+\frac{x y}{(x-y)^{2}(y-z)^{2}(z-x)^{2}}(x-y-z) \\
& +\frac{x z}{(y-z)^{2}(z-x)^{2}(x-y)^{2}}[y+z-x] \\
& =\frac{1}{(x-y)^{2}(y-z)^{2}(z-x)^{2}}\left[(y-z)\left(x z-x^{2}+x y\right)+x y(x-y-z)+x z(y+z-x)\right] \\
& \begin{array}{r}
=\frac{1}{(x-y)^{2}(y-z)^{2}(z-x)^{2}} \cdot\left[x y z-x^{2} y+x y^{2}-x z^{2}+z x^{2}-x y y+x / y-x y^{2}-x y z\right. \\
\left.+x y z+x z^{2}-x^{2} z\right]
\end{array} \\
& \left.+x y z+x \not z^{2}-x^{2} / z\right] \\
& =\frac{1}{(x-y)^{2}(y-z)^{2}(z-x)^{2}} \tag{0}\\
& =0 \text {. }
\end{align*}
$$

(1) If $r=\sqrt{x^{2}+y^{2}} \cdot \theta=\tan ^{-1}(y / x)$. evaluate $\frac{\partial(r, \theta)}{\partial(x, y)}$.

Sol:-

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \quad \theta=\operatorname{Tan}^{-1}(y(x) \\
& \tan \theta=y / x \\
& \frac{\partial(r, \theta)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial \gamma}{\partial x} & \frac{\partial \theta}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right| \\
& \frac{\partial r}{\partial x}=\frac{1}{\frac{2 \sqrt{x^{2}+y^{2}}}{d x}} \text { (s) } \\
& \frac{d r}{\partial y}=\frac{1}{\not \approx \sqrt{x^{2}+y^{r}}}(d y) \\
& \frac{\partial(r, \theta)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right| \\
& \begin{aligned}
\frac{\partial \theta}{\partial x} & =\frac{1}{1+(y / x)^{2}} y\left(\frac{-1}{x^{2}}\right) \\
& =\frac{-y}{x^{2}+y^{2}} \\
\frac{d \theta}{\partial y} & =\frac{1}{1+(y / x)^{2}} \cdot \frac{1}{x}=\frac{x}{x^{2}+y^{2}}
\end{aligned} \\
& r, \theta<\begin{array}{l}
x \\
y
\end{array} \\
& { }_{0}^{r}>x y \\
& \text { - } \left.\frac{d r}{d y} \neq \frac{1}{x^{2}+y}\right) \\
& \because \cdot \cdot
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)}+\frac{y^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)} \\
& =\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)} \\
\frac{\partial(x, 0)}{\partial(x, y)} & =\frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

(12) If $U=\frac{. y z}{x}, v=\frac{z x}{y}, \omega_{-} \frac{x y}{z}$ show that $\cdot \frac{\partial(x y-z)}{\delta(U \vee \omega)}=\frac{1}{4}$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial(y, y z)}{\partial((b w h)} \\
\frac{\partial(u, v, w)}{\partial(x, y z)}
\end{array}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial v}{\partial z}
\end{array}\right| \\
& \frac{\partial 0}{\partial x}=y z\left(\frac{-1}{x^{2}}\right) \\
& \frac{d v}{d y}=\frac{z}{x} \\
& \frac{d u}{\partial z}=\frac{. y}{x} \\
& \frac{\partial v}{\partial x}=\frac{z}{y} \\
& \frac{d v}{d y}=z_{x}\left(\frac{-1}{y^{2}}\right) \\
& \frac{\partial v}{\partial z}=\frac{x}{y} \quad \quad \frac{d \omega}{\partial z}=x y\left(\frac{-1}{z^{2}}\right) \\
& \frac{\partial(x, y z)}{\partial(\gamma v \omega\rangle)}=\left\{\left.\begin{array}{ccc}
\frac{-y z}{x^{2}} & \frac{z}{x} & \frac{y}{z} \\
\frac{\partial(U v \omega)}{\partial(x y z)} & \frac{-z y}{y^{2}} & \frac{x}{y} \\
y / z & x / z & \frac{-x y}{z^{2}}
\end{array} \right\rvert\,\right. \\
& \neq \frac{-y z z}{x^{2}}\left\{\frac{x^{2} y z}{y^{2}-z^{2}}+\frac{x^{2}}{y z}\right] \\
& =\left|\begin{array}{ccc}
\frac{-y z}{x^{2}} & \frac{z x}{x^{2}} & \frac{x y}{x^{2}} \\
\frac{z y}{y^{2}} & \frac{-z x}{y^{2}} & \frac{x y}{y^{2}} \\
\frac{y z}{z^{2}} & \frac{x z}{z^{2}} & \frac{-x y}{z^{2}}
\end{array}\right| \text {. } \\
& \left.\therefore=\frac{(y z)(z x)(x y)}{x^{2} y^{2} \cdot z^{2}} \left\lvert\, \begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right.\right) \\
& =\frac{x^{2} y^{2} z^{2}}{x^{2} y^{2}-z^{2}}[-1(1-1)-1(-1-1)+1(1+1)]^{\prime} \\
& =0+2+2=4 \quad \Rightarrow \frac{\partial\left(x y^{\prime} z\right)}{\partial(v v \omega)}=\frac{1}{4} .
\end{aligned}
$$

We know that,

$$
\begin{aligned}
\frac{\partial(u \vee \omega)}{\partial(x y z)} \cdot \frac{\partial(x y z)}{\partial(v \vee \omega)} & =1 \\
4 \cdot \frac{\partial(x y z)}{\partial(u \vee \omega)} & =1 \\
\frac{\partial(x y z)}{\partial(u \vee \omega)} & =1 / 4
\end{aligned}
$$

(14) $U=x+y+z ; \quad U V=y+z ; \quad v v \omega=z$ show that $\frac{\partial(x y z)}{\partial(\cup v \omega)}=v^{2} v$.

$$
\begin{aligned}
& U=x+y \ddagger z . \\
& u v=y+z \\
& v=x+v v \\
& U V=y+U V \omega \\
& y=u \dot{-}-u v \omega \\
& x=u-u v \\
& \frac{\partial(x y z)}{\partial(\partial v w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial \omega} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| \\
& \begin{array}{l|l|l}
x=u-u v & y=u v-u v \omega & z=u v \omega \\
\frac{\partial x}{\partial u}=1-v & & \\
\frac{\partial x}{\partial v}=0-u & \frac{\partial y}{\partial u}=v-v \omega & \frac{\partial z}{\partial v}=v \omega \\
\frac{\partial y}{\partial \omega}=u-u \omega & \frac{\partial z}{\partial v}=u \omega \\
& \frac{\partial y}{\partial \omega}=0-u v & \frac{\partial z}{\partial \omega}=u v
\end{array} \\
& \frac{\partial(x y z)}{\partial(u v \omega)}=\left|\begin{array}{ccc}
1-v & -u & 0 \\
v-v \omega & u-v \omega & -u v \\
v \omega & u \omega & u v
\end{array}\right| \\
& =(1-v)\left[(u-u \omega) u v+N^{2} v \omega\right)+u\left[(v-v \omega) u v+u v^{2} \omega\right]+0- \\
& =(1-v)\left[u^{2} v-u^{2} / \omega+v^{2} y(\omega]+u\left[u v^{2}-u y^{2} \omega+u v\right)(\omega]\right. \\
& =u^{2} v-u^{2} / v^{2}+u^{2} v^{2} \\
& =U^{2} v \text {. }
\end{aligned}
$$

(16) $y_{1}=1-x_{1} ; \quad y_{2}=x_{1}\left(1-x_{2}\right) ; \quad y_{3}=x_{1} x_{2}\left(1-x_{3}\right)$ find $\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial\left(x_{1} x_{2} x_{3}\right)}$.
sol:- $\quad y_{1}=1-x_{1} \quad y_{2}=x_{1}-x_{1} x_{2} \quad y_{3}=x_{1} x_{2}-x_{1} x_{2} x_{3}$

$$
\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial\left(x_{1} x_{2} x_{3}\right)}=\left|\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}} \\
\frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}}
\end{array}\right| \ldots, y_{1} y_{2} y_{3}<x_{2}^{x_{1}}
$$

$$
\begin{array}{l|l|l}
\frac{d y}{d y}=1-x_{1} \\
\frac{\partial y_{1}}{\partial x_{1}}=-1 \\
\frac{\partial y_{1}}{\partial x_{2}}=0 \\
\frac{\partial y_{1}}{\partial x_{3}}=0
\end{array} \left\lvert\, \begin{array}{l|l}
y_{2}=x_{1}-x_{1} x_{2} \\
\frac{\partial y_{2}}{\partial x_{1}}=1-x_{2} \\
\frac{\partial y_{2}}{\partial x_{2}}=0-x_{1} \\
\frac{\partial y_{2}}{\partial x_{3}}=0 & \frac{y_{3}}{\partial x_{1}}=x_{2}-x_{2}-x_{1} x_{2} \\
\frac{\partial y_{3}}{\partial x_{2}}=x_{1}-x_{1} x_{3} \\
\frac{\partial y_{3}}{\partial x_{3}}=0-x_{1} x_{2}
\end{array}\right.
$$

$$
\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{f\left(x_{1} x_{2} x_{3}\right)}=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
1-x_{2} & -x_{1} & 0 \\
x_{2}-x_{2} x_{3} & x_{1}-x_{1} x_{3} & -x_{1} x_{2}
\end{array}\right|
$$

$$
\begin{aligned}
& =-1\left[x_{1}^{2} x_{2}-0\right)-0+0 \\
& =-x_{1}^{2} x_{2}
\end{aligned}
$$

(17) $u=x+y+z ; u^{2} v=y+z ; v^{3} w=z$ prove that $\frac{\partial(u v w)}{\partial(x y z)}=u^{-5}$.
coly

$$
\begin{aligned}
& v=x+y+z \quad, \quad v^{2} v=y+z \quad, \quad U^{3}(v=z \\
& u=x+u^{2} v, \quad u^{2} v=y+u^{3} \omega \quad z=v^{3} \omega \\
& \therefore x=u-u^{2} V \quad y=u^{2} V-u^{3} \omega \\
& \begin{array}{l}
u^{3} \omega=z \\
z=v^{3} \omega
\end{array} \\
& \frac{\partial(x y z)}{\partial(u v \omega)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| \therefore \\
& \begin{array}{l}
x=v-v^{2} u \\
\frac{\partial x}{\partial v}=1-v \cdot 2 u
\end{array} \left\lvert\, \begin{array}{c}
y=v^{2} v-u 3 \omega \\
\frac{\partial y}{\partial v}=2 u v-3 v^{2} \omega
\end{array} \quad \begin{array}{c}
z=u^{3} \omega \\
\frac{d z}{\partial v}=\omega \cdot 3 u^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l}
\frac{d x}{\partial v}=0-v^{2} & \frac{d y}{\partial v}=v^{2}-0 & \frac{\partial z}{\partial v}=0 \\
\frac{d x}{d \omega}=0 & \frac{d y}{d \omega}=0-v^{3} & \frac{d z}{\partial w}=v^{3} ;
\end{array} \\
& \frac{\partial(x y z)}{\partial(U V \omega)}=\left|\begin{array}{ccc}
1-2 u v & -u^{2} & 0 \\
2 U V-3 U^{2} \omega & U^{2} & -u^{3} \\
3 U^{2} \omega & 0 & U^{3}
\end{array}\right| \quad R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 \dot{V}-3 u^{2} \omega^{\prime} & v^{2} & -u^{3} \\
3 u^{2} \omega & 0 & u^{3}
\end{array}\right| \\
& =u^{3}\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 u v-3 v^{2} \omega & u^{2} & -1 \\
3 u^{2} \omega & 0 & 1
\end{array}\right| \\
& =u^{3}\left[1\left(v^{2}+0\right)-0+0\right] \\
& =u^{3}\left(v^{2}\right) \\
& \frac{\partial(x y z)}{\partial(u v w)}=u^{5} .
\end{aligned}
$$

We know that, $\frac{\partial(\cdot v v \cdot \omega)}{\partial(x y z)}-\frac{\partial(x y z)}{\partial(\partial v w)}=1$

$$
\begin{aligned}
\frac{\partial(u v \omega)}{\partial(x y z)}-v^{5} & =1 \\
\frac{\partial(u v \omega)}{\partial(x y z)} & =\frac{1}{u^{5}} \\
\frac{\partial(u \vee \omega)}{\partial(x y z)} & =u^{-5}
\end{aligned}
$$

(18) If $u^{3}+v^{3}=x+y ; v^{2}+v^{2}=x^{3}+y^{3}$ prove That $\frac{d(u v)}{d(x y)}$
soddy
Let us take $f_{1}=v^{3}+v^{3}-x-y$

$$
\left.\begin{aligned}
& f_{2}=v^{2}+v^{2}-x^{3}-y^{3} \\
& f_{1}=v^{3}+v^{3}-x-y, \\
& \frac{\partial f_{1}}{\partial u}=3 u^{2} \\
& \frac{\partial f_{1}}{\partial v}=3 v^{2}
\end{aligned} \right\rvert\, \begin{aligned}
& f_{2}=u^{2}+v \\
& \frac{\partial f_{2}}{\partial v_{1}}=2 u \\
& \frac{\partial f_{2}}{\partial v}=2 v
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
\frac{\partial f_{1}}{\partial x}=-1 & \frac{\partial f_{2}}{\partial x}=-3 x^{2} \\
\frac{\partial f_{1}}{\partial y}=-1 & \frac{\partial f_{L}}{\partial y}=-3 y^{2}
\end{array} \\
& \text { We know that } \frac{\partial(u v)}{\partial(x y)}=(-1)^{2} \frac{\frac{\partial\left(f_{1}-f_{2}\right)}{\partial(x y)}}{\frac{\partial\left(f 1 d_{2}\right)}{\partial(u v)}} \\
& \frac{\partial\left(f_{1} f_{2}\right)}{\partial(x y)}=\left|\begin{array}{cc}
-1 & -1 \\
-3 x^{2} & -3 y^{2}
\end{array}\right| \quad \frac{\partial\left(f f_{1} f_{2}\right)}{\partial(u v)}=\left|\begin{array}{cc}
3 v^{2} & 3 v^{2} \\
2 v & 2 v
\end{array}\right| \\
& =\nrightarrow 3 y^{2}-3 x^{2} \\
& \frac{\partial(u v)}{\partial(x y}=\frac{3 y^{2}-3 x^{2}}{60^{2} v-60 v^{2}}=\frac{1}{2} \frac{\left(y^{2}-x^{2}\right)}{\left(u^{2} v-v v^{2}\right)}
\end{aligned}
$$

(4) If $v=x(1-y) ; v=x y$ prove that $\frac{\partial(u v)}{\partial(x y} \times \frac{\partial(x y)}{\partial(u v)}=1$.

$$
\begin{aligned}
& u=x(1-y) \quad v=x y \\
& 0 \vee<\frac{x}{y} \\
& J=\frac{\partial(U V)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \quad \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{cc}
1-y & -x \\
y & x
\end{array}\right| \\
& u=x(1-y) \\
& v=x y \\
& \frac{d u}{d x}=1-y \\
& \frac{d v}{d x}=y \\
& =(1-y) x+x y \\
& =x-x y+x y \\
& \frac{d u}{\partial y}=-x \text {. } \\
& \frac{d v}{\partial y_{1}},=x \\
& =x \\
& u=x-x y^{\prime} \quad \because \quad v=x y \\
& v=x-v \\
& y=\frac{V}{x} \\
& x=u+v \\
& y=\frac{v}{u+v} \\
& J^{\prime}=\frac{\partial(x y)}{\partial(u v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial U} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right|, \\
& x=v+v \quad y=\frac{v}{u+v} \\
& \frac{\partial x}{\partial u}=1 \quad \therefore \quad \frac{\partial y}{\partial v}=v \frac{-1}{(u+v)^{2}}=\frac{-v}{(u+v)^{2}} \\
& \frac{d x}{\partial V}=1 \quad \frac{\partial y}{\partial V}=\frac{(u+v)(1)-v(0+1)}{(u+V)^{2}}=\frac{U}{(U+V)^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(x y)}{\partial(u v)}=\left|\begin{array}{ccc}
1 & 1 \\
\frac{-v}{(u+v)^{2}} & \frac{u}{(u+v)^{2}}
\end{array}\right| \\
&=\frac{u}{(u+v)^{2}}+\frac{v}{(u+v)^{2}} \\
&=\frac{u+v}{(u+v)^{4}}=\frac{1}{u+v}=\frac{1}{x-x y+x y}=\frac{1}{x} \\
& J \cdot J \mid=\not x \cdot \frac{1}{x}=1 \\
& \therefore \frac{\partial(u v)}{\partial(x y)} \cdot \frac{\partial(x y)}{\partial(u v)}=1
\end{aligned}
$$

(7) If $x=r \cos \theta, y=r \sin \theta$. Snow that $\frac{\partial(x y)}{\partial(r \theta)} \cdot \frac{\partial(r \theta)}{\partial(x y)}=1$

Soll-

$$
\begin{aligned}
& i x=r \cos \theta \quad y=r \sin \theta \quad, \quad x y<\theta_{\theta}^{r} \\
& J=\frac{\partial(x y)}{\partial(r \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial} & \frac{\partial y}{\partial \theta}
\end{array}\right| \\
& \begin{array}{l}
\frac{\partial x}{\partial r}=r \cos \theta \\
\frac{\partial x}{\partial \theta}=r(-\sin \theta)
\end{array} \left\lvert\, \begin{array}{c}
y=r \sin \theta \\
\frac{\partial y}{\partial r}=\sin \theta \ldots \\
\frac{d y}{\partial \theta}=r \cdot \cos \theta
\end{array}\right. \\
& \frac{\partial(x y)}{\partial(r \theta)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =r \cos ^{2} \theta+r \sin ^{2} \theta \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r(1)=r \\
& x=r \cos \theta \quad y=r \sin \theta \text {. } \\
& \text { S.O.B. } \quad \text { S.O.B } \\
& x^{2}=r^{2} \cos ^{2} \theta \quad y^{2}=r^{2} \sin ^{2} \theta \\
& x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}} \\
& J^{\prime}=\frac{\partial(r \theta)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial y}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right| \\
& \frac{\partial r}{\partial x}=\frac{1}{d \sqrt{x^{2}+y^{2}}} \$ x \text {. } \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& \frac{d r}{d y}=\frac{1}{\not \equiv \sqrt{x^{2}+y^{2}}}(2)(y) \\
& =\frac{y}{\sqrt{x^{2}+y^{2}}} \text {. } \\
& \frac{d \theta}{d x}=\frac{1}{1+(y / x)^{2}} \cdot y\left(\frac{-1}{x^{2}}\right) \\
& \geq \frac{y}{x^{2}+y^{2}} \\
& \frac{\partial \theta}{d y}=\frac{1}{1+(y / x)^{2}} \frac{1}{x} \\
& =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& J^{\prime}=\frac{\partial(r \theta)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{+y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{\sqrt{x^{2}+y^{2}}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right| \\
&=\frac{x^{2}}{\sqrt{x^{2}+y^{2}\left(x^{2}+y^{2}\right)}}+\frac{y^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)} \\
&=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)} \\
&=\frac{1}{\cdot r} \\
& \therefore J \cdot J^{\prime}=x \cdot \frac{1}{x}=1 \\
& \therefore \frac{\partial(x y)}{\partial(r \theta)} \cdot \frac{\partial(r \theta)}{\partial(x y)}=1
\end{aligned}
$$

(5) If $x=U V ; y=\frac{U}{V}$ prove that $\frac{\partial(x y)}{\partial(U V)} \times \frac{\partial(U V)}{\partial(x y)}=1$.

$$
\begin{aligned}
& x=u v \\
& u=\frac{x}{v} \\
& U=\frac{x}{U / y} \\
& U=\frac{x y}{v} \\
& u^{2}=x y \Rightarrow u=\sqrt{x y}
\end{aligned}
$$

$$
y=\frac{u}{V}
$$

$$
v=\frac{u}{y} \Rightarrow v=\frac{x / v}{y}
$$

$$
\begin{array}{ll}
U=\frac{x}{U / y} & v=\frac{\mid x}{y v} \\
U=\frac{x y}{v} & v^{2}=\frac{x}{y} \Rightarrow v=\frac{\sqrt{x}}{\sqrt{y}}
\end{array}
$$

$$
J=\frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
$$

$$
u v<x
$$

$$
\begin{array}{l|l}
u=\sqrt{x y} \\
\frac{\partial u}{\partial x}=\frac{1}{2 \sqrt{x y}} y & \begin{array}{l}
v=\sqrt{\frac{x}{y}} \\
\frac{\partial u}{\partial y}=\frac{1}{2 \sqrt{x y}} x
\end{array} \\
\frac{\partial v}{\partial x}=\frac{1}{\sqrt{y}} \frac{1}{2 \sqrt{x}} \\
\frac{\partial v}{\partial y}=\frac{-\sqrt{x}}{2 y \sqrt{y}}
\end{array}
$$

$$
\begin{aligned}
& \text { sol } 5 \\
& x=U V \quad y=\frac{U}{V} \\
& x y<0 \\
& \begin{array}{c}
J=\frac{\partial(x y)}{\partial(u v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial U} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \\
x=U V & y=\frac{u}{v}
\end{array} \quad \frac{\partial(x y)}{\partial(u v)}=\left|\begin{array}{ll}
v & u \\
\frac{1}{v} & \frac{-u}{v^{2}}
\end{array}\right|\right.
\end{array} \\
& \begin{array}{l|l}
x=u v & y=\frac{u}{v} \\
\frac{\partial x}{\partial u}=V & \begin{array}{l}
\partial y \\
\frac{\partial x}{\partial v}=v
\end{array} \\
\frac{\partial y}{\partial v}=u \frac{-1}{v} \\
v^{2}
\end{array} \\
& =\frac{-X u^{\prime}}{v^{*}}-\frac{u}{v}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{cc}
\frac{y}{2 \sqrt{x y}} & \frac{x}{2 \sqrt{x y}} \\
\frac{1}{2 \sqrt{x y}} & \frac{-\sqrt{x}}{2 y \sqrt{y}}
\end{array}\right| \\
&=\frac{-y \sqrt{x}}{4 y \sqrt{x} y}-\frac{x}{4(\sqrt{x y})^{2}} \\
&=\frac{-1}{4 y}-\frac{x}{4 x y} \\
&=\frac{-1}{4 y}-\frac{1}{4 y}=\frac{-4}{y^{y} y}=\frac{-1}{2 y} \\
& J \cdot J=\frac{-30}{x} \times \frac{-y}{2 \theta} \\
&=1 \\
& \therefore \frac{\partial(x y)}{\partial(u v)} \times \frac{\frac{\partial(u v)}{\partial(x y)}=1}{\therefore y}=\frac{-1}{2 v}
\end{aligned}
$$

(6) If $x=r \cos \theta, y=r \sin \theta$ show that $\frac{\partial(x y)}{\partial(r \theta)}=r$.

Solv

$$
\begin{aligned}
& x=r \cos \theta \quad y=r \sin \theta \quad x y<r \quad r \quad \\
& J=\frac{\partial(x y)}{\partial(r \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right| \quad \frac{x y<\theta}{\partial(x, y)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& \begin{array}{l|l}
\begin{array}{l}
x=r \cos \theta \\
\frac{d x}{d r}=\cos \theta
\end{array} & \begin{array}{l}
y=r \sin \theta \\
\left.\frac{d x}{d \theta}=r \in \sin \theta\right)
\end{array} \\
\begin{array}{l}
\frac{\partial y}{\partial r}=\sin \theta \\
\frac{d y}{d \theta}=\operatorname{sir} \cos \theta
\end{array} \\
x=r \cos \theta & y=r \sin \theta \\
x^{2}=r^{2} \cos \theta & y^{2}=r^{2} \sin ^{2} \theta
\end{array} \\
& \left.\begin{array}{l}
x^{2}+y^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
x^{2}+y^{2}=r^{2}
\end{array} \right\rvert\, \begin{array}{l}
y / x=\frac{y \sin \theta}{x \cos \theta}
\end{array} \\
& r=\sqrt{x^{2}+y^{2}} \quad \quad \tan \theta=y / x \Rightarrow \operatorname{Tan}(y / x) \\
& J=\frac{\partial(r \theta)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right| \\
& r, \theta<\begin{array}{l}
x \\
y
\end{array} \\
& \text { Evira } \\
& \begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\frac{\partial r}{\partial x}=\frac{1}{x \sqrt{x^{2}+y^{2}}}(\$ x) \\
\frac{\partial r}{\partial y}=\frac{1}{x \sqrt{x^{2}+y^{2}}}(2 y)
\end{array} \left\lvert\, \begin{array}{l}
\theta=\tan ^{-1}(y / x) \\
\frac{\partial \theta}{\partial x}=\frac{1}{1+(y / x)^{2}} y\left(\frac{-1}{x^{2}}\right)=\frac{\partial \theta}{x^{2}+y^{2}} \\
\frac{\partial y}{\partial y}=\frac{1}{1+\left(y(x)^{2}\right.} \frac{1}{x}=\frac{x}{x^{2}+y^{2}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial(r \theta)}{\partial(x, y)} & =\left|\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{y}{x^{2}+y^{2}}
\end{array}\right| \\
& =\frac{x^{2}}{x^{2}+y^{2} \sqrt{x^{2}+y^{2}}}+\frac{y^{2}}{x^{2}+y^{2} \sqrt{x^{2}+y^{2}}} \\
& =\frac{x^{2}+y^{2}}{x^{2}+y^{2} \sqrt{x^{2}+y^{2}}}=\frac{1}{r}
\end{aligned}
$$

(8). If $x=r \cos \theta ; y=r \sin \theta, z=z \quad$ evaluate $\frac{\partial(x y z)}{\partial(r \theta z)}$
(9) If $u=2 x y \quad v=x^{2}-y^{2} \quad x=r \cos \theta, y=r \sin \theta$ evalua ate $\frac{\partial(u \phi)}{\partial(r \theta)}$
Solt

$$
U=2 x y \quad v=x^{2}-y^{2} \quad x=r \cos \theta, \quad y=r \sin \theta
$$

$$
\frac{\partial(u v)}{\partial(r \theta)}=\frac{\partial(u v)}{\partial(x y)}: \frac{\partial(x y)}{\partial(r \theta)}
$$

$$
U V \ll y>r \theta
$$

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta \quad z=z \quad x y z<\frac{<_{\theta}}{r_{\theta}} \\
& \frac{\partial(x y-z)}{\partial(r \theta z)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right| \\
& \begin{array}{l|l|l}
x=r \cos \theta \\
\frac{\partial x}{\partial r}=\cos \theta & y=r \sin \theta & z=z \\
\frac{d x}{d \theta}=r(-\sin \theta) & \frac{d y}{\partial r}=\sin \theta & \frac{d z}{\partial r}=0 \\
\frac{d x}{d \theta}=0 & \frac{d y}{d z}=r \cos \theta & \frac{\partial z}{\partial \theta}=0 \\
\frac{d z}{d z}=0 & \frac{d z}{d z}=1
\end{array} \\
& \frac{\partial(x y z)}{\partial(r \theta z)}=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =\cos \theta[r \cos \theta-0]+r \sin \theta[\sin \theta-0] \\
& =r \cos ^{2} \theta+r \sin \theta \text {. } \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
2 y & 2 x \\
2 x & -2 y
\end{array}\right| \\
& U=2 x y \mid \quad V=x^{2}-y^{2} \quad=-4 y^{2}-4 x^{2} \\
& \frac{d u}{d x}=2 y \quad \frac{\partial v}{d x}=2 x \quad=-4\left(x^{2}+y^{2}\right) . \\
& \begin{array}{l|l}
\frac{\partial u}{\partial y}=2 x \quad & \frac{\partial u}{\partial y}=-2 y
\end{array} \\
& \frac{\partial(x y)}{\partial(r \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& x=r \cos \theta \quad y=r \sin \theta=r \cos ^{2} \theta+r \sin \theta \\
& \frac{\partial x}{\partial r}=\cos \theta \quad \frac{\partial y}{\partial r}=\sin \theta \quad=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& \frac{\partial x}{\partial \theta}=r(-\sin \theta) \left\lvert\, \frac{\partial y}{\partial \theta}=r \cos \theta \quad=\frac{r}{\sqrt{x^{2}+y^{2}}}\right. \\
& \therefore \frac{\partial(u v)}{\partial(r \theta)}=-4\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}=\frac{-4\left(x^{2}+y^{2}\right)^{3 / 2}}{(o r)} \text {. } \\
& =-c\left(r^{2}\right)^{2 / 2}=-u r^{3}
\end{aligned}
$$

(10) If $x=\sqrt{v \omega}, y=\sqrt{\omega v}, z=\sqrt{v v}$ and $u=r \cos \theta \cos \phi, v=r \sin \theta \sin \phi$ $\omega=r \cos \theta$. Then evaluate $\frac{\partial(x y z)}{\partial(r \theta \phi)}$.

$$
\begin{aligned}
& \frac{\partial(x y z)}{\partial(v \theta \phi)}=\frac{\partial(x y z)}{\partial(u \vee \omega)} \cdot \frac{\partial(U \vee \omega)}{\partial(\gamma \theta \phi)} . \\
& \frac{\partial(x y z)}{\partial(u v w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial v} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial v} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| \\
& \begin{array}{l|l|l}
x=\sqrt{v \omega} & \begin{array}{l}
y=\sqrt{\omega 0} \\
\frac{\partial x}{\partial v}=\cdot 0
\end{array} & \begin{array}{l}
z=\sqrt{u v} \\
\frac{\partial y}{\partial v}=\frac{1}{\partial \sqrt{\omega v}} \\
\frac{\partial x}{\partial v}=\frac{1}{2 \sqrt{v \omega}} \\
\frac{\partial z}{\partial v}=\frac{1}{2 \sqrt{v v}} \\
\frac{\partial y}{\partial \omega}=\frac{\partial y}{\partial \sqrt{v \omega}}=0
\end{array} \\
\frac{\partial z}{\partial v}=\frac{1}{2 \sqrt{u v}} \\
\frac{\partial y}{\partial w}=\frac{1}{2 \sqrt{\omega u}} & \frac{\partial z}{\partial w}=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(x y z)}{\partial(U v \omega)}=\left|\begin{array}{ccc}
0 & \frac{1}{2 \sqrt{v \omega}} & \frac{1}{2 \sqrt{v \omega}} \\
\frac{1}{2 \sqrt{\omega u}} & 0 & \frac{1}{2 \sqrt{\omega u}} \\
\frac{-1}{2 \sqrt{u v}} & \frac{1}{2 \sqrt{U v}} & 0
\end{array}\right| \\
& =\frac{1}{2 \sqrt{v \omega}} \cdot \frac{1}{2 \sqrt{\omega U}} \frac{1}{2 \sqrt{0 v}}\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right| \\
& =\frac{1}{8 U \vee \omega}[-1(\cdot 0-1)+1(1-0)] \\
& =\frac{1}{\operatorname{suv} \omega}(\cdot 1+1) \\
& =\frac{1}{\beta_{Y} \vee \omega}(2 x)=\frac{1}{\underline{Y V V \omega}} \text {. } \\
& \frac{\partial(U V \omega)}{\gamma(r \theta \phi)}=\left|\begin{array}{lll}
\frac{\partial U}{\partial r} & \frac{\partial u}{\partial \theta} & \frac{\partial U}{\partial \phi} \\
\frac{\partial V}{\partial r} & \frac{\partial V}{\partial \theta} & \frac{\partial V}{\partial \phi} \\
\frac{\partial \omega}{\partial r} & \frac{\partial \omega}{\partial \theta} & \frac{\partial \omega}{\partial \phi}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial(u \vee \omega)}{\partial(\pi, \phi)}=\left|\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & -r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right| \\
& =r \cdot \gamma\left|\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \theta \sin \phi \\
\sin \theta \sin \phi & -\cos \theta \sin \phi & \sin \theta \cos \phi \\
\cos \theta & -\sin \theta & 0
\end{array}\right| \therefore \\
& =r^{2}\left[\sin \theta \cos \phi\left(0+\sin ^{2} \theta \cdot \cos \phi\right)-\cos \theta \cos \phi(0-\sin \theta \cos \theta \cos \phi)\right. \\
& -\sin \theta \cdot \sin \phi\left(-\sin ^{2} \theta \cdot \sin \phi+\cos ^{2} \theta \cdot \sin \phi\right) \\
& =\gamma^{2}\left[\sin ^{3} \theta \cdot \cos ^{2} \phi+\sin \theta \cdot \cos ^{2} \theta \cdot \cos ^{2} \phi+\sin ^{3} \theta \cdot \sin ^{2} \phi-\sin \theta \cos ^{2} \theta\right. \\
& \left.\sin ^{-1} \phi\right] \\
& =r^{2}\left[\sin ^{3} \theta\left(\cos \phi+\sin ^{2} \phi\right)+\sin ^{2} \cos ^{2} \theta\left(\cos ^{4} \phi-\sin ^{2} \phi\right)\right] \\
& =r^{2}\left[\sin ^{3} \theta+\sin \theta \cdot \cos \theta\right. \text {. }
\end{aligned}
$$

(11). $y_{1}=\frac{x_{2} x_{3}}{x_{1}} ; y_{2}=\frac{x_{3} x_{1}}{x_{2}} ; y_{3}=\frac{x_{1} x_{2}}{x_{3}}$ show that $\frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial\left(x_{1} x_{2} x_{3}\right)}=4$.

Sol:-

$$
\begin{aligned}
& \frac{\partial\left(y_{1} y_{2} y_{3}\right)}{\partial\left(x_{1} x_{2} x_{3}\right)}=\left|\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial y_{3}} \\
\frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \frac{j\left(y_{1} y_{2} y_{3}\right)}{j\left(x_{1} x_{2} x_{3}\right)}=\left|\begin{array}{ccc}
\frac{-x_{2} x_{3}}{x_{1}^{2}} & \frac{x_{3}}{x_{1}} & \frac{x_{2}}{x_{1}} \\
\frac{x_{3}}{x_{2}} & \frac{-x_{3} x_{1}}{x_{2}^{2}} & \frac{x_{1}}{x_{2}} \\
\frac{x_{2}}{x_{3}} & \frac{. x_{1}}{x_{3}} & \frac{-x_{1} x_{2}}{x_{3}^{2}}
\end{array}\right| . \\
& =\left|\begin{array}{ccc}
\frac{-x_{2} x_{3}}{x_{1}^{2}} & \frac{x_{1} x_{3}}{x_{1}{ }^{2}} & \frac{x_{1} x_{2}}{x_{1}^{2}} \\
\frac{x_{2} x_{3}}{x_{2}^{2}} & \frac{-x_{1} x_{3}}{x_{2}^{2}} & \frac{x_{1} x_{2}}{x_{2}^{2}} \\
\frac{x_{2} x_{3}}{x_{3}^{2}} & \frac{x_{1} x_{3}}{x_{3}^{2}} & \frac{-x_{1} x_{2}}{x_{3}^{2}}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{x_{1}^{2}} \cdot \frac{1}{x_{2}^{2}} \cdot \frac{1}{\left(x_{3}^{2}\right.}\left(x_{2} x_{3}\right)\left(x_{1} x_{3}\right)\left(x_{1} x_{2}\right)\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right| \\
& =\frac{x_{1}^{2}-x_{2}^{2} x_{3}^{2}}{x_{1} x^{2}-x_{2}^{2} x_{3}^{2}}[-1(1-1)-1(-1-1)+1(1+1)] \\
& =-1(0)-1(-2)+1(2) \\
& =0+2+2 \\
& \frac{d\left(y_{1} y_{2} y_{3}\right)}{\partial\left(x_{1} x_{2} x_{3}\right)}=4 \\
& \text { (13) } v=\frac{y^{2}}{2 x}, \quad v=\frac{\cdot x^{2}+y^{2}}{2 x} \text { find } \frac{\partial(u v)}{\partial(x y)} \\
& \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial \partial}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \quad u v<y \\
& u=\frac{y^{2}}{2 x} \quad \left\lvert\, v=\frac{x^{2}+y^{2}}{2 x}\right. \\
& \frac{\partial 0}{\partial x}=\frac{y^{2}}{2}\left(\frac{-1}{x^{2}}\right) \quad \frac{\partial v}{\partial x}=\frac{2 x(2 x+0)-\left(x^{2}+y^{2}\right) 2}{(2 x)^{2}}=\frac{4 x^{2}-2 x^{2}-2 y^{2}}{4 x^{2}}=\frac{\phi\left(x^{2}-y^{2}\right)}{y^{2} x^{2}} \\
& \frac{\partial U}{\partial y}=\frac{1}{\partial x}(\alpha y)=y / x \left\lvert\, \frac{\partial V}{\partial y}=\frac{1}{2 x}\left((x 2 y)=\frac{1}{2 x}(2 y)=y / x\right.\right. \\
& =\frac{x^{2}-y^{2}}{2 x^{2}} \\
& \frac{\partial(U V)}{\partial(x y)}=\left|\begin{array}{cc}
\frac{-y^{2}}{2 x^{2}} & y / x \\
\frac{x^{2}-y^{2}}{2 x^{2}} & y / x
\end{array}\right| \\
& =\frac{1}{2 x^{2}} \cdot y / x\left|\begin{array}{cc}
-y^{2} & 1 \\
x^{2}-y^{2} & 1
\end{array}\right| \\
& =\frac{y}{2 x^{3}}\left[-y^{4}-x^{2}+y^{2}\right] \\
& =\frac{-x^{x} y}{2 x^{4}}=\frac{-y}{2 x}
\end{aligned}
$$

(15) $u=x y z, \quad V=x y+y z+z x, \quad \omega=x+y+z$ show that

$$
\begin{array}{ll}
\frac{\partial(u v \omega)}{\partial(x y z)}=(x-y)(y-z)(z-x) \\
\frac{\partial(u \vee \omega)}{\partial(x y z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial 0}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial \omega}{\partial z}
\end{array}\right| & \text { UvW<<} x \\
y
\end{array}
$$

$$
\begin{aligned}
& u=x y z \\
& \frac{\partial u}{\partial x}=y z \\
& \frac{\partial u}{\partial y}=x z \\
& \frac{\partial u}{\partial z}=x y
\end{aligned} \left\lvert\, \begin{aligned}
& v=x y+y z+z x \\
& \frac{\partial v}{\partial x}=y+0+z=y+z \\
& \frac{\partial v}{\partial y}=x+z+0=x+z \\
& \frac{\partial v}{\partial z}=0+y+x=x+y \cdot \begin{array}{l}
w=x+y+z \\
\frac{\partial \omega}{\partial x}=1+0+0=1 \\
\frac{\partial w}{\partial y}=0+1+0=1 \\
\frac{\partial w}{\partial z}=0+0+1=1
\end{array} \\
& \begin{aligned}
\frac{\partial(u v \omega)}{\partial(x y z)} & =\left|\begin{array}{ccc}
w z & z x & x y \\
y+z & z+x & x+y \\
1 & 1 / x
\end{array}\right| \\
& =y z(z+x-x-y)-z x(y+z-x-y)+x y(y+z)-z-x) \\
& =y z(z-y)-z x(z-x)+x y(y-x) \\
& =y z^{2}-y^{2} z-z^{2} x+z x^{2}+x y^{2}-x^{2} y \\
& =x^{2}(
\end{aligned}
\end{aligned}\right.
$$

(19) If $x^{2}+y^{2}+v^{2}-v^{2}=0$ and $v v+x y=0$ prove that $\frac{\partial(u v)}{\partial(x y)}=\frac{x^{2}-y^{2}}{u^{2}+v^{2}}$

Let us take $f_{1}=x^{2}+y^{2}+u^{2}-v^{2}, \quad f_{2}=u v+x y$.

$$
\begin{aligned}
& \begin{array}{l|l}
\frac{\partial f_{1}}{\partial x}=2 x & \frac{\partial f_{2}}{\partial x}=y \\
\frac{\partial f_{1}}{\partial y}=2 y & \frac{\partial f_{2}}{\partial y}=x \\
\frac{\partial f_{1}}{\partial v}=20 & \frac{\partial f_{2}}{\partial v}=v \\
\frac{\partial f_{1}}{\partial v}=2 v-2 v & \frac{\partial f_{2}}{\partial v}=u
\end{array} \\
& \therefore f_{1} f_{2} \leqslant \begin{array}{l}
u \\
y \\
y
\end{array} \\
& \frac{\partial\left(f_{1} f_{2}\right)}{\partial(x y)}=\left|\begin{array}{cc}
2 x & 2 y \\
y & x
\end{array}\right| \\
& =2 x^{2}-2 y^{2} \\
& =2\left(x^{2}-y^{2}\right)
\end{aligned}
$$

$$
\therefore \frac{\partial(u v)}{\partial(x y)}=(-1)^{2} \frac{2\left(x^{2}-y^{2}\right)}{x\left(u^{2}+v^{2}\right)}=\frac{x^{2}-y^{2}}{v^{2}+v^{2}}
$$

3/12/2019
Tuesday Functional Dependence
(2). If $\underline{U}=\frac{x+y}{1-x y}$ and $\underline{V}=\tan ^{-1} x+\tan ^{-1} y$.

$$
\begin{aligned}
& J=\frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \quad u \dot{v}>x y . \\
& u=\frac{x+y}{1-x y} \\
& v=\tan ^{-1} x+\tan ^{-1} y \\
& \frac{\partial 0}{\partial \underline{x}}=\frac{(1-x y)(1)-(x+y)(0-y)}{(1-x y)^{2}} \\
& =\frac{1-x y+x y+y^{2}}{(1-x y)^{2}} \\
& =\frac{1+y^{2}}{(1-x y)^{2}} \text {. } \\
& \frac{\partial v}{\partial y}=\frac{(1-x y)(1)-(x+y)(0-x)}{(1-x y)^{2}} \\
& =\frac{1-x y+x^{2}+x y}{(1-x y)^{2}} \\
& =\frac{1+x^{2}}{(1-x y)^{2}} \text {. } \\
& \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{cc}
\frac{1+y^{2}}{(1-x y)^{2}} & \frac{1+x^{2}}{(1-x y)^{2}} \\
\frac{1}{1+x^{2}} & \frac{1}{1+y^{2}}
\end{array}\right| \\
& =\frac{1}{(1-x y)^{2}}\left|\begin{array}{cc}
1+y^{2} & 1+x^{2} \\
\frac{1}{1+x^{2}} & \frac{1}{1+y^{2}}
\end{array}\right| \\
& =\frac{1}{(1-x y)^{2}}[1-1] \\
& =\frac{1}{(1-x y)^{2}} \text { (0). } \\
& \frac{\partial(\partial V)}{\partial(x y)}=0 \text {. }
\end{aligned}
$$

$\therefore U$ and V are functionally dependent.
That is, there is a relation b/w and V.

$$
\begin{aligned}
v & =\tan ^{-1} x+\tan ^{-1} y \\
\operatorname{Tan} v & =\operatorname{Tan}\left[\tan ^{-1} x+\tan ^{-1} y\right] \\
& =\frac{\tan \left(\tan ^{-1} x\right)+\tan \left(\tan ^{-1} y\right)}{1-\tan \left(\tan ^{-1} x\right) \cdot \tan \left(\tan ^{-1} y\right)} \\
& =\frac{x+y}{1-x y} \\
\operatorname{Tan} v & =0
\end{aligned}
$$

(2) If $v=x+y+z, v^{2} v=y+z, v^{3} \omega=z$.

$$
\begin{array}{lll}
u=x+y+z & u^{2} v=y+z & u^{3} w=z \\
u=x+u^{2} v & u^{2} v=y+u^{3} w & z=u^{3} w . \\
x=u-u^{2} v & y=u^{2} v-u 3 w &
\end{array}
$$

$$
J=\frac{\partial(x y z)}{\partial(u v w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

$$
\begin{aligned}
& x=u-u^{2} v \\
& \frac{\partial x}{\partial v}=1-v(2 u) \\
& =1-20 \mathrm{~V} \\
& \frac{\partial x}{\partial v}=0-v^{2}(i) \\
& =-u^{2} \\
& \frac{\partial x}{\partial \omega}=0 . \quad \frac{\partial y}{\partial \omega}=0-v^{3}=-u^{3} \\
& J=\frac{\partial(x y z)}{\partial(u v \omega)}=\left|\begin{array}{ccc}
1-2 u v & -u^{2} & .0 \\
2 u v-3 u^{2} \omega & 1 . u^{2} & -u^{3} \\
-3 u^{2} \omega & 0 & u^{3}
\end{array}\right| \\
& =x+2 s u^{2} \cdot u^{3}\left|\begin{array}{crr}
1-2 u v & -1 & 0 \\
2 u v-3 u^{2} \omega & 1 & -1 \\
3 u^{2} w & 0 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =u^{5}\left[1-2 u v(1+0)+1\left(2 u v-3 v^{2} w+3 v^{2} w\right)+0\right] \\
& =u^{5}\left[1-2 v^{2} v+2 u^{2}\left(-3 w^{2} w+3 v^{2} w\right)\right.
\end{aligned}
$$

$$
\frac{\partial(x y z)}{\partial(u v \omega)}=u^{5} . \quad \text { zen }
$$

$\therefore x y, z$ are not functionally dependent.
Hence there is no relation between x, y and z.
(4) If $v=\frac{x-y}{x+y}, v=\frac{x y}{(x+y)^{2}}$.
sod:

$$
\begin{aligned}
& U=\frac{x-y}{x+y} \quad V=\frac{x y}{(x+y)^{2}} \\
& J=\frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial U}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
\end{aligned}
$$

$$
=\frac{U}{V}>x y
$$

$$
\begin{aligned}
& v=\frac{x-y}{x+y} \\
& \frac{\partial 0}{\partial x}=\frac{(x+y)(1-0)-(x-y)(1+0)}{(x+y)^{2}} \\
& =\frac{x^{4}+y-x+y}{(x+y)^{2}}=\frac{2 y}{(x+y)^{2}} \\
& \frac{\partial v}{\partial y}=\frac{(x+y)(0-1)-(x-y)(0+1)}{(x+y)^{2}} \\
& =\frac{-x-y-x+y}{(x+y)^{2}}=\frac{-2 x}{(x+y)^{2}} \\
& \frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{2 y}{(x+y)^{2}} & \frac{-2 x}{(x+y)^{2}} \\
\frac{y\left(y^{2}-x^{2}\right)}{(x+y)^{4}} & \frac{x\left(x^{2}-y^{2}\right)}{(x+y)^{4}}
\end{array}\right| \\
& v=\frac{x y}{(x+y)^{2}} \\
& \frac{\partial V}{\partial x}=\frac{(x+y)^{2}(y-x y 2(x+y)}{\left[(x+y)^{2}\right]^{2}} \\
& =\frac{x^{2} y+y^{3}+2 x y^{2}-2 x^{2} y-2 x y^{2}}{(x+y)^{4}} \\
& =\frac{y^{3}-x^{2} y}{(x+y)^{4}} \\
& \frac{\partial V}{\partial y}=\frac{(x+y)^{2} \cdot x}{\left((x+y)^{2}\right)^{2}} x y 2(x+y) \\
& =\frac{\left(x^{2}+y^{2}+2 x y\right) x-2 x^{2} y-2 x y^{2}}{(x+y)^{4}} \\
& =\frac{x^{3}+x y^{2}+2 x x^{2} y-2 x^{2} y-2 x y^{2}}{(x+y)^{y}} \\
& =\frac{x^{3}-x y^{2}}{(x+y)^{4}} \\
& =\frac{2 x \cdot y}{(x+y)^{2}}\left|\begin{array}{cc}
1 & -1 \\
\frac{y^{2}-x^{2}}{(x+y)^{2}} & \frac{x^{2}-y^{2}}{(x+y)^{2}}
\end{array}\right| \text {. } \\
& =\frac{2 x y}{(x+y)^{2}}\left[\frac{x^{2}-y^{2}}{(x+y)^{2}}+\frac{y^{2}-x^{2}}{(x+y)^{2}}\right] \\
& =\frac{2 x y}{(x+y)^{2}}\left[\frac{x^{2}-y^{2}+y^{2}-y^{2}}{(x+y)^{2}}\right] \\
& =\frac{2 x y}{(x+y)^{2}}(0)
\end{aligned}
$$

$$
\therefore \frac{\partial(u v)}{\partial(x y)}=0
$$

(5)

$$
\begin{aligned}
& u=x y+y z+z x, \quad v=x^{2}+y^{2}+z^{2} \quad, \quad \omega=x+y+z . \\
& J=\frac{\partial(O v \omega)}{\partial(x y z)}=\left|\begin{array}{lll}
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial \omega}{\partial z}
\end{array}\right| \quad u, v, \omega<\begin{array}{l}
y \\
z
\end{array} \\
& \begin{array}{l|l|l}
u=x y+y z+z x & v=x^{2}+y^{2}+z^{2} & w=x+y+z \\
\frac{\partial 0}{\partial x}=y+0+z & \frac{\partial v}{\partial x}=2 x & \frac{\partial \omega}{\partial x}=1 \\
\frac{\partial U}{\partial y}=x+z & \frac{\partial v}{\partial y}=2 y & \frac{\partial \omega}{\partial y}=1 \\
\frac{\partial u}{\partial z}=y+x . & \frac{\partial v}{\partial z}=2 z & \frac{\partial \omega}{\partial z}=1
\end{array} \\
& \frac{\partial(\cup \vee \omega)}{\partial(v y z)}=\left|\begin{array}{ccc}
y+z & x+z & y+x \\
2 x & 2 y & 2 z \\
1 & 1 & 1
\end{array}\right| \\
& =y+z(2 y-2 z)-(x+z)(2 x-2 z)+(y+x)(2 x-2 y) \\
& =2 y^{2}-2 y z^{2}+2 y z-2 z^{2}-2 y^{2}+2 z x-2 x^{2} x+2 z^{2}+2 x y-2 y^{2}+2 x^{2} x^{2} x^{x} \\
& =0 \text {. } \\
& \therefore \frac{\partial(U V \omega)}{\partial(x y z)}=0
\end{aligned}
$$

(1) If $u=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}, v=\sin ^{-1} x+\sin ^{-1} y$. Show that u, v are functionally dependent.
Sol:-

$$
\begin{aligned}
& J=\frac{\partial(u v)}{\partial(x y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \quad U, v<y_{y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial 0}{\partial x}=\sqrt{1-y^{2}}+y \frac{1}{2 \sqrt{1-x^{2}}}(-2 x) \\
& =\sqrt{1-y^{2}}+\frac{2 x y}{\sqrt{1-x^{2}}} \\
& \frac{\partial u}{\partial y}=x \cdot \frac{1}{2 \sqrt{1-y^{2}}}(-2 y)+\sqrt{1-x^{2}} \\
& =\frac{-x y}{\sqrt{1-y^{2}}}+\sqrt{1-x^{2}} \\
& \frac{\partial(U V)}{\partial(x y)}=\left|\begin{array}{cc}
\sqrt{1-y^{2}}-\frac{x y}{\sqrt{1-x^{2}}} & \frac{-x y}{\sqrt{1-y^{2}}}+\sqrt{1-x^{2}} \\
\frac{1}{\sqrt{1-x^{2}}} & \frac{1}{\sqrt{1-y^{2}}}
\end{array}\right| \\
& =\frac{1}{\sqrt{1-x^{2}}} \frac{1}{\sqrt{1-y^{2}}}\left|\begin{array}{cc}
\sqrt{1-x^{2}} \cdot \sqrt{1-y^{2}}-x y & -x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}} \\
1 & 1
\end{array}\right| \\
& =\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}\left[\sqrt{1-y^{2}-x^{2}+x^{2} y^{2}}-x / y+x / y-\sqrt{1-y^{2}-x^{2} / 2 x^{2} y}\right] \\
& =\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}} \text { (0) } \\
& =0 \text {. }
\end{aligned}
$$

$$
\therefore \frac{\partial(U V)}{\partial(x y)}=0
$$

$\therefore U, V$ are functionally dependent.
i.e., the re is a relation blow u and V.

$$
\begin{array}{rlr}
u & =x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} \quad \begin{aligned}
x=\sin y \Rightarrow y=\sin ^{-1} x \\
y=\sin x \Rightarrow x=\sin ^{-1} y
\end{aligned} \\
& =\sin y \sqrt{1-\sin ^{2} x}+\sin x \sqrt{1-\sin ^{2} y} \\
& =\sin y \cdot \cos x+\sin x \cdot \cos y . \\
& =\sin (x+y) \\
& =\sin \left(\sin ^{-1} y+\sin ^{-1} x\right) \\
u & =\sin y
\end{array}
$$

Maxima And Minima: (without constraints).
(2) $x^{3} y^{2} \cdot(1-x-y)$

Sol:-
Let $f(x, y)=x^{3} y^{2}(1-x-y)$

$$
\begin{aligned}
& f(x, y)=x^{3} y^{2}-x^{4} y^{2}-x^{3} y^{3} \\
\frac{\partial f}{\partial x}= & y^{2}\left(3 x^{2}\right)-y^{2} 4 x^{3}-y^{3}\left(3 x^{2}\right) \\
= & 3 x^{2} y^{2}-4 x^{3} y^{2}-3 x^{2} y^{3} \\
\frac{\partial f}{\partial y}= & x^{3}(2 y)-x^{4}(2 y)-x^{3} 3 y^{2} \\
= & 2 x^{3} y-2 x^{4} y-3 x^{3} y^{2}
\end{aligned}
$$

we have $\frac{\partial f}{\partial x}=0$

$$
3 x^{2} y^{2}-4 x x^{3}-3 x^{2} y^{3}=0
$$

$$
x^{2} y^{2}(3-4 x-3 y)=0
$$

$$
x=0, y=0,4 x+3 y-3=0
$$

$$
\begin{gathered}
\frac{\partial f}{\partial y}=0 \\
2 x^{3} y-2 x 4 y-3 x^{3} y^{2}=0 \\
x^{3} y(2-2 x-3 y)=0 \\
x=0, y=0,(2 x+3 y-2)=0
\end{gathered}
$$

if $x=0, \quad 2 x+3 y-2=0 \quad$ if $y=0,2 x+3 y-2=0$

$$
\begin{aligned}
& 3 y-2=0 \\
& y=2 / 3
\end{aligned}
$$

$$
2 x-2=0
$$

$$
y=2 / 3
$$

$$
x=1
$$

$$
(0,2 / 3)
$$

$$
\begin{array}{lr}
\text { if } 4 x+3 y-3=0, x=0 & \text { if } 4 x+3 y-3=0 \\
3 y-3=0 & 4 x-3=0 \\
y=1 & (3 / 4,0) \\
(0,1) &
\end{array}
$$

if $31 x+3 y-3=0, \quad 2 x+3 y-2=0$

$$
\begin{array}{rr}
4 x+3 y-3=0 & 4(1 / 2)+3 y-3=0 \\
2 x+3 y-2=0 & 2+3 y-3=0 \\
\hline 2 x-1=0 & y=1 / 3 \\
x=1 / 2 &
\end{array}
$$

$$
(1 / 2,1 / 3)
$$

\therefore The stationary points are $(0,2 / 3),(1,0),(0,1),(3 / 4,0),(1 / 2,1 / 3)$.

$$
\begin{aligned}
& r=\frac{\partial^{2} f}{\partial x^{2}}=6 x y^{2}-12 x^{2} y^{2}-6 x y^{3} \\
& S=\frac{\partial^{2} f}{\partial x \partial y}=6 x^{2} y-8 x^{3} y-9 x^{2} y^{2} \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=2 x^{3}-2 x^{4}-6 x^{3} y
\end{aligned}
$$

At the paint. $(0,2 / 3)$

$$
r=0, \quad s=0, \quad t=0, \quad r t-s^{2}=0 .
$$

At the point $(1,0)$

$$
r=0, \quad s=0, \quad t=0, \quad r t-s^{2}=0 .
$$

At the point $(0,1)$

$$
r=0 ; \quad s=0, \quad t=0, \quad r t-s^{2}=0
$$

At the point $(3 / 4,0)$

$$
\begin{aligned}
& r=0, s=0, t=2(3 / 4)^{3}-2(3 / 4)^{4}, \quad r t-s^{2}=0 \\
& \\
& =\frac{27}{128}
\end{aligned}
$$

At the point $(1 / 2,1 / 3)$

$$
\begin{aligned}
r & =6(1 / 2)(1 / 3)^{2}-12(1 / 2)^{2} \cdot(1 / 3)^{2}-6(1 / 2)(1 / 3)^{3} \\
& =\frac{1}{3}-\frac{1}{3}-\frac{1}{9}=-\frac{1}{9} \\
8 & =6(1 / 2)^{2}(1 / 3)-8(1 / 2)^{3}(1 / 3)-9(1 / 2)^{2}(1 / 3)^{2} \\
& =\frac{1}{2}-\frac{1}{3}-\frac{1}{9}=-\frac{1}{12}
\end{aligned}
$$

$$
\begin{aligned}
t & =2(1 / 2)^{3}-2(1 / 2)^{4}-6(1 / 2)^{3}(1 / 3) \\
& =\frac{1}{4}-\frac{1}{8}-\frac{1}{4}=-\frac{1}{8} \\
\Rightarrow r t-s^{2} & =\left(\frac{-1}{9}\right)\left(-\frac{1}{8}\right)-\left(\frac{-1}{12}\right)^{2} \\
& =\frac{1}{72}-\frac{1}{144}=\frac{2-1}{144}=\frac{1}{144}>0 \\
r t-s^{2}>0, r & =\frac{-1}{9}<0
\end{aligned}
$$

\therefore The function has maximum at the point $(1 / 2,1 / 3)$. Maximum value is $f=x^{3} y^{2}(1-x-y)$

$$
\begin{aligned}
& =(1 / 2)^{3}(1 / 3)^{2}(1-1 / 2-1 / 3) \\
& =\frac{1}{7 \cdot 2}\left(\frac{6-3-2}{6}\right) \\
& =\frac{1}{72}\left(\frac{1}{6}\right)=\frac{1}{432}
\end{aligned}
$$

(4) $\sin x+\sin y+\sin (x+y)$

$$
\begin{aligned}
& \text { Let } f(x, y)=\sin x+\sin y+\sin (x+y) \\
& \frac{\partial f}{\partial x}=\cos x+\cos (x+y) \\
& \frac{\partial f}{\partial y}=\cos y+\cos (x+y)
\end{aligned}
$$

ale have $\frac{\partial f}{\partial x}=0, \quad \frac{\partial f}{\partial y}=0$

$$
\begin{aligned}
& \cos x+\cos (x+y)=0 \\
& 2 \cos \left(\frac{x+x+y}{2}\right) \cdot \cos \left(\frac{x-x-y}{2}\right)=0 \\
& \cos \left(\frac{2 x+y}{2}\right)-\cos (-y / 2)=0 \\
& \cos \frac{2 x+y}{2}=0, \quad \cos y / 2=0 \\
& \frac{2 x+y}{2}=\cos ^{-1}(0) \quad y_{12}=\cos ^{-1}(0) \\
& \frac{2 x+y}{2}=\frac{\pi}{2}, \frac{3 \pi}{2} \ldots \quad y / 2=\pi / 2 ; 3 \pi / 2 \ldots \\
& 2 x+y=\pi, 3 \pi, \therefore \quad y=\pi, 3 \pi \ldots \\
& \cos y+\cos (x+y)=0 \\
& 2 \cos \left(\frac{y+x+y}{2}\right) \cos \left(\frac{y-x-y}{2}\right)=0 \\
& \cos \left(\frac{x+2 y}{2}\right) \cdot \cos (-x / 2)=0 \\
& \cos \left(\frac{x+2 y}{2}\right)=0 \quad \cos x / 2=0 \\
& \frac{x+2 y}{2}=\cos ^{-1}(0) \quad x / 2=\cos ^{-1}(0) \\
& \frac{x+2 y}{2}=\pi / 2,3 \pi / 2 \cdots \quad x / 2=\pi / 2,3 \pi / 2 \cdots \\
& x+2 y=\pi \quad 3 \pi \ldots \quad x=\pi, 3 \pi \ldots \\
& 2 x+y=\pi, \quad 2 x+y=3 \pi, \quad y=\pi, \quad y=3 \pi \\
& x+2 y=\pi 1 . \quad x+2 y=3 \pi, \quad x=\pi, \quad x=3 \pi
\end{aligned}
$$

if $\quad 2 x+y=\pi, \quad x+2 y=\pi$

$$
(\pi / 3, \pi / 3)
$$

if $2 x+y=\pi, \quad x+2 y=3 \pi$

$$
(-\pi / 3,5 \pi / 3)
$$

if $2 x+y=\pi, x=\pi$

$$
\begin{array}{cc}
2 \pi+y=\pi & 2 x-\pi=\pi \\
(y=-\pi & 2 x=2 \pi \\
(\pi,-\pi) &
\end{array}
$$

if $2 x+y=3 \pi, \quad x+2 y=\pi$

$$
(5 \pi / 3,-\pi / 3)
$$

if $2 x+y=3 \pi, \quad x+2 y=3 \pi$

$$
(\pi, \pi)
$$

if $2 x+y=3 \pi, x=\pi$
(π, π)
if $y=\pi ; \quad x+2 y=\pi$

$$
x+2 \pi=\pi \Rightarrow \dot{x}=-\pi
$$

$(-\pi, \pi)$
if

$$
\begin{aligned}
2 x+y & =3 \pi, \quad x=3 \pi \\
6 \pi+y & =3 \pi \Rightarrow y=-3 \pi
\end{aligned}
$$

$$
(3 \pi,-3 \pi)
$$

if $-2 x+y=$ it, $x=3 \pi$

$$
\begin{aligned}
& 6 \pi+y=\pi \Rightarrow 4=-5 \pi) \\
& 2 x-5 \pi=\pi \Rightarrow 2 x=6 \pi \\
& x=3 \pi \\
& (3 \pi,-5 \pi)
\end{aligned}
$$

if $y=$ का,$x+2 y=3 \pi$

$$
\begin{gathered}
x+2 \pi=3 \pi \Rightarrow x=\pi \\
(\pi, \pi)
\end{gathered}
$$

if $y=3 \pi, \quad x+2 y=\pi$.

$$
x+6 \pi=\pi \Rightarrow x=-5 \pi
$$

$(-5 \pi, 3 \pi)$
if $y=3 \pi, \quad x+2 y=3 \pi$

$$
\begin{aligned}
& x+6 \pi=3 \pi \Rightarrow x=-3 \pi \\
& (-3 \pi, 3 \pi)
\end{aligned}
$$

$(3 \pi,-5 \pi)$
\therefore The stationary points are $(\pi / 3, \pi / 3),(-\pi / 3,5 \pi / 3),(\pi,-\pi),(5 \pi / 3,-\pi / 3)$

$$
\begin{aligned}
& \text { The stationary points are }(\pi, \pi),(\pi, \pi),(-\pi, \pi),(\pi, \pi),(-5 \pi, 3 \pi),(-3 \pi, 3 \pi)(3 \pi,-3 \pi) \\
& \left(r=\frac{\partial^{2} f}{\partial x^{2}}=-\operatorname{sis} \phi x-\sin (x+y)=-\sin x-\sin (x+y)\right. \\
& \delta=\frac{d^{2} f}{\partial x \partial y}=-\sin (x+y) \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=-\sin y-\sin (x+y) \\
& \begin{array}{l}
\text { At }(\pi / 3, \pi / 3) \\
r=-\sin \pi / 3-\sin (\pi / 3+\pi / 3) \\
=-\frac{\sqrt{3}}{2}-\sin 2 \pi / 3=-\frac{\sqrt{3}}{2}-\sin \pi / 3=-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=-\sqrt{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \delta=-\sin (\pi / 3+\pi / 3)=-\sin 2 \pi / 3=-\sin \pi / 3=-\frac{\sqrt{3}}{2} . \\
& t=-\sin \pi / 3-\sin (\pi / 3+\pi / 3)=0 \\
&=-\frac{\sqrt{3}}{2}-\sin 2 \pi / 3=-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=-\sqrt{3} . \\
& r t-s^{2}=(-\sqrt{3})(-\sqrt{3})-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
&= 3-\frac{3}{4} \\
&= \frac{12-3}{4}=\frac{9}{4}>0 . \\
& \therefore r-r<t^{2}>0, \quad r<0 . \quad \because=-\sqrt{3}
\end{aligned}
$$

\therefore The function has maximum at point $(\pi / 3, \pi / 3)$.
\therefore Maximum value $f=\sin x+\sin y+\sin (x+y)$

$$
\begin{aligned}
& =\sin \pi / 3+\sin \pi / 3+\sin (\pi / 3+\pi / 3) \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\sin 2 \pi / 3 \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\sin \pi / 3 \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{3}}{2} .
\end{aligned}
$$

At $(-\pi / 3 ; 5 \pi / 3)$

$$
\begin{array}{rlrl}
r & =-\sin (-\pi / 3)-\sin (-\pi / 3+5 \pi / 3) & S & =-\sin (-\pi / 3+5 \pi / 3) \\
& =\sin \pi / 3-\sin (4 \pi / 3) & & =-\sin (4 \pi / 3) \\
& =-\sin (\pi+\pi / 3) \\
& =\frac{\sqrt{3}}{2}+\sin \pi / 3 & & =\sin \pi / 3 \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\sqrt{3} \\
& =-\sin (5 \pi / 3)-\sin (-\pi / 3+5 \pi / 3) & = \\
& =-\sin (2 \pi-\pi / 3)-\sin (4 \pi / 3) \\
& =\sin \pi / 3-\sin (\pi+\pi / 3) \\
& =\sin \pi / 3+\sin \pi / 3=\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\sqrt{2}
\end{array}
$$

$$
\begin{aligned}
& r t-s^{2} \\
= & (\sqrt{3})(\sqrt{3})^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
= & 3-\frac{3}{4}=\frac{12-3}{4}=\frac{9}{4}>0 . \\
& \therefore r t-s^{2}>0 \quad, \quad r=\sqrt{3}>0 .
\end{aligned}
$$

\therefore The function has minimum at the point ($-\pi / 3,5 \pi / 3$)

$$
\therefore \text { Minimum value } \begin{aligned}
f & =\sin x+\sin y+\sin (x+y) \\
& =\sin (-\pi / 3)+\sin (5 \pi / 3)+\sin (-\pi / 3+5 \pi / 3) \\
& =-\sin \pi / 3+\sin (2 \pi-\pi / 3)+\sin (4 \pi / 3) \\
& =-\frac{\sqrt{3}}{2}-\sin \pi / 3+\sin (\pi+\pi / 3) \\
& =-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}-\sin \pi / 3 \\
& =-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \\
& =\frac{-3 \sqrt{3}}{2} .
\end{aligned}
$$

At the points $(\pi,-\pi),(3 \pi,-5 \pi),(\pi, \pi),(\pi \pi),(-\pi, \pi),(\pi, \pi),(-5 \pi, 3 \pi)$

$$
\begin{gathered}
(-3 \pi, 3 \pi),(3 \pi,-3 \pi) \\
\gamma t-s^{2}=0
\end{gathered}
$$

\therefore We need further investigation.
(7) $x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$.

Let $f(x, y)=x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y+a^{3}\left(-\frac{1}{x^{4}}\right)+0=y-\frac{a^{3}}{x^{2}} \\
& \frac{\partial f}{\partial y}=x+0+a^{3}\left(-\frac{1}{y^{2}}\right)=x-\frac{a^{3}}{y^{2}}
\end{aligned}
$$

we have $\frac{\partial f}{\partial x}=0$

$$
y-\frac{a^{3}}{x^{2}}=0
$$

$$
y=\frac{a^{3}}{x^{2}}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=0 \\
& x-\frac{a^{3}}{y^{2}}=0 \\
& x=\frac{a^{3}}{y^{2}}
\end{aligned}
$$

Sub yvalue in $x=\frac{a^{3}}{y^{2}}$

$$
\begin{aligned}
& x-\frac{a^{3}}{\left(\frac{a^{3}}{x^{2}}\right)^{2}}=0 \\
& x-\frac{a^{5}}{\left.\left(a^{3}\right)\right)^{4}} x^{4}=0 \\
& x-\frac{x^{4}}{a^{3}}=0 \\
& a^{3} x-x^{4}=0 \\
& x\left(a^{3}-x^{3}\right)=0 \\
& x=0,\left(a^{3}-x^{3}\right)=0 \\
& x=0,(a-x)=0 \\
& x=a
\end{aligned}
$$

sub $x=a$ in $y=\frac{a b}{x^{2}}$

$$
\begin{aligned}
y & =\frac{a^{x}}{x^{0}} \\
y & =a \\
\therefore x=a, y & =a .
\end{aligned}
$$

\therefore The stationary point is (a, a).
$\rightarrow(\alpha, a)$

$$
\begin{aligned}
& r=\frac{d^{2} f}{d x^{2}}=\frac{a^{3}}{x 4^{3}}(2 x)=\frac{2 a^{3}}{x^{3}} \\
& S=\frac{d^{2} f}{\partial x d y}=1 \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=\frac{a^{3}}{y^{4} 3}(\$ y)=\frac{2 a^{3}}{y^{3}}
\end{aligned}
$$

At the point (a, a)

$$
\begin{aligned}
r= & \frac{2 a^{3}}{S^{3}}=2 . \quad \delta=1, \quad t=\frac{2 a s}{a 3}=2 . \\
& r t-s^{2} \\
= & (2)(2)-(1)^{2} \\
= & 4-1=3>0 .
\end{aligned}
$$

$$
r t-s^{2}>0, \quad r>2>0
$$

\therefore The function has minimum value at point (a, a)
\therefore Minimum value is $f=(a)(a)+\frac{a^{3}}{a}+\frac{a^{3}}{a}$

$$
\begin{aligned}
& =a^{2}+a^{2}+a^{2} \\
& =3 a^{2}
\end{aligned}
$$

Multiple Integrals and their Applications

INYRODUCYION YO DETINIYE INYEGRA1S AND DOUB1E INYEGRA1S

DeGtnt1e In1egia1s
The concept of definite integral

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

is physically the area under a curve $y=f(x)$, (say), the x axis and the two ordinates $x=a$ and $x=b$. It is defined as the limit of the sum

$$
f\left(x_{1}\right) \delta x_{1}+f\left(x_{2}\right) \delta x_{2}+\ldots+f\left(x_{n}\right) \delta x_{n}
$$

when $n \rightarrow \infty$ and each of the lengths $\delta x, \delta x_{2}, \ldots, \delta x_{n}$ tends to zero.

Fig. 5.1

Here $\delta x_{1}, \delta x_{2}, \ldots, \delta x_{n}$ are n subdivisions into which the range of integration has been divided and $x_{1}, x_{2}, \ldots, x_{n}$ are the values of x lying respectively in the Ist, $2 \mathrm{nd}, \ldots, n$th subintervals.

Doub1e In1egıa1s

A d o u ble integral is the co u nter p art of the above definition in two dimensions.

Let $f(x, y)$ be a single valued and bounded function of two independent variables x and y defined in a closed region A in $x y$ plane. Let A be divided into n elementary areas $\delta A_{1}, \delta A_{2}$, $\ldots, \delta A_{n}$.

Let $\left(x_{r}, y_{r}\right)$ be any point inside the r th elementary area δA_{r}.

Fig. 5.2

Consider the sum

$$
\begin{equation*}
f\left(x_{1}, y_{1}\right) \delta A_{1}+f\left(x_{2}, y_{2}\right) \delta A_{2}+\ldots+f\left(x_{n}, y_{n}\right) \delta A_{n}=\sum_{r=1}^{n} f\left(x_{r}, y_{r}\right) \delta A_{r} \tag{2}
\end{equation*}
$$

Then the limit of the sum (2), if exists, as $n \rightarrow \infty$ and each sub-elementary area approaches to zero, is termed as 'double integral' of $f(x, y)$ over the region A and expressed as $\quad \iint_{A} f(x, y) d A$.

Engineering Mathematics through Applications

Thus

$$
\begin{equation*}
\iint_{A} f(x, y) d A=\operatorname{Lt}_{\substack{n \rightarrow \infty \\ \delta A_{r} \rightarrow 0}} \sum_{r=1}^{\text {m }} f\left(x_{r}, y_{r}\right) \delta A_{r} \tag{3}
\end{equation*}
$$

Observations: Double integrals are of limited use if they are evaluated as the limit of the sum. However, they are very useful for physical problems when they are evaluated by treating as successive single integrals.

Further just as the definite integral (1) can be interpreted as an area, similarly the double integrals (3) can be interpreted as a volume (see Figs. 5.1 and 5.2).

EVA1UAYION OT DOUB1E INYEGRA1

Evaluation of double integral $\quad \iint_{R} f(x, y) d x d y$
is discussed under following three possible cases:
Case I: When the region R is bounded by two continuous curves $y=\psi(x)$ and $y=\phi(x)$ and the two lines (ordinates) $x=a$ and $x=b$.

In such a case, integration is first performed with respect to y keeping x as a constant an d then the resulting integral is integrated within the limits $x=a$ and $x=b$.

Mathematically expressed as:

Fig. 5.3

Geometrically the process is shown in Fig. 5.3, where integration is carried out from inner rectangle (i.e., along the one edge of the 'vertical strip $P Q$ ' from P to Q) to the outer rectangle.

Case 2: When the region R is bounded by two continuous curves $x=\phi(y)$ and $x=\Psi(y)$ and the two lines (abscissa) $y=a$ and $y=b$.

In such a case, integration is first performed with respect to x. keeping y as a constant and then the resulting integral is integrated between the two limits $y=a$ and $y=b$.

Mathematically expressed as:

$$
\iint_{R} f(x, y) d x d y=\int_{y=a}^{y=b}\left|\int_{x=\theta(y)}^{x=\Psi(y)} f f(x, y) d x\right| d y
$$

Geometrically the process is show n in Fig. 5.4, where integration is carried out from inner rectangle (i.e., along the one edge of the horizontal strip $P Q$ from P to Q) to the outer rectangle.

Case 3: When both pairs of limits are constants, the region of integration is the rectangle $A B C D$ (say).

Fig. 5.4

Fig. 5.5

Multiple Integrals and their Applications

In this case, it is immaterial whether $f(x, y)$ is integrated first with respect to x or y, the result is unaltered in both the cases (Fig. 5.5).

Observations: While calculating double integral, in either case, we proceed outwards from the innermost integration and this concept can be generalized to repeated integrals with three or more variable also.

Example 1: Evaluate $\int_{0}^{1} \int^{1+x^{2}} \frac{1}{\left(1+x^{2}+y^{2}\right)} d y d x$
[Madras 2000; Rajasthan 2005].

Solution: Clearly, here $y=f(x)$ varies from 0 to $\sqrt{1+x^{2}}$ and finally x (as an independent variable) goes between 0 to 1 .

$$
\begin{aligned}
& I=\int_{0}^{1}\left(\int_{0} \sqrt{1+x^{2}} \frac{1}{\left(1+x^{2}\right)+y^{2}} d y\right) d x \\
& =\int_{0}^{1}\left|\iint_{0}^{1+x^{2}} \frac{1}{a^{2}+y^{2}} d y\right| d x, a^{2}=\left(1+x^{2}\right) \\
& \begin{array}{l}
=\int_{q}^{1}\left(\frac{1}{a} \tan ^{-1} \frac{y}{a}\right)^{\sqrt{1+x^{2}}} d x \\
= \\
= \\
a_{0} \\
\tan ^{-1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{\pi}{4} \log \sqrt{1+x^{2}} \overline{2}\right)
\end{aligned}
$$

Fig. 5.6

Example 2: Evaluate $\iint e^{2 x+3 y} d x d y$ over the triangle bounded by the lines $x=0, y=0$ and $x+y=1$.

Solution: Here the region of integration is the triangle $O A B O$ as the line $x+y=1$ intersects the axes at points $(1,0)$ and $(0,1)$. Thus, precisely the region R (say) can be expressed as:

$$
\begin{aligned}
& 0 \leq x \leq 1,0 \leq y \leq 1-x(\text { Fig 5.7 }) . \\
\therefore \quad & I=\iint_{R} e^{2 x+3 y} d x d y \\
& =\iint_{0}^{1}\left(\int_{0}^{1-x} e^{2 x+3 y} d y\right) d x \\
& =\left.\right|_{0} ^{1}\left\lceil\int^{1} e^{2 x+3 y}\right]_{0}^{1-x} d x
\end{aligned}
$$

Fig. 5.7

Example 3: Evaluate the integral $\iint_{R} x y(x+y) \mathrm{dxdy}$ over the area between the curves $y=x^{2}$ and $y=x$.

Solution: We have $y=x^{2}$ and $y=x$ which implies $x^{2}-x=0$ i.e. either $x=0$ or $x=1$

Further, if $x=0$ then $y=0$; if $x=1$ then $y=1$. Means the two curves intersect at points $(0,0),(1,1)$.
\therefore The region R of integration is d ote d an d can be expressed as: $0 \leq x \leq 1, x^{2} \leq y \leq x . \quad(\quad x y(x+))$
$\therefore \quad \int_{0}\left(\int_{x^{2}}^{x} y d y\right) d x$
$=\int_{0}^{1}\left\{\left(x^{2} \frac{y^{2}}{2}+x \frac{y^{3}}{3}\right)_{x^{2}}^{x}\right\} d x$

Fig. 5.8

$$
\left.=\int_{0}^{1}\left\{\left\{\left.\left(\begin{array}{l}
x^{4} \\
2
\end{array}+\frac{x^{4}}{3}\right) \right\rvert\,\right)-\left\{\left(\begin{array}{c}
x^{6} \\
2
\end{array}+\frac{x^{7}}{3}\right)\right\rangle\right)\right\} d x
$$

$$
\left.=\int_{0}^{1} \frac{1}{\left.\right|_{6}} x^{4}-\underline{1}^{6} x^{6}-\underline{1}_{x} x^{7}\right) d x
$$

$$
=\left\lceil\frac{5}{6} \times \frac{x^{5}}{5}-\frac{1}{2} \frac{x^{7}}{7}-\frac{1}{3} \frac{x^{8}}{8}\right\rceil_{b}^{1}=\frac{1}{6}-\frac{1}{14}-\frac{1}{2}=\frac{3}{24} 56
$$

Example 4: Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\quad \begin{aligned} & x^{2}+y^{2}=1 \\ & a^{2}\end{aligned}$
[UP Tech. 2004, 05; KUK, 2009]

$$
x^{2}+y^{2}=1
$$

Solution: For the given ellipse $\overline{a^{2}} \overline{b^{2}}$, the region of integration can be considered as

$$
\begin{aligned}
& =\frac{1}{3} \int_{0}^{1}\left(e^{3-x}-e^{2 x}\right) d x \\
& =\frac{1}{}\left\lceil{ } _ { 3 } \left\lceil\left[\frac{e^{3-x}}{\lfloor-1}-\frac{e^{2 x}}{2}\right]_{0}^{1}\right.\right. \\
& =\frac{-1}{3}\left[\left(\left(e^{2}+e_{2}^{2} y\right)-\left(e^{3}+\frac{1}{2}\right) y\right]\right. \\
& =\frac{1}{6}\left[2 e^{3}-3 e^{2}+1\right]=\frac{1}{[}\left[(2 e+1)(e-1)^{2}\right\rceil \text {. }
\end{aligned}
$$

Multiple Integrals and their Applications

bounded by the curves $\quad \mathrm{y}=-\mathrm{b} \sqrt{1-\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}}, \quad \mathrm{y}=\mathrm{b} \sqrt{1-\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}}$ and finally x goes from $-a$ to a

$$
\begin{aligned}
\therefore \quad I & =\iint(x+y)^{2} d x d y=\int_{-a}^{a(}\left(\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b} \sqrt{1-x^{2} / a^{2}}\right. \\
\therefore & \left.x^{2}+y^{2}+2 x y\right) d y d x \\
I & =\int_{-a}^{a}\left(\int_{-b}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}}\right. \\
& \left.\left.x^{2}+y_{2}\right) d y\right) d x
\end{aligned}
$$

[Here $\int 2 x y d y=0$ as it has the same integral value for both limits i.e., the term $x y$, which is an odd function of y, on integration gives a zero value.]

$$
\begin{aligned}
& I=4 \int_{0}^{a}\left(\int_{0}^{b \sqrt{1-x^{2} / a^{2}}}\left(x^{2}+y d y\right) d x\right) \\
& I=4 \int_{0}^{a}\left[\left|x^{2} y+\frac{\left.y^{3}\right\rceil^{b} \sqrt{1-x^{2} / a^{2}}}{3}\right|_{0}^{a} d x\right. \\
\Rightarrow \quad & I=4 \int_{0}^{a}\left[{ }_{2}\left(x^{2}\right)^{12} / b^{3}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2} /}\right\rceil \\
3 & \left(1-\overline{a^{2}}\right) \mid d x
\end{aligned}
$$

Fig. 5.9

On putting $x=a \sin \theta, d x=a \cos \theta d \theta$; we get

$$
\begin{aligned}
I & =4 b \int_{0}^{\pi / 2}\left(\left(a^{2} \sin ^{2} \theta \cos \theta\right)+\frac{b^{3}}{\cos ^{3} \theta}\right) a \cos \theta d \theta \\
& =4 a b \int_{0}^{\pi / 2}\left(a^{2} \sin ^{2} \theta \cos ^{2} \theta+\frac{b^{3}}{\left.\frac{\cos ^{4} \theta}{3}\right)} d \theta\right.
\end{aligned}
$$

Now using formula $\int_{0}^{\pi / 2} \sin ^{p} x \cos ^{q} x d x=\frac{\left.\frac{1}{2} \left\lvert\,\left(\frac{p+1}{2}\right)^{2}\right.\right) \left\lvert\,\left(\frac{q+1}{2}\right)^{\prime}\right.}{\left|\left(\frac{p+q+2}{2}\right)\right|}$
and $\quad \int_{0}^{\pi / 2} \cos ^{n} x d x=\frac{\sqrt{\left(\frac{n+1}{2}\right)}}{\sqrt{\left(\frac{n+2}{2}\right)}} \frac{\sqrt{\pi}}{2}$,
(in particular when $p=0, q=n$)

$$
\iint(x+y)^{2} d x d y=4 a b^{\{ }\left\{a^{2} \frac{\sqrt{\frac{3}{z}} \sqrt{23}}{\Gamma}+\frac{b^{2}}{3} \frac{\sqrt{\frac{5}{2}} \sqrt{1}}{2 \sqrt{3}}\right\}
$$

Engineering Mathematics through Applications

$$
\begin{aligned}
& =4 a b\left\{\begin{array}{l}
\left.2 \frac{\sqrt{\pi}-\sqrt{2 \pi}}{2 \cdot 2 \cdot 1}+3 \frac{b^{2} \frac{3}{2} \frac{\sqrt{\pi}}{2 \cdot 2 \cdot 1}}{2 \cdot \sqrt{\pi}}\right\}
\end{array}\right\} \\
& =4 a b\left\{\frac{\pi a^{2}}{\left.16+\frac{\pi b^{2}}{16}\right\}=\frac{\pi a b\left(a_{4}^{2}+b^{2}\right)}{}}\right.
\end{aligned}
$$

ASSIGNMENY 1

1. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$
2. Evaluate $\iint_{R} x y d x d y$, where A is the domain bounded by the x-axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$.
[M.D.U., 2000]
3. Evaluate $\iint e^{a x+b y} d y d x$, where R is the area of the triangle $x=0, y=0, a x+b y=1(a>0$, $b>0$). [Hint: See example 2]
4. Prove that $\iint_{13}^{21}\left(x y+e^{y}\right) d y d x={ }_{31}^{12}\left(\int x y+e^{y}\right) d x d y$.
5. Show that $\int_{0}^{d x} \int_{0}^{d x+y)^{3}} \int_{0}^{x-y} d y \neq d x+y_{0}^{x-y} d x$
6. Evaluate $\int_{0}^{\infty} \int_{0}^{-x^{2}\left(1+y^{2}\right)} x d x d y \quad$ [Hint: Put $x^{2}\left(1+y^{2}\right)=t$, taking y as const.]

CHANGE OT ORDER OT INYEGRAYION IN DOUB1E INYEGRA1S

The concept of change of order of integration evolved to help in handling typical integrals occurring in evaluation of double integrals.

When the limits of given integral $\quad \int_{a}^{b} \cdot j_{=\phi(x)}^{y=\Psi(x)} f(x, y) d y d x$ are clearly drawn and the region of integration is demarcated, then we can well change the order of integration be performing integration first with respect to x as a function of y (along the horizontal strip $P Q$ from P to $Q)$ and then with respect to y from c to d.

Mathematically expressed as:

$$
I=\iint_{c x=\phi(y)}^{d x=\Psi(y)} f(x, y) d x d y
$$

Sometimes the demarcated region may have to be split into two-to-three parts (as the case may be) for defining new limits for each region in the changed order.

Multiple Integrals and their Applications

Example 5: Evaluate the integral $\iint_{0}^{1} y^{\sqrt{1-x^{2}}} y^{2} d y d x$ by changing the order of integration.
[KUK, 2000; NIT Kurukshetra, 2010]
Solution: In the above integral, y on vertical strip (say $P Q$) varies as a function of x and then the strip slides between $x=0$ to $x=1$.

Here $y=0$ is the x-axis and $y=\sqrt{1-x^{2}}$ i.e., $x^{2}+y^{2}=1$ is the circle.
In the changed order, the strip becomes $P^{\prime} Q^{\prime}, P^{\prime}$ resting on the curve $x=0, Q^{\prime}$ on the circle $x=\sqrt{1-y^{2}}$ and finally the strip $P^{\prime} Q^{\prime}$ sliding between $y=0$ to $y=1$.

$$
\begin{aligned}
\therefore \quad I & =\int_{0}^{1} y^{2}\left(\int_{0}^{\sqrt{1-y^{2}}} d x\right) d y \\
& I=\int_{0}^{1} y^{2}[x]{\sqrt{1-y^{2}}}_{0}^{1-2} d y \\
& I=\int_{0}^{1} y^{2}\left(1-y^{2}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

Substitute $y=\sin \theta$, so that $d y=\cos \theta d \theta$ and θ varies from 0 to ${ }_{2}$

Fig. 5.10

$$
\begin{aligned}
& I=\int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta \\
& I=\frac{(2-1) \cdot(2-1) \pi}{4 \cdot 2}=\frac{\pi}{16}
\end{aligned}
$$

Example 6: Evaluate $\int_{0}^{4 a 2} \int_{\frac{x^{2}}{4 a}}^{4 a x} d y d x$ by changing the order of integration.
[M.D.U. 2000; PTU, 2009]
Solution: In the given integral, over the vertical strip $P Q$ (say), if y changes as x^{2} function of x such $y=$
that P lies on the curve $\overline{4 a}$ and Q lies on the curve $y=2 \sqrt{a x}$ and finally the strip slides between $x=0$ to $x=4 a$.

Here the curve $\quad y=\frac{x^{2}}{4 a}$ i.e. $x^{2}=4 a y$ is a parabola with

$$
\begin{array}{lll}
y=0 & \text { implying } & x=0 \\
y=4 a & \text { implying } & x= \pm 4 a
\end{array}
$$

Fig. 5.11

Engineering Mathematics through Applications

i.e., it passes through $(0,0)(4 a, 4 a),(-4 a, 4 a)$.

Likewise, the curve $y=2 \sqrt{a x}$ or $y^{2}=4 a x$ is also a parabola with

$$
x=0 \Rightarrow y=0 \text { and } x=4 a \Rightarrow y= \pm 4 a
$$

i.e., it passes through $(0,0),(4 a, 4 a),(4 a,-4 a)$.

Clearly the two curves are bounded at $(0,0)$ and $(4 a, 4 a)$.
\therefore On changing the order of integration over the strip $P^{\prime} Q^{\prime}, x$ changes as a function of y such that P^{\prime} lies on the curve $y^{2}=4 a x$ and Q^{\prime} lies on the curve $x^{2}=4 a y$ and finally $P^{\prime} Q^{\prime}$ slides between $y=0$ to $y=4 a$.
whence

$$
\begin{aligned}
I & =\int_{0}^{4 a}\left(\int_{x=\frac{y^{2}}{4 a}}^{x=2 \sqrt{a y}} d x\right) d y \\
& =\int_{0}^{4 a}[x]_{\frac{y^{2}}{2 a y}}^{\sqrt{a y}} d y \\
& \int_{0}^{4 a(}\left(\sqrt{4 a} \sqrt{2}-\frac{y^{2}}{4 a}\right) d y \\
& \left\lceil\left\lvert\, 2 \sqrt{a} \frac{y^{2}}{\frac{3}{3}}-\frac{y^{3}}{12 a}\right.\right]^{4 a}=\frac{4 \sqrt{a}}{3}(4 a)^{\frac{3}{2}}-\frac{1}{12 a}(4 a)^{3} \\
& =\frac{32 a^{2}}{3}-\frac{16 a^{2}}{3}=\frac{16 a^{2}}{3}
\end{aligned}
$$

Example 7: Evaluate $\iint_{0 \frac{x}{a}}^{a} \sqrt{\frac{x}{a}}\left(x^{2}+y^{2}\right) d x d y$ by changing the order of integration.
Solution: In the given integral $\quad \int_{0}^{a} \int_{x / a}^{y^{+a}}\left(x^{2}+a^{2}\right) d x d y, y$ varies along vertical strip $P Q$ as a function of x and finally x as an independent variable varies from $x=0$ to $x=a$.

Here $y=x /$ a i.e. $x=a y$ is a straight line and $\quad y=\sqrt{x / a}$, i.e. $x=a y^{2}$ is a parabola.
For $x=a y ; x=0 \Rightarrow y=0$ and $x=a \Rightarrow y=1$.
Means the straight line passes through $(0,0),(a, 1)$.
For $x=a y^{2} ; x=0 \Rightarrow y=0$ and $x=a \Rightarrow y= \pm 1$.
Means the parabola passes through $(0,0),(a, 1),(a,-1)$.
Further, the two curves $x=a y$ and $x=a y^{2}$ intersect at common points $(0,0)$ and $(a, 1)$.

On changing the order of integration $y=a y$
$\int_{0} a \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2} \searrow x d y=\int_{y=0}^{y=1}\left(\int_{x=a y}^{2}+y^{2}\right) d x d y\right)$
(at P^{\prime})

Fig. 5.12

$$
\begin{aligned}
& I=\int_{0}^{1}\left[\frac{x^{3}}{3}+x y^{2}\right]_{a y^{2}}^{a y} d y \\
& \left.\left.=\left.\int_{0}\right|^{\left[\left((a y)^{3}\right.\right.} \frac{1}{3}+a y \cdot y^{2}\right)-\left(\frac{1}{3}\left(a y^{2}\right)^{3}+a y^{2} \cdot y^{2}\right)\right] d y \\
& =\int_{0}^{\left.1\left\lceil\left(\frac{a^{3}}{3}\right)+a\right) y^{3}-a^{3} y^{6}-a y^{4}\right\rceil d y} \\
& =\left\{\left(\left.\right|_{\left(a^{3}\right) y^{4}} ^{3}+a\right)_{-4}^{a^{3} y^{7}}-\frac{a y^{5}}{3-7}-5\right\}_{0}^{1} \\
& \left.=\left\{\left(\underline{3 a^{3} 4}-\underline{a^{3} \times 7}\left(\underline{a} \left\lvert\,+\frac{a}{4}\right.\right)\right) 5\right)\right\} \\
& =a^{3}+\frac{a}{-}=\frac{a}{}\left(5 a^{2}+7\right) \\
& 28 \quad 20 \quad 140
\end{aligned}
$$

Example 8: Evaluate $\int_{0}^{a} \int_{\sqrt{a x}} \frac{y^{2}}{\sqrt{y^{4}-a^{2} x^{2}}} d y d x$.
[SVTU, 2006]
Solution: In the above integral, y on the vertical strip (say $P Q$) varies as a function of x and then the strip slides between $x=0$ to $x=a$.

Here the curve $y=\sqrt{a x}$ i.e., $y^{2}=a x$ is the parabola and the curve $y=a$ is the straight line.
On the parabola, $x=0 \Rightarrow y=0 ; x=a \Rightarrow y= \pm a$ i.e., the parabola passes through points $(0,0),(a, a)$ and $(a,-a)$.

On changing the order of integration,

$$
\begin{aligned}
& \left.I=\int_{0}^{a}\left(\int_{\substack{x=0 \\
\left(a t P^{\prime}\right)}}^{x=\frac{y^{2}}{a}} \frac{y^{2}}{\sqrt{y^{4}-a^{2} x^{2}}} d x\right) \right\rvert\, d y \\
& =\int_{0}^{a}\left|\int_{0}^{\frac{y^{2}}{a}} \frac{y^{2}}{a} \frac{1}{\sqrt{\left(\frac{y^{2}}{a}\right)^{2}-x^{2}}} d x\right| d y
\end{aligned}
$$

Fig. 5.13

Engineering Mathematics through Applications

$$
\begin{aligned}
& =\int_{0}^{a} \frac{y^{2}}{a}\left[\sin ^{-1} 1-\sin ^{-1} 0\right]_{1} d y \\
& =\int_{0} \frac{y^{2} \pi}{a}-d y=\left.\frac{\pi}{2 a} \frac{y^{3}}{3}\right|_{0} ^{a}=\frac{\pi a^{2}}{6} .
\end{aligned}
$$

Example 9: Change the order of integration of

$$
\iint_{0}^{12-x} x y d y d x \text { and hence evaluate the same. }
$$

[KUK, 2002; Cochin, 2005; PTU, 2005; UP Tech, 2005; SVTU, 2007]
Solution: In the given integral

$$
\int_{0}^{1}\left(\int_{x^{2}}^{2} \int^{x} x y d y \mid, d x \text {, on the vertical strip } P Q(\text { say }), y\right. \text { varies as a }
$$

function of x and finally x as an independent variable, varies from 0 to 1 .

Here the curve $y=x^{2}$ is a parabola with

$$
\begin{array}{lll}
y=0 & \text { implying } & x=0 \\
y=1 & \text { implying } & x= \pm 1
\end{array}
$$

i.e., it passes through $(0,0),(1,1),(-1,1)$.

Likewise, the curve $y=2-x$ is straight line with

$$
\left.\begin{array}{ll}
y=0 \Rightarrow & x=2 \\
y=1 \Rightarrow & x=1 \\
y=2 \Rightarrow & x=0
\end{array}\right\}
$$

Fig. 5.14
i.e. it passes though $(1,1),(2,0)$ and $(0,2)$

On changing the order integration, the area $O A B O$ is divided into two parts $O A C O$ and $A B C A$. In the area $O A C O$, on the strip $P^{\prime} Q^{\prime}, x$ changes as a function of y from $x=0$ to $x \neq y$. Finally y goes from $y=0$ to $y=1$.

Likewise in the area ABCA, over the strip p"Q", x changes as a function of y from $x=0$ to $x=2-y$ and finally the strip P"Q" slides between $y=1$ to $y=2$.

$$
\begin{aligned}
\therefore \quad & \int_{0}^{1}\left(\int_{0}^{\sqrt{y}} x y d x\right) d y+\int_{1}^{f}\left(\int_{0}^{2-y} x y d x\right) d y \\
& =\int_{0}^{1}\left(\left.\left.\left.y \frac{x^{2}}{2}\right|_{0} ^{\sqrt{y}}\right|_{0} d y+\int_{1}^{2}\left(\left|y \frac{x^{2}}{2}\right|_{0}^{2-y}\right) \right\rvert\, d y\right. \\
& =\int_{0}^{1} \frac{y^{2}}{2} d y+\int_{1}^{2} \frac{4(2-y)^{2}}{23^{2}} d y \\
& =\frac{1}{6}+\frac{1}{2}\left(2 y^{2}-\frac{y^{4}}{3}+\frac{2}{4}\right)_{1}^{2} \\
I & =\frac{1}{6}+\frac{5}{24}=\frac{3}{2} .
\end{aligned}
$$

Example 10: Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing order of integration.
[KUK, 2000; MDU, 2003; JNTU, 2005; NIT Kurukshetra, 2008]
Soluton: Clearly over the strip $P Q, y$ varies as a function of x such that P lies on the curve $y=x$ and Q lies on the curve $\mathrm{y}=\sqrt{2-\mathrm{x}^{2}}$ and $P Q$ slides between ordinates $x=0$ and $x=1$.

The curves are $y=x$, a straight line and $y=\sqrt{2-x^{2}}$, i.e. $x^{2}+y^{2}=2$, a circle.

The common points of intersection of the two are $(0,0)$ and $(1,1)$.

On changing the order of integration, the same region $O N M O$ is divided into two parts $O N L O$ and $L N M L$ with horizontal strips $P^{\prime} Q$ ' and $P^{\prime \prime} Q "$ sliding between $y=0$ to $y=1$ and $y=1$ to $\quad y=\sqrt{2}$ respecti-

Fig. 5.15 vely.
whence

$$
I=\int_{0}^{1 y} \int_{0}^{y} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y+\int_{1}^{\sqrt{2}^{2}} \int_{0}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y
$$

Now the exp.

$$
\frac{x}{x^{2}+y^{2}}=\frac{d}{d x}\left(x^{2}+y^{2}\right) z
$$

1

$$
I=+_{0}^{1\lceil }\left\lfloor\left(x_{2}^{x}+y_{2}\right)_{0}^{\frac{1}{]^{y}}} d y+{\stackrel{\sqrt{2}}{ }{ }^{2}\left\lceil\left(x^{2}+y^{2}\right)^{2}\right\rfloor_{0}^{1} d y}_{\sqrt{2-y^{2}}} d y\right.
$$

$$
+_{1}
$$

$$
I=+_{0}^{1\lceil }\left\lfloor\left(x+y_{2}\right)_{0}^{\frac{1}{7}}{\underset{0}{y}}_{1} d y+y_{1}^{2}\left[\left(x_{2}+y_{2}\right)_{2}^{1}\right]_{0}^{\sqrt{2-y^{2}}} d y\right.
$$

$$
=\left.(\sqrt{2}-1) \frac{y^{2}}{2}\right|_{0} ^{1}+\left(\sqrt[2]{y}-\frac{y^{2}}{2}\right)_{0}^{\sqrt{z}^{z}}=\frac{1}{2}(\sqrt{2}-1)
$$

Example 11: Evaluate $\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{a+\sqrt{a^{2}-y^{2}}} d y d x$ by changing the order of integration.
Solution: Given $\int_{y=0}^{y=a}\left(\int_{x=a-\sqrt{a^{2}-y^{2}}}^{x=a+\sqrt{a^{2}-y^{2}}} d x\right) d y$
Clearly in the region under consideration, strip $P Q$ is horizontal with point P lying on the curve $\quad x=a-\sqrt{a^{2}-y^{2}}$ and point Q lying on the curve $\quad x=a+\sqrt{a^{2}-y^{2}}$ and finally this strip slides between two abscissa $y=0$ and $y=a$ as shown in Fig 5.16.

Engineering Mathematics through Applications

Now, for changing the order of integration, the region of integration under consideration is same but this time the strip is $P^{\prime} Q^{\prime}$ (vertical) which is a function of x with extremities P^{\prime} and Q^{\prime} at $y=0$ an d $y=\sqrt{2 a x-x^{2}}$ respectively and slides between $x=0$ and $x=2 a$.

Thus

$$
\begin{aligned}
I & =\int_{0}^{2 a}\binom{\sqrt{2 a y^{-x^{2}}}}{0} d y=\int_{0}^{2 a}[y]^{\sqrt{2 a x-x^{2}}} d x \\
& =\int_{0}^{2 a} \sqrt{2 a x-x^{2}} d x=\int_{0}^{2 a} \sqrt{x} \sqrt{a-x d} x
\end{aligned}
$$

Take

$$
\sqrt{x}=\sqrt{2 a} \sin \theta \text { so that } d x=4 a \sin \theta \cos \theta d \theta
$$

Fig. 5.16
Also,

$$
\text { For } x=0, \theta=0 \text { and for } x=2 a, \theta=\underline{\pi}
$$

$$
\begin{aligned}
& \frac{\pi}{2} \\
& \text { Therefore, } \quad I=\int_{0} 2 \sqrt{2 a \sin \theta} \sqrt{2 a-2 a \sin ^{2} \theta} \cdot 4 a \sin \theta \cdot \cos \theta d \theta \\
& =8 a \int_{0}^{2} \sin ^{2} \theta \cos ^{2} \theta d \theta=8 a^{2} \cdot \frac{(2-1)(2-1) \pi}{4(4-2) \quad 2}=\frac{\pi a^{2}}{2}
\end{aligned}
$$ p and q both positive even integers

Example 12: Changing the order of integration, evaluate

[MDU, 2001; Delhi, 2002; Anna, 2003; VTU, 2005]

Solution: Clearly in the given form of integral, x changes as a function of y (viz. $x=f(y)$ and y as an independent variable changes from 0 to 3 .

Thus, the two curves are the straight line $x=1$ and the parabola, $x=\sqrt{4-y}$ and the common area under consideration is ABQCA .

For changing the order of integration, we need to convert the horizontal strip PQ to a vertical strip $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ over which y changes as a function of x and it slides for values of $x=1$ to $x=2$ as shown in Fig. 5.17.

$$
\therefore \quad I=\int_{1}^{2}\left(\int_{0}^{\left(4-x^{2}\right)}(x+y) d y\right) d x=\int_{1}^{2}\left\lceil x y+\frac{y^{2}}{2}\right]_{0}^{4-x^{2}} d x
$$

Fig. 5.17

Multiple Integrals and their Applications

$$
\begin{aligned}
& =\int_{1}^{2}\left|x\left(4-x^{2}\right)+\frac{\left.\left(4-x^{2}\right)^{2}\right\rceil}{2}\right| d x \\
& \left.=\int_{1}^{2}\left[x\left(4-x^{2}\right)+\left(8+\frac{x^{4}}{2}-4 x^{2}\right)\right] \right\rvert\, d x \\
& =\left[2 x^{2}-\frac{x^{4}}{4}+8 x+\frac{x^{5}}{10}-\frac{4}{3} x^{3}\right]_{1}^{2} \\
& =2\left(2^{2}-1^{2}\right)-\frac{1}{4}\left(2^{4}-1^{4}\right)+8(2-1)+\frac{1}{10}\left(2^{5}-1^{5}\right)-4\left(2^{3}-1^{3}\right) \\
& =6-\frac{15}{4}+8+\frac{31}{10}-\frac{28}{3}=\frac{241}{60}
\end{aligned}
$$

[MDU, 2001]
Solution: Over the strip $P Q$ (say), x changes as a function of y such that P lies on the curve $x=y$ and Q lies on the curve $x=\sqrt{a^{2}-y^{2}}$ and the strip $P Q$ slides between $y=0$ to $y={ }^{a} . \quad \overline{\sqrt{2}}$

Here the curves, $x=y$ is a straight line
and

$$
x=0 \quad \Rightarrow y=0
$$

$$
\text { and } \left.\quad x=\frac{a}{\sqrt{2}} \Rightarrow y=\frac{a}{\sqrt{2}}\right\}
$$

($\quad \underline{a}$)
i.e. it passes through $(0,0)$ and $\mid(\sqrt{2}, \sqrt{2})$

Also $x=\sqrt{a^{2}-y^{2}}$, i.e. $x^{2}+y^{2}=a^{2}$ is a circle with centre $(0,0)$ and radius a.

Thus, the two curves intersect at $\left.\quad \begin{array}{l}(a, a) \\ \{\sqrt{2} \quad \sqrt{2}\end{array}\right\}$

On changing the order of integration, the same region $O A B O$ is divided into two parts with vertical strips $P^{\prime} Q^{\prime}$ and $P^{\prime \prime} Q^{\prime \prime}$ sliding between $x=0$ to

$$
x=\frac{a}{\sqrt{2}} \text { and } x=\frac{a}{\sqrt{2}} \text { to } x=a
$$ respectively.

Whence,

$$
\begin{equation*}
\left.I=\int_{0} g^{a / 2}\left|\int_{0}^{x} \log \left(x^{2}+y^{2}\right) \cdot d y\right|\right) d x+\int_{a / \sqrt{2}}^{a}\left(\int_{0}^{\sqrt{a^{2}-x^{2}}} \log \left(x^{2}+y^{2}\right) \cdot 1 d y \mid d x\right. \tag{1}
\end{equation*}
$$

Engineering Mathematics through Applications

$\int^{\text {Now, }} \log \left(x^{2}+y^{2}\right) 1 d y=\frac{\lceil\log x}{\left\lfloor 2+y^{2}\right) \cdot y-\int \frac{1}{x^{2}+y^{2}} 2 y \cdot y d y}{ }^{\lceil }$
Ist IInd
Function

$$
\begin{align*}
& \left.\stackrel{\text { Function }\lceil }{=} y \log \left(x^{2}+y^{2}\right)-\int_{-}^{y^{2}+x^{2}-x^{2}} d y{ }^{x^{2}+y^{2}}\right\rfloor \\
& =\left\lceil y \log \left(x^{2}+y^{2}\right)-2 y+2 x^{2} \int \frac{1}{\left(x^{2}+y^{2}\right)} d y\right] \\
& =\left|y \log \left(x^{2}+y^{2}\right)-2 y+2 x^{2}\left(\underline{1} \tan ^{-1} \underline{y}\right)^{\prime}\right| \tag{2}
\end{align*}
$$

On using (2),

$$
\begin{aligned}
& I_{1}=+_{0} \sqrt[a / 2]{2}\left[y \log \left(x^{2}+y^{2}\right)-2 y+2 x\left(\tan ^{-1} \frac{y) \gamma^{x}}{x}\right)\right\rfloor_{0} d x \\
& =\int_{0}^{a \sqrt{2}}\left[x \log 2 x^{2}-2 x+2 x \tan ^{-1} 1\right] d x \\
& =\int_{0}^{a /} \stackrel{2}{\sqrt{2}}\left\lceil x \log 2 x^{2}-2 x+2 x \frac{\pi}{\underline{\pi}}{ }_{4} d x\right. \\
& =\int_{0}^{a / \upharpoonright^{2}} x \log 2 x^{2} d x+2\left(\frac{\pi}{4}-1\right) \int_{0}^{a / 2} \sqrt{\downarrow} x d x
\end{aligned}
$$

For first part, let $2 x^{2}=t$ so that $4 x d x=d t$ and limits are $t=0$ and $t=a^{2}$.

$$
\begin{align*}
\therefore \quad I_{1} & =\int_{0}^{a^{2}} \log t \cdot \frac{d t}{4}+2\left(\underline{\pi}(4)\left|\frac{x^{2}}{2}\right|_{0}^{a / z}\right. \\
& =\left.\frac{1}{4} t(\log t-1)\right|_{0} ^{a^{2}}+\left(\frac{\pi}{4}-1\right) a^{2} \\
4 & \overline{2},(\text { By parts with } \log t=\log t \cdot 1) \tag{3}\\
& =\frac{a^{2}}{4}\left(\log a^{2}-1\right)+\frac{\pi a^{2}}{8}-\frac{a^{2}}{2}
\end{align*}
$$

Agian, using (2),

$$
\begin{align*}
& \Rightarrow \quad=\int_{a / 2}^{a / 2}\left\lfloor{\sqrt{a^{2}-x^{2}}}^{a} \log a^{2}-2 \sqrt{a^{2}-x^{2}} \stackrel{\begin{array}{c}
x \\
+2 x \tan ^{-1} \\
\frac{\sqrt{a^{2}-x^{2}}}{x}
\end{array} d x}{ } d\right. \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \text { Let } x=a \sin \theta_{\pi / 2} \text { sq that } d x=a \cos \theta d \theta \text { and limits, } 4 \quad \underline{\pi} \text { to } \frac{\pi}{2} \\
& \left.\left.\therefore \quad \quad \quad 2=\int_{\pi / 4}\left[\log a^{2}-2\right) \sqrt{a^{2}-a^{2} \sin ^{2} \theta}+2 a \sin \theta \tan ^{-1} \underline{a^{2}-a^{2} \sin ^{2} \theta}\right] a \sin \theta\right] \\
& =\int_{\pi / 4}^{\pi / 2} a^{2}\left(\log a^{2}-2\right) \cos ^{2} \theta d \theta+a^{2} \int_{\pi / 4}^{\pi / 2} 2 \sin \theta \cos \theta \tan ^{-1}(\cot \theta) d \theta \\
& =a^{2}\left(\log a^{2}-2\right) \int_{\pi / 4}^{\pi / 2} \frac{(1+\cos 2 \theta)}{2} d \theta+a^{2} \int_{\pi / 4}^{\pi / 2} \sin 2 \theta \tan ^{-1}\left(\tan \left(\underline{\pi}_{-\theta}\right)\right) d \theta \\
& \left.=\frac{a^{2}}{2}\left(\log a^{2}-2\right)[\theta+\underline{\underline{\sin 2 \theta}}]^{\pi / 2}{J_{\pi / 4}}^{\Gamma}+a^{2} \int_{\pi / 4}^{\pi / 2}(\underline{\pi})-\theta\right) \sin 2 \theta d \theta
\end{aligned}
$$

the limits)

$$
\begin{align*}
& \left\{\begin{array}{llllll}
\text { \{ } & \overline{4} & \overline{2} & -4 & \text { ر }
\end{array}\right. \tag{5}
\end{align*}
$$

On using results (3) and (5), we get

$$
\begin{aligned}
& I=I_{1}+I_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi a^{2}}{8} \log a^{2}-\frac{\pi a^{2}}{8}=\frac{\pi a^{2}}{8} \mathrm{H}\left(g a^{2}-1\right) \\
& =\frac{\pi a^{2}}{8}(2 \log a-1)=\frac{\pi a^{2}}{4}\left(\log a-\frac{1}{2}\right) \text {; }
\end{aligned}
$$

Example 14: Evaluate by changing the order of integration. $\int_{0}^{\infty} x e^{-x^{2 / y}} d x d y$ [VTU, 2004; UP Tech., 2005; SVTU, 2006; KUK, 2007; NIT Kurukshetra, 2007]

Solution: We write $\quad \int_{0}^{\infty} \int_{0}^{x} x e^{-x_{2} / y} d x d y=\int_{x=0(=a)}^{x=\infty(=b)} \int_{y=f_{1}(x)=0}^{y=f_{2}(x)=x} x e^{-x^{2} / y} d x d y$
Here first integration is performed along the vertical strip with y as a function of x and then x is bounded betw een $x=0$ to $x=\infty$.

We need to change, x as a function of y and finally the limits of y. Thus the desired geometry is as follows:

In this case, the strip $P Q$ changes to $P^{\prime} Q^{\prime}$ with x as function of $y, x_{1}=y$ and $x_{2}=\infty$ and finally y varies from 0 to ∞.

Therefore Integtral

$$
I=\int_{0}^{\infty} \int_{y}^{\infty} x e^{-x^{2} / y} d x d y
$$

Put $x^{2}=t$ so that $2 x d x=d t$ Further, for

$$
\left.\begin{array}{ll}
x=y, & t=y^{2} \\
x=\infty, & t=\infty
\end{array}\right\}
$$

$$
\left.=\begin{array}{rl}
& 1\left\lfloor y\left(e^{-y}\right)\right\rceil^{\infty} \\
\lfloor-1
\end{array} \|_{0}^{\infty}-\int_{0}^{\infty} 1 \frac{e^{-y}}{-1} d y\right\rfloor_{0}^{\infty}
$$

$$
=\frac{1}{}\left[-y e^{-y}-e^{-y}\right]^{\infty}
$$

$$
2
$$

$$
=\frac{1}{2}\left\lceil[(0)-(0-1)]=\frac{1}{2} .\right.
$$

$$
\infty_{\infty} e^{-y} d y d x
$$

Fig. 5.19

Fig. 5.20

$$
\begin{aligned}
& I=\int_{0}^{\infty} \int_{y^{2}}^{\infty} e^{-t / y} \frac{d t}{2} d y,
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int_{0}^{\infty} y e^{2}{ }^{L} \quad\right\rfloor \\
& =\int_{0}^{\infty} \frac{y e^{-y}}{2} d y \text { (By parts) }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad & =\int_{0}^{\infty} \frac{e^{-y}}{y}\left(\int_{0}^{y} d x d y\right. \\
& =\int_{0}^{\infty} \frac{e^{-y}}{y}(y) d y=\int_{0}^{\infty} e^{-y} d y \\
& =\left.\frac{e^{-y}}{-1}\right|_{0} ^{\infty}=-1\left(1\left(\underline{1} e^{\infty}-\frac{1}{e^{0}}\right)\right. \\
& =-1(0-1)=1
\end{aligned}
$$

Example 16: Change the order of integration in the double integral

$$
\int_{0}^{2} \int_{\sqrt{a x-x^{2}}}^{\sqrt{2 a x}} f(x, y) d x d y
$$

[Rajasthan, 2006; KUK, 2004-05]
Solution: Clearly from the expressions given above, the region of integration is described by a line which starts from $x=0$ and moving parallel to itself goes over to $x=2 a$, and the extremities of the moving line lie on the parts of the circle $x^{2}+y^{2}-2 a x=0$ the parabola $y^{2}=2 a x$ in the first quadrant.

For change and of order of integration, we need to consider the same region as describe by a line moving parallel to x-axis instead of Y-axis.

In this way, the domain of integration is divided into three su b-regions I, II, III to each of w hich corresponds a double integral.

Thus, we get

$$
\begin{aligned}
& \int_{0}^{2 a} \int_{\sqrt{2}}^{\sqrt{x-2 a x}} \sqrt{2 a x}_{2}(x, y) d y d x=\int_{0}^{a} \int_{y}^{a-} \sqrt{2} \sqrt{a^{2}-y^{2}} f(x, y) d y d x \\
& \text { Part I } \\
& +\int_{0}^{a} \int_{a+\sqrt{a^{2}-y^{2}}}^{2 a} f(\underset{(1)}{x y d y d x}) \int_{a}^{2 a} \int_{y^{2} / 2 a} f(, \underset{\sim}{x}) d y d x \\
& \text { Part II Part III }
\end{aligned}
$$

Example 17: Find the area bounded by the lines y $=\sin x, y=\cos x$ and $x=0$.

Solution: See Fig 5.22.
Clearly the desired area is the doted portion O w here along the strip $P Q, P$ lies on the cu rve $y=\sin x$ and Q lies on the curve $y=\cos x$ and finally the strip slides between the ordinates $x=0$ and $x=\frac{\pi}{4}$.

Fig. 5.21

Fig. 5.22

$$
\begin{aligned}
\therefore \iint_{R} d x d y & =\int_{0}^{\frac{\pi}{4}}\left(\int_{\sin x}^{\cos x} d y\right) d x \\
& =\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x \\
& =(\sin x+\cos x)_{0}^{\pi / 4} \\
& =\left(\left.\left.\int_{\langle | \frac{1}{\sqrt{2}}-} 0\right|_{j} ^{+}+\frac{1}{\left\lvert\,-\frac{1}{2}\right.} 1 \right\rvert\,\right) . \\
& =(\sqrt{2}-1)
\end{aligned}
$$

ASSIGNMENY 2

1. Change the order of integration $\int_{0 y x+y}^{a} \int_{2}^{a} \frac{x}{2} d x d y$
2. Change the order integration in the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x d y$
3. Change the order of integration in $\int_{0}^{a \cdot \cos \alpha} \int_{a^{2} \tan \alpha}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y d x$
4. Change the order of integration in $\quad \int_{0} \int_{m x} f(x, y) d x d y$
[PTU, 2008]

EVA1UAYION OT DOUB1E INYEGRA1 IN PO1AR COORDINAYES

To evaluate $\int_{\theta=\alpha}^{\theta=\beta} \int_{r=\phi(\theta)}^{r=\Psi(\theta)} f(r, \theta) d r d \theta$, we first integrate with respect to r between the limits
$r=\phi(\theta)$ to $r=\psi(\theta)$ keeping θ as a constant and then the resulting expression is integrated with respect to θ from $\theta=$ α to $\theta=\beta$.

Geometrical Illustration: Let $A B$ and $C D$ be the two continuous curves $r=\phi(\theta)$ and $r=\Psi(\theta)$ bounded between the lines $\theta=\alpha$ and $\theta=\beta$ so that $A B D C$ is the required region of integration.

Let $P Q$ be a radial strip of angular thickness $\delta \theta$ when $O P$ makes an angle θ with the initial line.

Here $\int_{r=\phi(\theta)}^{r=\Psi(\theta)} f(r, \theta) d r$ refers to the integration with

Fig. 5.23 respect to r along the radial strip $P Q$ and then integration with respect to θ means rotation of this strip $P Q$ from $A C$ to $C D$.

Example 18: Evaluate $\iint r \sin \theta d r d \theta$ over the cardiod $r=a(1-\cos \theta)$ above the initial line.
Solution: The region of integration under consideration is the cardiod $r=a(1-\cos \theta)$ above the initial line.
In the cardiod $\quad r=a(1-\cos \theta)$; for $\quad \theta=0, \quad r=0$,)

$$
\left.\begin{array}{ll}
\theta=0, & r=0 \\
\theta=\frac{\pi}{2}, & r=a \\
\theta=\pi, & r=2 a
\end{array}\right\}
$$

As clear from the geometry along the radial strip $O P, r$ (as a function of θ) varies from $r=0$ to $r=a(1-\cos \theta)$ and then this strip slides from $\theta=0$ to $\theta=\pi$ for covering the area above the initial line.

Hence

$$
\begin{aligned}
I & =\left.\int_{0}^{\pi}\right|_{(} ^{r=a(1-\cos \theta)} \int_{0}^{)} \sin \theta \theta \\
& =\int_{0}^{\pi}\left(\left.\frac{r^{2}}{2}\right|_{0} ^{a(1-\cos \theta)}\right) \sin \theta d \theta \\
& =\frac{a^{2}}{2} \int_{0}^{\pi}(1-\cos \theta)^{2} \sin \theta d \theta
\end{aligned}
$$

Fig. 5.24

$$
\begin{aligned}
& \left.=\frac{a^{2}\lceil }{2} \left\lvert\, \frac{\left.(1-\cos \theta)^{3}\right\rceil^{\pi}}{3}\right.\right]_{0}^{\pi}, \quad\left\lceil\left. Q \int f^{n}(x) f^{\prime}(x) d x=\frac{f^{n+1}(x)}{n+1} \right\rvert\,\right. \\
= & \frac{a^{2}\left\lceil(1-\cos \pi)^{3}-(1-\cos 0)\right]=}{6}\left[\frac{a^{2}}{6}[8-0]=\frac{4 a^{2}}{3} .\right.
\end{aligned}
$$

Example 19: Show that $\iint_{R} r^{2} \sin \theta d r d \theta={ }^{2 a} \frac{{ }^{3}}{3^{\text {v/ }}}$ here R is the semi circle $r=2 a \cos \theta$ above
the initial line. $\quad \theta=\pi / 2$
Solution: The region R of integration is the semi-circle $r=2 a \cos \theta$ above the initial line.

For the circle $\quad r=2 a \cos \theta, \theta=0 \Rightarrow r=2 a$

$$
\theta=\frac{\pi}{2} \Rightarrow r=0
$$

Otherwise also,

$$
\begin{gathered}
r=2 a \cos \theta \Rightarrow r^{2}=2 a r \cos \theta \\
x^{2}+y^{2}=2 a x \\
\left(x^{2}-2 a x+a^{2}\right)+y^{2}=a^{2} \\
(x-a)^{2}+(y-0)^{2}=a^{2}
\end{gathered}
$$

Fig. 5.25
i.e., it is the circle with centre $(a, 0)$ and radius $r=a$

Hence the desired area $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 a \cos \theta} r^{2} \sin \theta d r d \theta$

$$
\begin{aligned}
& \left.=\left.\int_{0}^{\frac{\pi}{\pi}}\right|_{(} ^{2 a \cos \theta} \int_{0}^{r^{2} d r}\right) \sin \theta d \theta \\
& =\int_{0}^{\pi / 2}\left(\left.\frac{r^{3}}{3}\right|_{0} ^{2 a \cos \theta}\right) \sin \theta d \theta \\
& =\frac{-1}{3} \int_{0}^{\pi / 2}(2 a)^{3} \cos ^{3} \theta \sin \theta d \theta \\
& =\frac{-8 a^{3}\left(\cos ^{4} \theta\right)}{3}\left(\frac{\pi / 2}{4}\right)_{0}, \quad \text { using } \int f(x) f^{\prime}(x) d x=\frac{f^{n}(x)}{n+1} \\
& =\frac{2 a^{3}}{3} .
\end{aligned}
$$

Example 20: Evaluate $\iint \frac{r d r d \theta}{\sqrt{a^{2}+r^{2}}}$ over one loop of the lemniscate $r^{2}=a^{2} \cos 2 \theta$.
[KUK, 2000; MDU, 2006]
Solution: The lemniscate is bounded for $r=0$ implying $\quad \theta= \pm \frac{\pi}{4}$ and maximum value of r is a.
See Fig. 5.26, in one complete loop, r varies from 0 to $r=a \sqrt{\cos 2 \theta}$ and the radial strip slides between $\theta=-\frac{\pi}{-}$ to $\frac{\pi}{4}$.
$4 \quad 4$
Hence the desired area

$$
\begin{aligned}
A & =\int_{-\pi / 4}^{\pi / 4} \int_{0}^{a} \frac{r}{\cos 2 \theta} \frac{r}{\left(a^{2}+r^{2}\right)^{1 / 2}} d r d \theta \\
& \left.\int_{-\pi / 4}^{\pi / 4}\left(\int_{0}^{a \cos 2 \theta} d a^{2}+r^{2}\right)^{1 / 2}\right) d r \mid d \theta \\
& =\left.\int_{-\pi / 4}^{\pi / 4}\left(a^{2}+r^{2}\right)^{1 / 2}\right|_{0} ^{\cos 2 \theta} d \theta \\
& =\int_{-\pi / 4}^{\pi / 4}\left\lceil\left(\mathrm{a}^{2}+\mathrm{a}^{2} \cos 2 \theta\right)^{2}-\mathrm{a}\right\rceil \mathrm{d} \theta \\
& =a \int_{-\pi}^{\pi / 4} / 4(\sqrt{2} \cos \theta-1) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =2 a \int_{0}^{\pi / 4}(\sqrt{2} \cos \theta-1) d \theta \\
& =2 a\left\lceil\left(\sqrt{2}^{2} \sin \theta-\theta\right)^{\pi / 4}\right\rceil \\
& \left.=2 a a_{0}^{[} 2^{1}-\frac{\pi}{\square}\right\rceil=2 a\left(1-\frac{\pi}{\sqrt{2}}\right) . \\
& 4\rfloor
\end{aligned}
$$

Example 21: Evaluate $\iint r^{3} d r d \theta$, over the area included between the circles $r=2 a \cos \theta$ and $r=2 b \cos \theta(b<a)$.
[KUK, 2004]
Solution: Given $r=2 a \cos \theta$ or $r^{2}=2 a r \cos \theta$

$$
\begin{aligned}
x^{2}+y^{2} & =2 a x \\
(x+a)^{2}+(y-0)^{2} & =a^{2}
\end{aligned}
$$

i.e this curve represents the circle with centre $(a, 0)$ and radius a.

Likewise, $r=2 b \cos \theta$ represents the circle with centre ($b, 0$) and radius b.
We need to calculate the area bounded between the two circles, where over the radial strip $P Q, r$ varies from circle $r=2 b \cos \theta$ to $r=2 a \cos \theta$ and finally θ varies from $\quad-\frac{\pi}{2}$ to $\frac{\pi}{2}$.

Thus, the given integral $\iint_{R}^{3} r d r d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{2 b \cos \theta}^{2 a \cos \theta} r^{3} d r d \theta$

$$
\left.\begin{array}{l}
=\int_{-\pi / 2}^{\pi / 2}\left\lfloor\frac{\left.r^{4}\right\rceil^{2 a \cos \theta}}{4}\right\rfloor_{2 b \cos \theta} d \theta \\
=\int_{4}^{1} \pi / 2 \\
-\pi / 2
\end{array}(2 a \cos \theta)^{4}-(2 b \cos \theta)^{4}\right\rceil d \theta \text {. }
$$

$$
=4\left(a^{4}-b^{4}\right) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta
$$

Fig 5.27

Particular Case: When $r=2 \cos \theta$ and $r=4 \cos \theta$ i.e., $a=2$ and $b=1$, then

$$
I=\frac{3}{2} \pi\left(a^{4}-b^{4}\right)=\frac{3}{2} \pi\left(2^{4}-1^{4}\right)=\frac{45 \pi}{2} \text { units . }
$$

ASSIGNMENY 3

1. Evaluate $\iint r \sin \theta d r d \theta$ over the area of the caridod $r=a(1+\cos \theta)$ above the initial line.

$$
\begin{aligned}
& \text { Hint }: I= \\
& \int_{0}^{\pi a(1+\cos \theta)} \int_{0} r \sin \theta d r d \theta
\end{aligned}
$$

2. Evaluate $\iint r^{3} d r d \theta$, over the area included between the circles $r=2 a \cos \theta$ and $r=2 b \cos \theta$ $(b>a)$.
[Madras, 2006]

$$
\left[\text { Hint : } \left.\mathrm{F}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\underset{v=2 a \cos \theta}{\mathrm{v}=2 \mathrm{~b} \cos \theta} \mathrm{v}^{3} \mathrm{dv}\right) \right\rvert\, \mathrm{d} \theta\right] \text { (See Fig. } 5.27 \text { with } a \text { and } b \text { interchanged) }
$$

3. Find by double integration, the area lying inside the cardiod $r=a(1+\cos \theta)$ and outside
the parabola $r(1+\cos \theta)=a$.
[NIT Kurukshetra, 2008]

CHANGE OT ORDER OT INYERGRAYION IN DOUB1E INYEGRA1 IN PO1AR COORDINAYES

In the integral $\quad \int_{\theta=\alpha}^{\theta=\beta} \int_{\Delta+\phi(\theta)}^{r=\Psi}(\theta) f(r, \theta) d r d \theta$, interation is first performed with respect to r along a 'radial strip' and then this trip slides between two values of $\theta=\alpha$ to $\theta=\beta$.

In the changed order, integration is first performed with respect to θ (as a function of r along a 'circular arc') keeping r constant and then integrate the resulting integral with respect to r between two values $r=a$ to $r=b$ (say)

Mathematically expressed as

$$
\int_{\theta=\alpha}^{\theta=\beta}{ }_{r=\phi(\theta)}^{r=\Psi(\theta)} f(r, \theta) d r d \theta=I=r=\int_{=a}^{b} \theta=\eta_{-}^{\eta}(r) f(r)(r, \theta) d \theta d r
$$

Example 22: Change the order of integration in the integral $\int_{0}^{\pi / 2} \int_{0}^{2 a \cos \theta} f(r, \theta) d r d \theta$

Solution: Here, integration is first performed with respect to r (as a function of θ) along a radial strip $\boldsymbol{O P}$ (say) from $r=0$ to $r=2 a \cos \theta$ and finally this radial strip slides between $\theta=0$ to $\quad \theta=\frac{\pi}{2}$.

$$
\begin{array}{rlrl}
& \text { Curve } & r & =2 a \cos \theta \Rightarrow r^{2}=2 a r \cos \theta \\
\Rightarrow & x^{2}+y^{2} & =2 a x \Rightarrow(x-a)^{2}+y^{2}=a^{2}
\end{array}
$$

i.e., it is circle with centre $(a, 0)$ and radius a.

On changing the order of integration, we have to first integrate with respect to θ (as a function of r) along

Fig. 5.28
the 'circular strip' $\mathbf{Q R}$ (say) with pt. Q on the curve $\theta=0$ and pt. R on the curve $\theta=\cos ^{-1} \underline{r}$ and finally r varies from 0 to $2 a$.
$\left.\therefore \quad I=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 a \cos \theta, \theta} f(r) d r d \quad \theta={ }_{0}^{2 a} \gamma_{\cos ^{-1} r}\left|\int_{0}^{2 a}(, \theta) \theta\right| r d r l \right\rvert\, l d r$
Example 23: Sketch the region of integration $\int_{a}^{a e^{\frac{\pi}{4}}} \int_{2 \log _{\mathrm{a}}}^{\pi / 2} f(r, \theta) r d r d \theta$ and change the order of integration.

Solution: Double integral $\int_{0}^{a e^{\pi / 4}} \int_{2 \log \frac{r}{a}}^{\pi / 2} f(r, \theta) r d r d \theta$ is identical to $\int_{r=\alpha}^{r=\beta} \int_{\theta=f_{i}(r)}^{\theta=f(r)} f(r, \theta) r d r d \theta$, whence integration is first performed with respect to θ as a function of r i.e., $\theta=f(r)$ along the
'circular strip' $P Q$ (say) with point P on the curve $\quad \theta=2 \log \frac{\underline{r}}{a}$ and point Q on the curve $\theta=\frac{\pi}{2}$ and finally this strip slides between between $r=a$ to $r=a e^{\pi / 4}$. (See Fig. 5.29).
The curve $\theta=2 \log \frac{r}{a}$ implies $\frac{\theta}{2}=\log \frac{r}{a}$

$$
e^{\theta / 2}=\frac{r}{a} \quad \text { or } \quad r=a e^{\theta / 2}
$$

Now on changing the order, the integration is first performed with respect to r as a function of θ viz. $r=f(\theta)$ along the 'radial strip' $P Q$ (say) and finally this strip slides between $\theta=0$ to $\quad \theta=\frac{\pi}{2}$. (Fig. 5.30).

Fig. 5.29

$$
\therefore \quad I=\int_{\theta=0}^{\pi / 2}\left(\int_{r=a}^{r=a e^{\theta / 2}} f(r, \theta) r d r\right) d \theta
$$

Fig. 5.30

AREA ENC1OSED BY P1ANE CURVES

1. Cartesian Coordinates: Consider the area bounded by the t wo contin uous curves $y=\phi(x)$ and $y=\Psi(x)$ and the two ordinates $x=a, x=$ b (Fig. 5.31).

Now divide this area into vertical strips each of width δx.

Let $R(x, y)$ and $S(x+\delta x, y+\delta y)$ be the t w o neigbouring points, then the area of the elementary shaded portion (i.e., small rectangle) $=\delta x \delta y$

But all the such small rectangles on this strip $P Q$

Fig. 5.31 are of the same width δx and y changes as a function of x from $y=\phi(x)$ to $y=\Psi(\mathrm{x})$

$$
\therefore \text { The area of the strip } P Q=\operatorname{Lt}_{\delta y \rightarrow 0}^{L t} \delta x \delta y=\delta x L t \sum_{\delta y \rightarrow 0}^{\Psi(x)}=\delta x \int_{\phi(x)}^{\Psi(x)} d y
$$

Now on adding such strips from $x=a$, we get the desired area $A B C D$,

$$
L t \sum_{\delta y \rightarrow 0}^{\Psi(x)} \delta x \int_{\phi(x)}^{\Psi(x)} d y=\int_{\phi(x)}^{b} d x \int_{\phi}^{\Psi(x)} d y=\int_{\phi(x)}^{b} \int_{a \phi(x)}^{\Psi(x)} d x d y
$$

Likewise taking horizontal strip $P^{\prime} Q^{\prime}$ (say) as shown, the area $A B C D$ is given by

$$
\int_{y=d_{x=\phi(y)}^{y=b}}^{x=\Psi(y)} d x d y
$$

2 Polar Coordinates: Let R be the region

Fig. 5.32
enclosed by a polar curve with $P(r, \theta)$ and $Q(r+$ $\delta r, \theta+\delta \theta)$ as two neighbouring points in it.

Let $P P^{\prime} Q Q^{\prime}$ be the circular area with radii $O P$ and $O Q$ equal to r and $r+\delta r$ respectively.

Here the area of the curvilinear rectangle is approximately
$=P P^{\prime} \cdot P Q^{\prime}=\delta r \cdot r \sin \delta \theta=\delta r \cdot r \delta \theta=r \delta r \delta \theta$.
If the whole region R is divided into such small curvilinear rectangles then the limit of the sum $\Sigma r \delta r \delta \theta$ taken over R is the area A enclosed by the curve.

$$
\text { i.e., } \quad A=\underset{\substack{\delta r \rightarrow 0 \\ \delta \theta \rightarrow 0}}{L t} \sum r \delta r \delta \theta=\iint_{R} r d r d \theta
$$

Fig. 5.33

Example 24: Find by double integration, the area lying between the curves $y=2-x^{2}$ and $y=x$.
Solution: The given curve $y=2-x^{2}$ is a parabola.
where in

$$
\left.\begin{array}{rlr}
x=0 & \Rightarrow y=0 \\
x=1 & \Rightarrow & y=1 \\
x=2 & \Rightarrow y=-2 \\
x=-1 & \Rightarrow y=1 \\
x=-2 & \Rightarrow y=-2
\end{array}\right\}
$$

i.e., it passes through points $(0,2),(1,1),(2,-2)$, $(-1,1),(-2,-2)$.

Likewise, the curve $y=x$ is a straight line
where

$$
\left.\begin{array}{c}
y=0 \Rightarrow x=0 \\
y=1 \Rightarrow x=1 \\
y=-2 \Rightarrow x=-2
\end{array}\right\}
$$

i.e., it passes through $(0,0),(1,1),(-2,-2)$

Now for the two curves $y=x$ and $y=2-x^{2}$ to intersect, $x=2-x^{2}$ or $x^{2}+x-2=0$ i.e., $x=1,-2 \mathrm{w}$ hich in t u rn implies $y=1,-2$ respectively.

Thus, the two curves intersect at $(1,1)$ and $(-2,-$

Fig. 5.34 2),

Clearly, the area need to be required is $A B C D A$.

$$
\begin{aligned}
\therefore \quad \mathrm{A} & \left.=\int^{1\left(2-x^{2}\right)} d y\right) d \mathrm{x}=\int_{-2}^{1}\left(2-x^{2}-x\right) d x \\
& -2 \mathrm{x}^{\mathrm{x}} \\
& =\left[2 x-\frac{x^{3}}{3}-\left.\frac{x^{2}}{2}\right|_{-2} ^{1}=\frac{9}{2}\right. \text { units. }
\end{aligned}
$$

Example 25: Find by double integration, the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.
[KUK, 2001]
Solution: For the given curve $y=4 x-x^{2}$;

$$
\begin{aligned}
& x=0 \Rightarrow y=0 \mid \\
& x=1 \Rightarrow y=2 \\
& \left.\begin{array}{l}
x=2 \Rightarrow y=4 \\
x=3 \Rightarrow y=3 \\
x=4 \Rightarrow y=0
\end{array}\right\}
\end{aligned}
$$

i.e. it passes through the points $(0,0),(1,2),(3,3)$ and $(4,0)$.

Likewise, the curve $y=x$ passes through $(0,0)$ and $(3,3)$, and hence, $(0,0)$ and $(3,3)$ are the common points.

Otherwise also putting $y=x$ into $y=4 x-x^{2}$, we get $x=4 x-x^{2} \Rightarrow x=0,3$.

Fig. 5.35

See Fig. 5.35, $O A B C O$ is the area bounded by the two curves $y=x$ and $y=4 x-x^{2}$
\therefore Area $O A B C O=\int_{0}^{34 x-x^{2}} d y d x$

$$
\begin{aligned}
& =\int_{0}^{3}[y]_{]_{x}}^{4 x-x^{2}} d x \\
& =\int_{0}^{3}\left(4 x-x^{2}-x\right) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}=\frac{9}{2} \text { units }
\end{aligned}
$$

Example 26: Calculate the area of the region bounded by the curves $\quad y=\frac{3 x}{x^{2}}+2$ and $4 y=x^{2}$
[JNTU, 2005]
Solution: The curve $4 y=x^{2}$ is a parabola
where

$$
\begin{aligned}
& y=0 \Rightarrow x=0, \quad \text { i.e., it passes through }(-2,1),(0,0),(2,1) . \\
& y=1 \Rightarrow x= \pm 2
\end{aligned}
$$

Likewise, for the curve $y=\frac{3 x}{x^{2}}+2$

$$
\left.\begin{array}{l}
y=0 \Rightarrow x=0 \\
y=1 \Rightarrow x=1,2 \\
x=-1 \Rightarrow y=-1
\end{array}\right\}
$$

Hence it passes through points $(0,0),(1,1),(2,1),(-1,-1)$.
Also for the curve $\left(x^{2}+2\right) y=3 x, y=0$ (i.e. X-axis) is an asymptote.
For the points of intersection of the two curves

$$
y=\frac{3 x}{x^{2}+2} \text { and } 4 y=x^{2}
$$

we write $\quad \frac{3 x}{x^{2}+2}={ }^{x^{2}} \frac{\text { or }}{4} \quad x^{2}\left(x^{2}+2\right)=12 x$
Then $\quad x=0 \Rightarrow y=0$

$$
x=2 \Rightarrow y=1
$$

i.e. $(0,0)$ and $(2,1)$ are the two points of intersection.

Fig. 5.36

The area under consideration,

$$
\left.\begin{array}{rl}
A & =\int_{0}^{2}\left|\int_{y=\frac{x^{2}}{4}}^{y=\frac{3 x}{x^{2}+2}} d y\right| d x=\int_{0}^{2}\left\lceil\frac{3 x}{x^{2}}-\frac{x}{2}\right\rceil \\
d x \\
2
\end{array}\right]
$$

Example 27: Find by the double integration, the area lying inside the circle $r=a \sin \theta$ and outside the cardiod $r=a(1-\cos \theta)$.
[KUK 2005; NIT Kurukshetra 2007]
Soluton: The area enclosed inside the circle $r=a \sin \theta$ and the cardiod $r=a(1-\cos \theta)$ is shown as doted one.

For the radial strip $P Q, r$ varies from $r=a(1-\cos \theta)$ to $r=a \sin \theta$ and finally θ varies in between 0 to ${ }_{2}$.

For the circle $r=a \sin \theta$

$$
\left.\begin{array}{l}
\theta=0 \Rightarrow r=0 \mid \\
\theta=\frac{\pi}{2} \Rightarrow r=\mid a \\
\theta=\pi \Rightarrow r=0
\end{array}\right\}
$$

Likewise for the cardiod $r=a(1-\cos \theta)$;

$$
\left.\begin{array}{l}
\theta=0 \Rightarrow r=0 \\
\theta=\frac{\pi}{2} \Rightarrow r=a \\
\theta=\pi \Rightarrow r=2 a
\end{array}\right\}
$$

Fig. 5.37

Thus, the two curves intersect at $\theta=0$ and $\quad \theta=\frac{\pi}{2}$.

$$
\begin{aligned}
\therefore \quad & =\int_{0}^{\frac{\pi}{2}} \int_{a(1-\sin \theta} r d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{r^{2}}{2} \int_{a(1-\mathrm{cos} \theta}^{a \sin \theta} d \theta \\
& ={ }_{\pi / 2}^{1} \Gamma_{\left.\sin ^{2} \theta-\left(1+\cos ^{2} \theta-2 \cos \theta\right)\right\rceil d \theta} \quad \int_{0}^{2} 2 \\
& =\frac{a^{2}}{2} \int_{0}^{\pi / 2}[-\cos 2 \theta-1+2 \cos \theta] d \theta, \text { since }\left(\sin ^{2} \theta-\cos ^{2} \theta\right)=-\cos 2 \theta
\end{aligned}
$$

$$
=\frac{a^{2}\lceil }{2} \overbrace{[}^{2}-\sin 2 \theta-\theta+2 \sin \theta_{b}^{\theta^{\pi / 2}}=\left(-\frac{\pi}{2}\right) .
$$

Example 28: Calculate the area included between the curve $r=a(\sec \theta+\cos \theta)$ and its asymptote $r=a \sec \theta$.
[NIT Kurukshetra, 2007]

Solution: As the given crave $r=a(\sec \theta+\cos \theta)$ i.e.,

$$
r=a\left(\frac{1}{\mid}+\cos \theta\right)
$$

$$
\mid \text { contains cosine terms }
$$ only and hence it is symmetrical about the initial axis.

Further, for $\theta=0, r=2 a$ and, r goes on decreasing above and below the initial axis as θ approaches to $\frac{\pi}{2}$ and at $\theta=\frac{\pi}{2}, r=\infty$.

Clearly, the required area is the doted region in which r varies along the radial strip from $r=a \sec \theta$ to $r=a(\sec \theta+\cos \theta)$ and finally strip slides between $\quad \theta=-\frac{\pi}{2}$ to $\theta=\frac{\pi}{2}$.

Fig. 5.38

ASSIGNMENY 4

1. Show by double integration, the area bounded between the parabola $y^{2}=4 a x$ and $x^{2}=$ $4 a y$ is $\frac{16}{3} a^{2}$.
[MDU, 2003; NIT Kurukshetra, 2010]
2 Using double integration, find the area enclosed by the curves, $y^{2}=x^{3}$ and $y=x$.
[PTU, 2005]
Example 29: Find by double integration, the area of laminiscate $r^{2}=a^{2} \cos 2 \theta$.
[Madras, 2000]
Solution: As the given curve $r^{2}=a^{2} \cos 2 \theta$ contains cosine terms only an d hence it is symmetrical about the initial axis.

$$
\begin{aligned}
& \therefore \quad A=2 \int_{0 a \sec \theta}^{\frac{\pi}{2} a(\sec \theta+\cos \theta)} r d r d \theta \\
& \pi / 2\left\lceil r^{2} 7^{a(\sec \theta+\cos \theta)}\right. \\
& =2 \int_{0}\left[\left.\overline{[2}\right|_{a \sec \theta} d \theta\right. \\
& \left.=a^{2} \int_{0 / 2}^{\pi / 2\left\lceil\left(1+\cos ^{2} \theta\right)^{2}\right.} \frac{\left.(1))^{2}\right\rceil}{\cos \theta}\right) \downarrow\left|\left(\frac{1}{\cos \theta}\right)^{l}\right| d \theta \\
& =a^{2} \int_{0}^{\pi / 2}\left(\cos ^{2} \theta+2\right) d \theta \\
& =a^{2} \int_{0}^{\pi / 2} \frac{(5+\cos 2 \theta)}{2} d \theta \\
& a^{2}\lceil\quad \underline{\sin 2 \theta}\rceil^{\pi / 2} \quad 5 \pi a^{2}
\end{aligned}
$$

Further the curve lies wholly inside the circle $r=a$, since the maximum value of $|\cos \theta|$ is 1 .

Also, no p ortion of the cu rve lies bet ween $\theta=\frac{\pi}{4}$ to $\theta=\frac{3 \pi}{4}$ and the extended axis.

See the geometry, for one loop, the curve is bounded between $\theta=-\frac{\pi}{4}$ to $\underline{\pi}$

$$
\begin{aligned}
& 4 \\
& \therefore \quad \text { Area }=2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4} r=0} \int_{r=0}^{\sqrt{a^{2} \cos 2 \theta}} r d r d \theta \\
&=\left.4 \int_{0}^{\pi / 4} \frac{r^{2}}{2}\right|_{0} ^{\cos 2 \theta} \\
&=2 a^{2} \int_{0}^{\pi / 4} \cos 2 \theta d \theta=2 a^{2}\left[\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 4}=a^{2}
\end{aligned}
$$

Fig. 5.39

CHANGE OT VARIAB1E IN DOUB1E INYEGRA1

The concept of change of variable had evolved to facilitate the evaluation of some typical integrals.
Case 1: General change from one set of variable (x, y) to another set of variables (u, v).
If it is desirable to change the variables in double integral $\iint_{R} f(x, y) d A$ by making $x=\phi(u, v)$ and $y=\Psi(u, v)$, the expression $d A$ (the elementary area $\delta x \delta y$ in $\mathrm{R}_{x y}$) in terms of u and v is given by

$$
d A=\left|J_{(}\left(\frac{x, y}{u, v}\right)\right| d u d v, \quad J\left(\frac{x, y}{u, v}\right) \neq 0
$$

J is the Jacobian (transformation coefficient) or functional determinant.
$\therefore \quad \iint_{R} f(x, y) d x d y=f_{R}^{f} f(u, v) f^{(\underline{x, y})} d u d v$
Case 2: From Cartesian to Polar Coordinates: In transforming to polar coordinates by means of $x=r \cos \theta$ and $y=r \sin \theta$,

$$
\begin{aligned}
& J\left(\frac{x, y}{r, \theta}\right) & =\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right| \\
\therefore & d \mathrm{~A} & =r d r d \theta \text { and } \iint_{R} f(x, y) d x d y=_{R^{\prime}}^{\int F \int(r, \theta) r d r d \theta}
\end{aligned}
$$

Example 30: Evaluate $\int_{R}(x+y)^{2} d x d y$ where R is the parallelogram in the $x y$ plane with vertices $(1,0),(3,1),(2,2),(0,1)$ using the transformation $u=x+y, v=x-2 y$.
[KUK, 2000]
Solution: $R_{x y}$ is the region bounded by the parallelogram $A B C D$ in the $x y$ plane which on transformation becomes $R_{u v}^{\prime}$ i.e., the region bounded by the rectangle $P Q R S$, as shown in the Figs. 5.40 and 5.41 respectively.

Fig. 5.40

Fig. 5.41

With

$$
\left.\left.\begin{array}{l}
u=x+y \\
v=x-2 y
\end{array}\right\}, \quad A(1,0) \text { transforms to } \quad \begin{array}{l}
u=1+0=1 \\
v=1-0=1
\end{array}\right\} \text { i.e., } P(1,1)
$$

$B(3,1)$ transforms to $Q(4,1)$
$C(2,2)$ transforms to $R(4,-2)$
$D(0,1)$ transforms to $S(1,-2)$
and

$$
J \underline{\partial}(\underline{x}, y)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\partial(u, v)
\end{array}\right|=-\underline{1}
$$

Hence the given integral $\iint_{R} u^{2} \frac{1}{3} d u d v$

$$
\begin{aligned}
& =\int_{1}^{41} \int_{-2}^{1} u^{2} d u d v=\underline{1}^{4}[v]_{3}^{1} \int_{1}^{J_{R}} u^{2} d u \\
& =\frac{1}{3} \times(1+2) \int_{1}^{4} u^{2} d u \\
I & =\left(\left|\frac{u^{3}}{3}\right|_{1}^{4}\right)^{2}=\frac{63}{3}=21 \text { units }
\end{aligned}
$$

Example 31: Using transformation $x+y=u, y=u v$, show that

$$
\int+_{0}^{11-x} e^{\left(\frac{y)}{x+y}\right)} d x d y=\frac{1}{2}(e-1)
$$

[PTU, 2003]

Solution: Clearly $y=f(x)$ represents curves $y=0$ and $y=1-x$, and x which is an independent variable changes from $x=0$ to $x=1$. Thus, the area $O A B O$ bounded between the two curves $y=0$ and $x+y=1$ and the two ordinates $x=0$ and $x=1$ is shown in Fig. 5.42.

On using transformation,

$$
\begin{aligned}
& x+y=u \quad \Rightarrow \quad x=u(1-v) \\
& y=u v \Rightarrow y=u v
\end{aligned}
$$

Now point $O(0,0)$ implies $0=u(1-v)$ and

$$
\begin{equation*}
0=u v \tag{1}
\end{equation*}
$$

From (2), either $u=0$ or $v=0$ or both zero. From (1), we get

$$
u=0, v=1
$$

Fig. 5.42

Hence $(x, y)=(0,0)$ transforms to $(u, v)=(0,0),(0,1)$
Point $\boldsymbol{A}(\mathbf{1}, \mathbf{0})$, implies $1=u(1-v)$
and

$$
\begin{equation*}
0=u v \tag{3}
\end{equation*}
$$

From (4) either $u=0$ or $v=0$, If $v=0$ then from (3) we have $u=1$, again if $u=0$, equation (3) is inconsistent.

Hence, $A(1,0)$ transforms to $(1,0)$, i.e. itself.
From Point $\mathbf{B}(\mathbf{0}, \mathbf{1})$, we get $0=u(1-v)$
and $\quad 1=v u$
From (5), either $u=0$ or $v=1$
If $u=0$, equation (6) becomes inconsistent.
If $v=1$, the equation (6) gives $u=1$.
Hence $(0,1)$ transform to $(1,1)$. See Fig. 5.43.
Hence

Fig. 5.43

$$
\begin{aligned}
& \int_{0} 1 \int_{0} 1-x e^{\underline{(x H y)} \mid} d x d y=\int_{0} \int_{0} 1 u e^{v} d u d v \quad \text { where } \quad J=\frac{(\underset{\partial}{\partial} x, y}{\partial(u, v)}=u \\
& \quad=\int_{0}^{1} u\left(\int_{0}^{1} e^{v} d v\right) d u=\int_{0}^{1} u \cdot(e-1) d u=\left.(e-1) \frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}(e-1)
\end{aligned}
$$

Example 32: Evaluate the integral $\iint_{0} \frac{4 a y x^{2}-y^{2}}{x_{a}^{2} x^{2}+y^{2}} d x d y$ by transforming to polar coordinates.

Solution: Here the cu rves $\quad x=\frac{y^{2}}{4 a}$ or $y^{2}=4 a x$ is parabola passing through $(0,0),(4 a, 4 a)$.

Likewise the curve $x=y$ is a straight line passing through points $(0,0)(4 a, 4 a)$.

Hence the two curves intersect at $(0,0),(4 a, 4 a)$.
In the given form of the integral, x changes (as a

$$
x=y^{y^{2}}
$$

function of y) from $\overline{4 a}$ to $x=y$ and finally y as an independent variable varies from $y=0$ to $y=4 a$.

For transformation to polar coordinates, we take

Fig. 5.44

$$
x=r \cos \theta, y=r \sin \theta \text { and } \quad J=\frac{\partial(x, y)}{\partial(r, \theta)}=r
$$

The parabola $y^{2}=4 a x$ implies $r^{2} \sin ^{2} \theta=4 a r \cos \theta$ so that $r($ as a function of $\theta)$ varies from $r=0$ to $r=\frac{4 a \cos \theta}{\sin ^{2} \theta}$ and θ varies from $\quad \theta=\frac{\pi}{4}$ to $\theta=\frac{\pi}{2}$

Therefore, on transformation the integral becomes

$$
\begin{aligned}
& \pi / 2 \quad r=\frac{4 a \cos \theta}{} r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& I=+_{\pi / 4}+_{0} \sin ^{2} \theta \frac{r^{2}}{} \cdot r d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\pi / 4}^{\pi / 2}\left(1-2 \sin ^{2} \theta\right)^{16 a^{2} \cos ^{2} \theta} d \theta \\
& =8 a^{2} \int_{\pi / 4}^{\pi / 2} \frac{\left(1-2 \sin ^{2} \theta\right)\left(1-\sin ^{2} \theta\right)}{\sin \theta} d \theta \\
& =8 a^{2} \int_{\pi / 4}^{\pi / 2} \frac{\left[1-3 \sin ^{2} \theta+2 \sin ^{4} \theta\right]}{\sin \theta} d \theta \\
& =8 a^{2} \int_{\pi / 4}^{\pi / 2}\left[\operatorname{cosec}^{2} \theta\left(1+\cot ^{2} \theta\right)-3 \operatorname{cosec}^{2} \theta+2\right] d \theta \\
& =8 a^{2} \int_{\pi / 4}^{\pi / 2}\left[\cot ^{2} \theta \operatorname{cosec}^{2} \theta-2 \operatorname{cosec}^{2} \theta+2\right] d \theta
\end{aligned}
$$

$$
=8 a_{2}\left[\left[\int_{\pi / 4}^{\pi / 2} \cot ^{2} \theta \operatorname{cosec}^{2} \theta d \theta+2(\cot \theta)_{\pi / 4}^{\pi / 2}+\left.(2 \theta)\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}\right]\right.
$$

Let $\cot \theta=t$ so that $-\operatorname{cosec}^{2} \theta d \theta=d t$. Limits for $\left.\left.\theta=\frac{\pi}{4}, t=1\right\} \begin{array}{r}2 \\ \theta=\frac{\pi}{2}, t=0\end{array}\right\}$

$$
\begin{aligned}
& \left.\left.=8 a^{2} \left\lvert\, \int_{1}^{0}-t^{2} d t+2(0-1)+\frac{\pi}{2}\right.\right\rceil=8 a| |-\left.\frac{t^{3}}{3}\right|_{1} ^{0}-2+\frac{\pi}{2}\right\rceil \\
& =8 a^{2}\left(\frac{\pi}{\underline{\pi}}-\frac{5}{2}\right) .
\end{aligned}
$$

Example 33: Evaluate the integral $\int_{0}^{a} \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d x d y$ by changing to polar coordinates.
Solution: The above integral has already been discussed under change of order of integration in cartesian co-ordinate system, Example 7.

For transforming any point $P(x, y)$ of cartesian coordinate to polar coordinates $P(r, \theta)$, we take $x=r \cos \theta, y=r \sin \theta$ and $\quad J=\frac{\partial(x, y)}{\partial(r, \theta)}=r$.

The parabola $y^{2}=\frac{x}{a}$ implies $r^{2} \sin ^{2} \theta=\frac{r \cos \theta}{a}$ i.e., $r\left(r \sin ^{2} \theta-\frac{\cos \theta}{a}\right)=0$
$\Rightarrow \quad$ either $r=0 \quad$ or $\quad r=\frac{\cos \theta}{a \sin ^{2} \theta}$
Limits, for the curve $\quad y=\frac{x}{a}$,

$$
\theta=\tan ^{-1} \frac{y}{x} \tan ^{-1} B A=\tan ^{-1} \frac{}{O B} \quad \bar{a}
$$

and for the curve $\quad y=\sqrt{\frac{x}{a}}$

$$
\theta=\tan ^{-1} \frac{0}{a}=\frac{\pi}{2}
$$

Here r (as a function of θ) varies from 0 to
and θ changes from $\quad \tan ^{-1} \frac{1}{a}$ to $\frac{\pi}{2}$.
$\frac{\cos \theta}{a \sin ^{2} \theta}$

Fig. 5.45

Therefore, the integral,

$$
\begin{aligned}
& \int_{0 x / a}^{a} \int^{\sqrt{x / a}}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& I=+_{\text {cot }^{-1}(a)}^{\pi / 2} \quad r \xlongequal{r\left(\frac{\cos \theta)}{\left(\operatorname{asin}^{2} \theta\right)}\right.} d r d \theta \\
& \begin{array}{l}
t_{0} \\
=\frac{1}{4} \int_{\cot ^{-1} a}^{\pi / 2} \frac{\cos ^{4} \theta}{a^{4}\left(\sin ^{4} \theta\right)^{2}} d \theta
\end{array} \\
& \Rightarrow \quad I=\frac{1}{4} a^{4} \int_{\cot ^{-1} a}^{\pi / 2} \cot ^{4} \theta\left(1+\cot ^{2} \theta\right) \operatorname{cosec}^{2} \theta d \theta \\
& \text { Let } \left.\cot \theta=t \text { so that } \operatorname{cosec}^{2} \theta d \theta=d t(-1) \text { and } \quad \begin{array}{rl}
\theta & =\cot ^{-1} a \Rightarrow t=a \\
\theta & =\frac{\pi}{2} \quad \Rightarrow t=0
\end{array}\right\} \\
& \therefore \quad I=1^{0} 4 a^{4^{4}}\left(1+t^{2}\right)(-d t) \\
& \xrightarrow[\underline{1}^{a}]{ }{ }^{a} \quad \underline{1}\left\lceil t^{5} \quad t^{7}\right\rceil^{a} \\
& I={ }_{4 a}{ }_{4}^{4}\left[t^{4}+t^{6}\right] d t={ }_{4 a_{4}}|\overline{5}+\overline{7}| g \\
& I=\left(\frac{a}{20}+\frac{a^{3}}{28}\right) \text {. }
\end{aligned}
$$

Example 34: Evaluate $\quad \int x y\left(x^{2}+y^{2}\right)^{2} \stackrel{n}{d x d y} \quad$ over the positive quadrant of $x^{2}+y^{2}=4$, supposing $\boldsymbol{n + 3}>\mathbf{0}$.

Solution: The double integral is to be evaluated over the area enclosed by the positive quadrant of the circle $x^{2}+y^{2}=4$, whose centre is $(0,0)$ and radius 2 .

Let $x=r \cos \theta, y=r \sin \theta$, so that $x^{2}+y^{2}=r^{2}$.
Therefore on transformation to polar co-ordinates,

$$
\begin{aligned}
I & =\int_{\theta=0}^{\theta=\pi / 2} \int_{r=0}^{r=2} r \cos \theta r \sin \theta r^{n}|J| d r d \theta \\
& \left.=\int_{0}^{\pi / 2} \int_{0}^{\left(r^{n+3} d r\right) \sin \theta \cos \theta d \theta, \quad\left(J=\frac{\partial(x, y)}{\partial(r, \theta)}\right)}=r\right) \\
& =\int_{0}^{\pi / 2}\left(\frac{\left.r^{n+4}\right)^{2}}{n+4}\right)_{0} \sin \theta \cos \theta d \theta
\end{aligned}
$$

Fig. 5.46

$$
\begin{aligned}
& =\frac{2^{n+42}}{n+4}{ }_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta \\
& =\frac{2^{n+4}}{(n+4)} \cdot\left|\frac{\sin ^{2} \theta}{2}\right|_{0}^{\pi / 2}, \text { using } \int f^{\prime}(x) f(x) d x=\frac{f^{2}(x)}{2} \\
& =\frac{2^{n+3}}{(n+4)},(n+3)>0 .
\end{aligned}
$$

Example 35: Transform to cartesian coordinates and hence evaluate the

$\int_{0}^{\pi a} \int_{0}^{3} r^{3} \sin \theta \cos \theta d r d \theta$.
[NIT Kurukshetra, 2007]
Solution: Clearly the region of integration is the area enclosed by the circle $r=0, \mathrm{r}=a$ between $\theta=0$ to $\theta=\pi$.

Here

$$
\begin{aligned}
I & =\int_{0}^{\pi} \int_{0}^{a} r^{3} \sin \theta \cos \theta d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{a} r \sin \theta \cdot r \cos \theta \cdot r d r d \theta
\end{aligned}
$$

On using transformation $x=r \cos \theta, y=r \sin \theta$,

$$
\begin{aligned}
I= & \int_{-a}^{a} \int_{-a}^{y=} \sqrt{a^{2}-x^{2}} x y d x d y \\
& =\int_{-a}^{0} x\left|\int_{0}^{\sqrt{a^{2}-x^{2}}} y d y\right| d x \\
= & \left.\int_{-a}^{a}\left(\frac{y^{2}}{2}\right)\right)\left.\right|_{0} ^{\sqrt{a^{2}-x^{2}}} x d x \\
= & 1^{1}\left({ }^{2}\left({ }^{2}-\right)^{2}\right) \\
& 2 \int_{-a} x a d x
\end{aligned}
$$

Fig. 5.47

As x and x^{3} both are odd functions, therefore net value on integration of the above integral is zero.
i.e.

$$
I=\frac{1}{2} \int_{-a}^{a}\left(a^{2} x-x^{3}\right) d x=0
$$

ASSIGNMENYS 5
Evaluate the following integrals by changing to polar coordinates:
(1) $\int_{0}^{a} \int^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$
(2) $\int_{0}^{a} \int_{y} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$
(3) $\int_{-a-\sqrt{a^{2}-x^{2}}}^{a} \sqrt{a^{2}-x^{2}} d x d y$
(4) $\int_{0}^{\infty} \int_{0}^{-\left(x^{2}+y^{2}\right)} d x d y$
[MDU, 2001]

YRIP1E INYEGRA1 (PHYSICA1 SIGNITICANCE)

The triple integral is defined in a manner entirely analogous to the definition of the double integral.
Let $F(x, y, z)$ be a function of three independent variables x, y, z defined at every point in a region of space V bounded by the surface S . Divided V into n elementary volumes $\delta V_{1}, \delta V_{2}$, $\ldots, \delta V_{n}$ and let $\left(x_{r}, y_{r}, z_{r}\right)$ be any point inside the r th sub division $\delta V_{r .}$. Then, the limit of the sum

$$
\begin{equation*}
\sum_{r=1}^{n} F\left(x_{r}, y_{r}, z_{r}\right) \delta v_{r} \tag{1}
\end{equation*}
$$

if exists, as $n \rightarrow \infty$ and $\delta V_{r} \rightarrow 0$ is called the 'triple integral' of $R(x, y, z)$ over the region V, and is denoted by

$$
\begin{equation*}
\iiint F(x, y, z) d V \tag{2}
\end{equation*}
$$

In or d er to exp ress triple integral in the 'integrated' form, V is considered to be subdivided by planes parallel to the three coordinate planes. The volume V may then be considered as the sum of a number of vertical columns extending from the lower surface say, $z=f_{1}(x, y)$ to the upper surface say, $z=f_{2}(x, y)$ with base as the elementary areas δA_{r} over a region R in the $x y$-plance when all the columns in V are taken.

On summing up the elementary cuboids in the ${ }_{x}$

Fig. 5.48 same vertical columns first and then taking the sum for all the columns in V, it becomes

$$
\begin{equation*}
\left.\sum_{r} \sum_{r} \sum_{r} F\left(x_{r}^{\prime} y_{r}^{\prime} z_{r}\right) \delta z\right]^{\delta A_{r}} \tag{3}
\end{equation*}
$$

with the pt. $\left(x_{r}, y_{r}, z_{r}\right)$ in the r th cuboid over the element δA_{r}. When

$$
\int_{R}^{\mid L z=f_{i}(x, y)} \mid
$$

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

5.9. EVA1UAYION OT YRIP1E INYEGRA1S

For evaluation purpose, $\quad \iint_{V} F(x, y, z) d V$
is expressed as the repeated integral

$$
\begin{equation*}
\int^{x_{2}} \int^{y_{2}} \int^{z_{2}} F(x, y, z) d z d y d x \tag{2}
\end{equation*}
$$

where in the order of integration depends upon the limits.
If the limits z_{1} and z_{2} be the functions of $(x, y) ; y_{1}$ and y_{2} be the functions of x and x_{1}, x_{2} be constant, then

$$
\begin{equation*}
\left.I=\int_{x=a}^{x=b}\left(\int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} \mid \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} F(x, y, z) d z\right) d y\right) d x \tag{3}
\end{equation*}
$$

which shows that the first $F(x, y, z)$ is integrated with respect to z keeping x and y constant between the limits $z=f_{1}(x, y)$ to $z=f_{2}(x, y)$. The resultant which is a function of x, y is integrated with respect to y keeping x constant between the limits $y=f_{1}(x)$ to $y=f_{2}(x)$. Finally, the integrand is evaluated with respect to x between the limits $x=a$ to $x=b$.

Note: This order can accordingly be changed depending upon the comfort of integration.
Example 36: Evaluate $\int_{00}^{a} \int_{0}^{x+y} e^{x+y+s} d s d y d x$.
[KUK, 2000, 2009]
Solution: On integrating first with respect to z, keeping x and y constants, we get

$$
\begin{aligned}
& I=\int_{0}^{a} \int_{0}^{x}\left[e^{(x+y)+z}\right]_{0}^{(x+y)} d y d x, \quad[\text { Here }(x+y)=a, \text { (say), like some constant }] \\
& =\int_{0}^{a} \int_{0}^{x}\left[e^{(x+y)+(x+y)}-e^{(x+y)+0}\right] d y d x \\
& =\int_{0}^{a} \int_{0}^{x}\left[e^{2(x+y)}-e^{(x+y)}\right] d y d x \\
& =\int_{0}^{\lceil }\left\lfloor\frac{e^{2 x+2 y}}{2}-\frac{\left.e^{x+y}\right\rceil^{x}}{\rfloor_{0}} d x \text {, (Integrating with respect to } y \text {, keeping } x\right. \text { constant) }
\end{aligned}
$$

On integrating with respect to x,

$$
\begin{aligned}
& =\left[\frac{e^{4 x}}{8}-e_{2}^{2 x}-\frac{e^{2 x}}{4}+e^{e^{x}} 1\right]_{0}^{a}
\end{aligned}
$$

Example 37: Evaluate $\int_{0}^{\pi / 2} \int_{0}^{a \sin \theta} \frac{a^{2}-v^{2}}{a} v d v d \theta d s$ •[VTU, 2007; NIT Kurukshetra, 2007, 2010]

Solution: On integrating with respect to z first keeping r and θ constants, we get

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2} \int_{0}^{a \sin \theta}(z)_{0}^{\frac{a^{2}-r^{2}}{a}} r d r d \theta \\
& =\frac{1}{a} \int_{0}^{\pi / 2} \int_{0}^{a \sin \theta}\left(a^{2}-r^{2}\right) r d r d \theta \\
& \left.\left.=\frac{1}{a}_{a}^{\pi / 2}\right\rangle\left._{0}^{r}\right|_{2} ^{r^{2}}-\bar{r}_{4}^{4}\right)_{0}^{a \sin \theta} d \theta, \quad \text { (On integrating with respect to } \mathrm{r} \text {) } \\
& =\frac{1}{a} \int_{0}^{\pi / 2}\left(\frac{a^{2} \cdot a^{2} \sin ^{2} \theta}{2}-\frac{\left.a^{4} \sin ^{4} \theta\right)}{4} d \theta\right. \\
& =\frac{a^{3} 2}{4} \int_{0}^{\frac{\pi}{2}}\left[2 \sin ^{2} \theta-\sin ^{4} \theta\right] d \theta \\
& =\frac{a^{3}}{4}\left[\left.2 \cdot \frac{1}{2} \cdot \frac{\pi}{2}-\frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2} \right\rvert\,\right], \\
& \int_{0}^{\pi / 2} \sin ^{p} x d x=\frac{(p-1) \cdot(p-3) \ldots}{(p) \cdot(p-2) \ldots} \times\left(\frac{\pi}{2} ; \text { only if } p \text { is even }\right) \\
& \therefore \quad I=\frac{a^{3}\left\lceil\pi\left(1-\frac{3}{4}\right)\right\rceil}{4}\left\lfloor_{22} \left\lvert\,\left(\frac{5 \pi a^{3}}{8}\right)\right.\right\rfloor \frac{54}{64}
\end{aligned}
$$

Example 38: Evaluate $\iint_{0}^{e \log y e^{x}} \int_{1} \log s d s d y d x$.
[MDU, 2005; KUK, 2004, 05]

Solution: $\int_{1}^{e} \int_{0}^{\log y}\left(\int_{1}^{e^{x}} \log z d z\right) d x d y$
[Here $z=f(x, y)$ with $z_{1}=1$ and $z_{2}=e^{x+0 y}$

$$
\begin{aligned}
& =\int_{1}^{e} \int_{0}^{\log y}\left(\int_{1}^{e^{x}} \log z \cdot 1\right) d z d x d y \\
& \begin{array}{ll}
\text { Ist } & \text { IInd } \\
\text { fun. } & \text { fun. }
\end{array} \\
& \begin{array}{l}
=\iint_{e_{e}^{0}}^{\log y}[\log y \\
\left.=\iint^{\log z \times z-\int} \begin{array}{c}
\underline{1} \\
z d z \\
z
\end{array}\right]_{e_{1}^{x}} d x d y \\
\left.\left(e^{x} \log e^{x}-1 \cdot \log 1\right)-(z)^{e^{x}}\right\rceil d x d y
\end{array} \\
& \int_{1} \int_{0} L \\
& 1 」
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\int_{0}^{e} \int_{\log . \log y}^{\log }\left\lceil\left(\left\lceil\left(e^{x}-\left(e^{x}-1\right)\right\rceil d x d y\right)\right.\right. \\
\left.\left.\int_{1} \int_{0}\lfloor 1) e^{x}+1\right\rceil d x\right) d y
\end{array} \\
& \left.\left.=\int_{1_{e}}^{e} x e^{x}-2 e^{x}+x\right]^{\log y}\right\rfloor_{0} d y
\end{aligned}
$$

On integrating by parts,

$$
\begin{aligned}
& \quad\left(y^{2}\right)_{e^{e}}{ }^{e} \underline{1}\left(y^{2}\right) \quad\left(2 y^{2}\right)^{e}{ }^{e}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|(\log e)\left(\frac{\overline{2}}{}+e\right)-\log 1 \cdot\left({ }_{2}+1\right)-\int_{1}(\overline{2}+1) d y+(2 e-e)-(2-1)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{\left\lceil_{\lfloor 4}^{2}\right.}{\underline{1}}\left(1+8 e-3 e^{2}\right)\right\rceil^{4}
\end{aligned}
$$

Example 39: Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$.
[JNTU, 2000; Cochin, 2005]

Solution: Integrating first with respect to y, keeping x and z constant,

$$
\begin{aligned}
& I=\int_{-1}^{1} \int_{0}^{z}\left(\left[\left|x y+\frac{y^{2}}{2}+y z\right|_{]_{x-z}\right)}^{x+z}\right) d x d z\right. \\
& =\int_{-1}^{1}\left(\int_{0}^{2}\left(4 z x+2 z^{2}\right) d x\right)^{-x-z} d z \\
& \begin{aligned}
= & \int_{F_{1}}^{1}\left[4 z \bar{z}^{22}+2 \cdot z^{2} \cdot x\right]_{0}^{7} d z \\
= & \int_{-1}\left[\frac{z^{2}}{2}+2 z^{2} \cdot z d z\right.
\end{aligned} \\
& =4 \int_{-1}^{1} z^{3} d z=\left.4 \frac{z^{4}}{4}\right|_{-1} ^{1}=0
\end{aligned}
$$

ASSIGNMENY 6

Evaluate the following integrals:
(1) $\iint_{0}^{122} \int_{42 z}^{\sqrt{4 z-x^{2}}} x^{2} y z d x d y d z$
(3) $+_{0}+_{0} d y d x d z$ $+$
(2) $\int_{-0}^{a b c} \int_{-\infty}\left(x_{-c}^{2}+y^{2}+z^{2}\right) d x d y d z$
(4) $+_{0} \quad+_{0} \quad e^{x+y+z} d z d y d x$
[NIT Kurukshetra, 2008]

0

VO1UME AS ADOUB1E INYEGRA1

(Geometrical Interpretation of the Double Integral)

One of the most obvious use of double integral is the determination of volume of solids viz. 'volume between two surfaces'.

If $f(x, y)$ is a continuous and single valued function defined over the region R in the $x y$-plane with $z=f(x, y)$ as the equation of the surface. Let Γ be the closed curve which encloses R. Clearly, the surface $R(v i z . z=f(x, y))$ is the orthogonal projection of $S(v i z z=F(x, y))$ in the $x y$ plane.

Divided R into elementary rectangles of area $\delta x \delta y$ by drawing lines parallel to the axis of x and y. On each of these rectangles errect prisms having their lengths parallel to the z-axis. The volume of each such prism is $z \delta x \delta y$.
(Division of R is performed with the lines $x=x_{i}(i=1$, $2, \ldots, m)$ and $y=y_{j}(j=1,2, \ldots, n)$. Through eachline $x=x_{i}$, pass a plane parallel to $y z$-plane, and through each line $y=y_{j}$, pass a plance parallel to xz-plane. The rectangle $\Delta R_{i j}$ whose area is $\Delta \mathrm{A}_{i j}=\Delta x_{i} \Delta y_{j}$ will be the

Fig. 5.49 base of a rectangle prism of height $f\left(x_{i j}, h_{i j}\right)$, whose volume is approximately equal to the volume between the surface and the $x y$-plane $x=x_{i}-1$,
$x=x_{i} ; y=y_{i}-1 y=y_{i}$. Then $\sum_{\substack{i=1 \\ j=1}}^{n} f\left(\xi_{j j}, \eta_{i j} \Delta x_{i} \cdot \Delta\right)_{j}$ gives an approximate value for volume V of
the prism of the cylinder enclosed between $z=f(x, y)$ and the $x y$-plane.
The volume V is the limit of the sum of each elementary volume $z \delta x \delta y$.

$$
\therefore \quad V=\underset{\substack{\delta x \rightarrow 0 \\ \delta y \rightarrow 0}}{\operatorname{Lt} \sum_{R} \sum z \delta x \delta y=\iint_{R} z d x d y=\iint_{R} f(x, y) d A}
$$

Note: In cyllidrical co-ordinates, the equation of the surface becomes $z=f(r, \theta)$, elementary area $d A=r d r d \theta$ and volume $=\iint_{R} f(v, \theta) v d v d \theta$

Pıob1ems on Vo1ume oG a So1td wt1h 1he He1 μ oG Doub1e In1egıa1
Example 40: Find the volume of the tetrahedron bounded by the plane the co-ordinate planes.
$\frac{x}{a}+\frac{y}{b}+\frac{s}{c}=1$ and
[Burdwan, 2003]
Solution: Given, $\quad \underline{x}+{ }^{\underline{y}}+{ }^{z}=1 \Rightarrow \quad z=f(x, y)=c(1-\underline{x}-\underline{y})$
If $f(x, y)$ is a continuous and single valued function over the region R (see Fig. 5.50) in the $x y$ plane, then $z=f(x, y)$ is the equation of the surface. Let C be the closed curve that is the boundary of R. Using R as a base, construct a cylin der having elements parallel to the z-axis. This cylinder intersects $z=f(x, y)$ in a curve Γ, whose projection on the $x y$-plane is C.

Fig. 5.50

Fig. 5.51

The equation of the surface under which the region whose volume is required, may be written in the form (1) i.e., $\left.z=c \quad 1 T_{(}^{\underline{x}}-y\right)$.
Hence the volume of the region $=\iiint_{R}^{-\bar{b}} a d A=\iint_{R} c^{(1-\underline{x}} \underset{-}{1-\underline{y})} d x d y$
The equation of the inter-section of the given surface with xy-plane is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{2}
\end{equation*}
$$

If the prisisms are summed first in the y-direction they will be summed from $y=0$ to the line $y=b_{1} \quad 1-\underline{x}^{5} \quad l$

Therefore,

$$
\begin{aligned}
V & =\iint_{0} b^{\left(1-\frac{x}{a}\right)}{ }_{c} c_{0}(1-\underline{x}-\underline{y}) d y d x \\
& =\left.c \int_{0}^{a}\left(y-\frac{x y}{a}-\frac{y^{2}}{2 b}\right)\right|_{0} ^{b(1-x / a)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =c \int^{a} b^{(\underline{1}}-\underline{x}+{ }^{\left.x^{2}\right)} d x \\
& \begin{array}{llll}
0 & l_{2} & a & \overline{2 a^{2}} \\
\lceil & { }^{1} & x^{2} & \left.x^{3}\right\rceil^{a}
\end{array}
\end{aligned}
$$

Example 41: Prove that the volume enclosed between the cylinders $x^{2}+y^{2}=2 a x$ and $z^{2}=2 a x$ is $\frac{128 \mathrm{a}^{2}}{1 \mathrm{~S}}$.

Solution: Let V be required volume which is enclosed by the cylinder $x^{2}+y^{2}=2 a x$ and the paraboloid $z^{2}=2 a x$.

Only half of the volume is shown in Fig 5.52.
Now, it is evident from that $\quad z=\sqrt{2 a x}$ is to be evaluated over the circle $x^{2}+y^{2}=2 a x$ (with centre at $(a, 0)$ and radius a.

Here y varies from $-\sqrt{2 a x-x^{2}}$ to $\sqrt{2 a x-x^{2}}$ on the circle $x^{2}+y^{2}=2 a x$ and finally x varies from $x=0$ to $x=2 a$

$$
\begin{aligned}
\therefore & =2 \int_{0}^{2 a} \int_{-\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x-x^{2}}}[z] d x d y \text { as } z=f(x, y) \\
& =2 \int_{0}^{2 a(}\left(2 \cdot \int_{0}^{\sqrt{2 a x-x^{2}}} \overline{\sqrt{2 a x}}\right) d y d x \\
& =4 \int_{0}^{2 a} \sqrt{\sqrt{2 a x}}\left(\int_{0}^{\sqrt{2 a x-x^{2}}} d y\right) d x \\
& =\left.4 \int_{0}^{2 a} \sqrt{2 a x}|y|\right|_{0} ^{\sqrt{2 a x-x^{2}}} d x=4 \int_{0}^{2 a} \sqrt{2 a x} \sqrt{2 a x-x^{2}} d x \\
& =4 \sqrt{2 a} \int_{0}^{2 a} x \sqrt{2 a-x} d x
\end{aligned}
$$

Let $x=2 a \sin ^{2} \theta$, so that $d x=4 a \sin \theta \cos \theta d \theta$. Further, for $x=0, \theta=0$)

$$
\left.x=2 a, \theta=\frac{\pi}{2}\right\}
$$

$$
\begin{aligned}
\therefore \quad & V=42 \sqrt{a} \int_{0}^{\pi / 2} 2 a \sin ^{2} \theta \sqrt{2} a \cos \theta \cdot 4 a \sin \theta \cos \theta d \theta \\
& =64 a^{3} \int_{0}^{\pi / 2} \sin ^{3} \theta \cos ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =64 a^{3} \frac{(p-1)(p-3) \ldots(q-1)(q-3) \ldots}{(p+q)(p+q-2) \ldots} \cdot 1, p=3, q=2 \\
& =64 a^{3} \frac{(3-1) 1}{5 \cdot 3}=\frac{128 a^{3}}{15} .
\end{aligned}
$$

Pıob1ems based on Vo1ume as a Doub1e In1egıa1 tn Cy1tndıtca1 Cooıdtna1es
Example 42: Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the hyperboloid $x^{2}+y^{2}-z^{2}=1$.

Solution: In cartesian co-ordinates, the section of the given hyperboloid $x^{2}+y^{2}-z^{2}=1$ in the $x y$ plane $(z=0)$ is the circle $x^{2}+y^{2}=1$, where as at the top and at the bottom end (along the z-axis i.e., $z= \pm \sqrt{3}$) it shares common boundary with the circle $x^{2}+y^{2}=4$ (Fig. 5.53 and 5.54).

Here we need to calculate the volume bounded by the two bodies (i.e., the volume of shaded portion of the geometry).

Fig. 5.53

Fig. 5.54
(Best example of this geometry is a solid damroo in a concentric long hollow drum.)
In cylindrical polar coordinates, we see that here r varies from $r=1$ to $r=2$ and θ varies from 0 to 2π.

$$
\begin{aligned}
& \therefore \quad V=2\left\lceil\iint z d x d y{ }^{\rceil}=2\left\lceil\iint f(r, \theta) r d r d \theta\right\rceil\right. \\
& \left.=2 \int_{0}^{\Gamma} \int_{1}^{2 \pi 2} \sqrt{r}^{r^{2}-1 r d r d \theta}\right] \quad\left(3 x^{2}{ }^{2}+y^{2}-z^{2}-1 \Rightarrow z=\sqrt{x^{2}+y^{2}-1}\right) \\
& =2 \int_{0}^{\pi}\left(\left\{\int_{1}^{2} \frac{1}{3} d\left(r^{2}-1\right)^{\frac{3}{2}}\right) d \theta\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left.2 \int_{0}^{2 \pi} \frac{\left(r^{2}-1\right)^{\frac{3}{2}}}{3}\right|_{1} ^{2} d \theta \\
& =2 \sqrt{3}+t_{0}^{2 \pi} \mathrm{~d} \theta=4 \pi-3 .
\end{aligned}
$$

Example 43: Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z$ $=4$ and $z=0$.
[KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007]
Solution: From Fig. 5.55, it is very clear that $z=4-y$ is to be integrated over the circle $x^{2}+$ $y^{2}=4$ in the $x y$-plane.

To cover the shaded portion, x varies from $-\sqrt{4-y^{2}}$ to $\sqrt{4-y^{2}}$ and y varies from -2 to 2 .
Hence the desired volume,

$$
\begin{aligned}
V & =\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} z d x d y \\
& =2 \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}}(4-y) d x d y \\
& =2 \int_{-2}^{2}(4-y)\left(\int_{0}^{\sqrt{4-y^{2}}} d x\right) d y \\
& =2+_{-2}^{2}(4-y) \frac{4-y_{2}}{4} d y \\
& =2+_{-2}^{2}\left[\sqrt[4]{4-y^{2}}-y \sqrt{4-y_{2}} d y\right. \\
& =8 \int_{-2}^{2} \sqrt{\sqrt{4-y^{2}}} d y-0
\end{aligned}
$$

Fig. 5.55

$$
\left.=8 \left\lvert\, \frac{y \sqrt{4-y^{2}}}{2}+\frac{4}{2} \sin ^{-1} \frac{y}{2}\right.\right]_{-2}^{2}=16 \pi
$$

(The second term vanishes as the integrand is an odd function)

ASSIGNMENY 7

1. Find the volume enclosed by the coordinate planes and the portion of the plane
$l x+m y+n z=1$ lying in the first quadrant.
2. Obtain the volume bounded by the surface

$$
x^{2}+y^{2}=1
$$

the elliptic cylinder $\overline{a^{2}} \quad-b^{2}$
[Hint: Use elliptic polar coordin
[Hint: Use elliptic polar coordinates $x=a r \cos \theta, y=b r \sin \theta$]

VO1UME AS A YRIP1E INYEGRA1

Divide the given solid by planes p arallel to the coor dinate plane into rectang ular parallelopiped of elementary volume $\delta x \delta y \delta z$.

Then the total volume V is the limit of the sum of all elementary volume i.e.,

$$
V \underset{\substack{\delta x \rightarrow 0 \\ \delta y \rightarrow 0 \\ \delta z \rightarrow 0}}{\operatorname{Lt}} \sum \sum \sum \delta x \delta y \delta z=\iiint d x d y d x
$$

Pıob1ems based on Vo1ume as a Yitu1e In1egia1 tn caı1estan Cooidtna1e Sys1em

Example 44: Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
Solution: The sections of the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$ are the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$ in $x y$ and $x z$ plane respectively.

Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is shown.
Clearly, in the common region, z varies from 0 to y vary on the circle $x^{2}+y^{2}=a^{2}$.

The required volume

$$
\begin{aligned}
\therefore \quad & =8 \int_{0}^{a} \int_{y_{1}=0}^{y_{2}=} \sqrt{a^{2}-x^{2}} \int_{z_{1}=0}^{z_{2}=} \sqrt{a^{2}-x^{2}-0 y^{2}} d z d y d x \\
& =8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(\left.z\right|_{0} ^{\sqrt{a^{2}-x^{2}}}\right) d y d x \\
& =8 \int_{0}^{a}\left(\left.\int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}} d y\right|_{j} d x\right. \\
& =8 \int_{0}^{a}\left(\sqrt{a^{2}-x^{2}}\right)\left(\left.\int_{0}^{\sqrt{a^{2}-x^{2}}} d y\right|_{0}\right) d x \\
& =8 \int_{0}^{a} \sqrt{a^{2}-x^{2}}\left(\sqrt{a^{2}=x^{2}} \quad 0\right) d x \\
& =8+{ }_{0}^{a}\left(a^{2}-x^{2}\right) d x=\left.8\right|_{\mid}\left(\left.\left.\left|a^{2} x-\frac{x^{3}}{3}\right|_{\mid}^{a}\right|_{0} \right\rvert\,\right. \\
& =8\left(a^{3}-\frac{\mathrm{a}^{3}}{3}\right)=\frac{16 a^{3}}{3} .
\end{aligned}
$$

Example 45: Find the volume bounded by the $x y$ plane, the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=3$.

Solution: Let $V(x, y, z)$ be the desired volume enclosed laterally by the cylinder $x^{2}+y^{2}=1$ (in the $x y$-plane) and on the top, by the plane $x+y+z=3$ ($=a$ say).

Clearly, the limits of z are fro m (on the $x y$-plane) to $z=(3-x-y)$ and x and y vary on the circle $x^{2}+y^{2}=1$

$$
\begin{aligned}
\therefore \quad V(x, y, z) & =\int_{-1}^{1} \int_{-1}^{\sqrt{1-x^{2}}} \int_{1}^{\sqrt{1-x^{2}}} \int_{0}^{3-x-y} d z d y d x \\
& =\int_{1}^{1-x^{2}}\left(z^{(3-x-y)}\right) d y d x \\
& =\int_{-1}^{1}\left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(3-x-y) d y\right) d x \\
& \left.=\int_{-1}^{1} 3 y-x y-\frac{y^{2}}{2}\right]_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d x \\
\Rightarrow \quad I & =\int_{-1}^{1}\left(6 \times \sqrt{1-x^{2}}-2 x \sqrt{1-x_{2}}\right) d x
\end{aligned}
$$

Fig. 5.57

On taking $x=\sin \theta$, we get $d x=d \theta$; For $x=-1, \theta=-\pi$)

$$
\text { For } x=1, \quad \theta=\frac{\pi}{2}, ~+,
$$

Thus,

$$
\begin{aligned}
& \begin{aligned}
& V=\int_{-\pi / 2}^{\pi / 2} 6\left(\sqrt{1-\sin ^{2} \theta}-2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \cos \theta d \theta \\
&=\int_{-\pi / 2}^{\pi / 2}\left(6 \cos ^{2} \theta-2 \sin \theta \cos ^{2} \theta\right) d \theta \\
&=6 \times 2 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta-2 \int_{-\pi / 2}^{\pi / 2} \sin \theta \cos ^{2} \theta d \theta \\
& \text { Ist Ind } \\
&=12 \frac{(2-1)}{2} \cdot \frac{\pi}{2}+\left.2 \frac{\cos ^{3} \theta}{3}\right|_{-\pi / 2} ^{\pi / 2}=3 \pi+\frac{2}{3} \times 0=3 \pi \\
& \text { Using } \quad \int_{0}^{\pi / 2} \cos ^{p} \theta d \theta=\frac{(p-1)(p-3) \ldots}{}\left(\frac{\pi}{2}, \text { only if } p \text { is even }\right)
\end{aligned}
\end{aligned}
$$

$$
\int f^{\prime}(x) f^{n}(x) d x=\frac{f^{n+1}(x)}{n+1} \text { for Ist and IIn d integral respectively }
$$

Example 46: Find the volume bounded by the ellipsoid

$$
\begin{aligned}
& x^{2}+y^{2}+s^{2}=1 \\
& a^{2} \\
& b^{2} \\
& c^{2}
\end{aligned}
$$

[MDU, 2000; KUK, 2001; Kottayam, 2005; PTU, 2006]
Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid into the positive octant.

The ellipsoid cu ts the XOY plane in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $z=0$.

Therefore, the required volume lies between the ellipsoid

$$
z=c \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}
$$

and the plane $X O Y(i . e ., z=0)$ and is bounded on the sides by the planes $x=0$ and $y=0$

Hence,

$$
\begin{aligned}
& V=8+_{0}^{\sqrt{1-\frac{x^{2}}{a^{2}}}} \quad \sqrt[c]{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d z d y d x \\
& + \\
& =8 \int_{0}^{a} \int_{0}^{b} \sqrt{1-\frac{x^{2}}{a^{2}}} c \sqrt{1-\frac{x^{2}}{a^{2}} \frac{y^{2}}{b^{2}}} d y d x \\
& =\int_{g_{0}^{a}}^{a}\left(\int_{0 b}^{\alpha} \sqrt{\alpha^{2}-y^{2}} d y\right) d x \quad\left(\text { taking } \left.\sqrt{\left(1-\frac{x^{2}}{a^{2}}\right)}=\frac{\alpha}{b} \right\rvert\,\right) \\
& V=8 \frac{c}{b} \int_{0}^{a}\left|\frac{y \sqrt{\alpha^{2}-y^{2}}}{2}+\frac{\alpha^{2}}{2} \sin ^{-1}-\left|b d x^{\alpha} \alpha\right|_{0}\right. \\
& \left.=8 \underline{c}^{a}\left\lceil 0+{ }^{\alpha^{2}} \sin ^{-1} 1\right\rceil_{d x} 2_{2}^{\sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{2} \tan ^{-1} \underline{x}\right) \quad a^{\boldsymbol{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lceil\quad 1 x^{3}\right\rceil^{a} \\
& \left.=\left.2 \pi b c\right|_{[x-}-\overline{a^{2}}\right]_{0} \\
& =\frac{4}{3} \pi \mathrm{abc} \text {. }
\end{aligned}
$$

Example 47: Evaluate the integral $\iint \frac{d x d y d s}{\sqrt{a^{2}-x^{2}-y^{2}-s}}$ taken throughout the volume of the sphere.
[MDU, 2000]
Solution: Here for the given sphere $x^{2}+y^{2}+z^{2}=a^{2}$, any of the three variables x, y, z can be expressed in term of the other two, say $\quad z= \pm \sqrt{a^{2}-x^{2}-y^{2}}$.

In the $x y$-plane, the projection of the sphere is the circle $x^{2}+y^{2}=a^{2}$.

Thus,

$$
\begin{aligned}
& I=8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}} \\
& \left.=8 \int_{0}^{a}\left(\int_{0}{\sqrt{ } a^{2}-x^{2}}^{\mid} \int_{0} \sqrt{a^{2}-x^{2}-y^{2}} \frac{d z}{\sqrt{\alpha^{2}-z^{2}}}\right) d y\right) d x, \alpha^{2}=\left(a^{2}-x^{2}-y^{2}\right) \\
& \left.=8 \int_{0}^{a}\left(\int_{0} \sqrt{a^{2}-x^{2}}\left(\sin ^{-1} \underline{z}\right)^{\alpha}\right) \mid d y\right) d x \\
& =8 \int_{0}^{a}\left|\int_{0}^{\sqrt{a^{2}-x^{2}}}\left(\sin ^{-1} 1-\sin ^{-1} 0\right) d y\right| d x \\
& \left.\left.=8 \frac{\pi}{2} \int_{0}^{a} \right\rvert\, \int_{0}^{\sqrt{a^{2}-x^{2}}} d y\right) d x=4 \pi \int_{0}^{a}\left(\left.y\right|_{0} ^{\sqrt{a^{2}-x^{2}}}\right) d x \\
& \text { a } \\
& \left\lceil\begin{array}{cccc}
x & a^{2}-x^{2} & a^{2} & \underline{x}
\end{array}\right\rceil^{a} \\
& \text { Fig. } 5.60 \\
& \begin{array}{l}
=4 \pi \text { + } \sqrt{a^{2}-x^{2}} d x=4 \pi\left\lfloor\frac{\sqrt{ }}{2}+\frac{\Gamma^{0}}{2} \sin ^{-1} a\right\rfloor_{0} \\
\left.=4 \pi 0+a^{2} \pi\right\rceil \quad 22
\end{array} \\
& \downarrow \quad \overline{2} 2 \mid I=\pi a \text {. }
\end{aligned}
$$

Example 48: Evaluate $\int(x+y+s) d x d y d s$ over the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.

Solution: The integration is over the region R (shaded portion) bounded by the plane $x=0$, $y=0, z=0$ and the plane $x+y+z=1$.

The area $O A B$, in $x y$ plane is bounded by the lines $x+y=1, x=0, y=0$
Hence for any pt. (x, y) within this triangle, z goes from $x y$ plane to plane $A B C$ (viz. the surface of the tetrahedron) or in other words, z changes from $z=0$ to $z=1-x-y$. Likewise in plane $x y, y$ as a function x varies from $y=0$ to $y=1-x$ and finally x varies from 0 to 1 .
whence,

$$
\left.\begin{array}{rl}
I= & \iiint(x+y+z) d x d y d z \\
& (\text { over } R
\end{array}\right)
$$

ASSIGNMENY 8

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane
$\underline{x}_{a}^{x}+\frac{y}{b} \quad \underset{c}{z} \equiv 1, \quad$ by using triple integration
[KUK, 2002]
2. Find the volume bounded by the paraboloid $x^{2}+y^{2}=a z$, the cylinder $x^{2}+y^{2}=2 a y$ and the plane $z=0$.

VO1UMES OT SO1IDS OT REVO1UYION AS A DOUB1E INYEGRA1

Let $\mathrm{P}(x, y)$ be any point in a region R enclosing an elementary area $d x d y$ around it. This elementary area on revolution about x -axis form a ring of volume,

$$
\begin{equation*}
\delta \mathrm{V}=\pi\left[(y+\delta y)^{2}-y^{2}\right] \delta x=2 \pi y \delta x \delta y \tag{1}
\end{equation*}
$$

Hence the total volume of the solid formed by revolution of this region R about x-axis is,

$$
\begin{equation*}
V=\iint_{R} 2 \pi y d x d y \tag{2}
\end{equation*}
$$

Similarly, if the same region is revolved about y-axis, then the required volume becomes

$$
\begin{equation*}
V=\iint_{R} 2 \pi x d x d y \tag{3}
\end{equation*}
$$

Fig. 5.62

Expressions for above volume in polar coordinates about the initial line and about the pole are $\iint_{R} 2 \pi r^{2} \sin \theta d r d \theta$ and $\iint_{R} 2 \pi r^{2} \cos \theta d r d \theta$ respectively.

Example 49: $x^{\text {Find }}$ by double integration, the volume of the solid generated by revolving the ellipse

$$
\overline{a^{2}} \overline{b^{2}} \quad \text { about } y \text {-axis. }
$$

Solution: As the ellipse $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ is symmetrical about the y-axis, the volume generated by the left and the right halves overlap.

Hence we shall consider the revolution of the right-half $A B D$

Fig. 5.63 for which x-varies from 0 to $a \sqrt{1-\frac{y^{2}}{b^{2}}}$ and y-varies from $-b$ to b.

$$
\begin{array}{rlrl}
\therefore \quad & V & \int_{-b}^{b} \int_{0}^{\frac{a}{b} \sqrt{b^{2}-y^{2}}} 2 \pi x d x d y \\
& =2 \pi \int_{-b}^{b}\left\lceil\frac{x^{2}}{2}\right]_{0}^{\frac{a}{b}} b^{b^{2}-y^{2}} d y=\frac{\pi a^{2}}{b^{2}} \int_{-b}^{b}\left(b^{2}-y^{2}\right) d y \\
& =2 \pi a^{a^{2} b}\left(b^{2}-y^{2}\right) d y= & 2 \pi a^{2}\left\lceil\left[\begin{array}{ll}
y^{3} \\
\overline{b^{2}} \int_{0} & \\
& =\frac{4}{3} \pi \mathrm{a}^{2} \mathrm{~b} .
\end{array}\right.\right. &
\end{array}
$$

Example 50: The area bounded by the parabola $y^{2}=4 x$ and the straight lines $x=1$ and y $=0$, in the first quadrant is revolved about the line $y=2$. Find by double integration the volume of the solid generated.

Solution: Draw the standard parabola $y^{2}=4 x$ to which the straight line $y=2$ meets in the point $P(1,2)$, Fig. 5.64.

N o w the d otte d portion i.e., the area enclose d by parabola, the line $x=1$ and $y=0$ is revolved about the line $y=2$.
\therefore The required volume,

$$
\begin{aligned}
& V=+_{0}+_{0}^{12} 2 \pi(2-y) d x d y \\
&=2 \pi \int_{0}^{1}\left[2 y-\frac{y^{2}}{2}\right]_{0}^{2} \sqrt{5}^{*} d x=2 \pi \int_{0}^{1}\left(4 \sqrt{x}^{-2 x)} d x\right. \\
&=\left.\left.2 \pi\right|_{\left\lfloor 3^{x / 2}-x^{2}\right.} ^{\rceil^{1}}\right]_{0}=\underline{10 \pi} \\
& 3
\end{aligned}
$$

Fig. 5.64

Example 51: Calculate by double integration, the volume generated by the revolution of the cardiod $r=a(1-\cos \theta)$ about its axis.
[KUK, 2007, 2009]
Soluton: On considering the upper half of the cardiod, because due to symmetry the lower half generates the same volume.

$$
\begin{aligned}
\therefore \quad V & =\int_{0}^{\pi} \int_{0}^{a(1-\cos \theta)} 2 \pi r^{2} \sin \theta d r d \theta \\
& =2 \pi \int_{0}^{\pi}\left|\frac{r^{3}}{3}\right|_{0}^{a(1-\cos \theta)} \sin \theta d \theta \\
& =\frac{2 \pi a^{3}}{3} \int_{0}^{\pi}(1-\cos \theta)^{3} \sin \theta d \theta \\
& =\frac{2 \pi \mathrm{a}^{3}}{3}\left|\frac{(1-\cos \theta)^{4}}{4}\right|_{0}^{\pi}=\frac{8 \pi \mathrm{a}^{3}}{3}
\end{aligned}
$$

Fig. 5.65

Example 52: By using double integral, show that volume generated by revolution of cardiod $r=a(1+\cos \theta)$ about the initial line is $\quad \frac{\mathbf{8}}{3} \pi \mathrm{a}^{3}$.

Solution: The required volume

$$
\begin{aligned}
& =\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} 2 \pi r^{2} \sin \theta d r d \theta \\
& =2 \pi \int_{0}^{\pi}\left[\frac{r^{3}}{3}\right]_{0}^{a(1+\cos \theta)} \sin \theta d \theta \\
& =2 \pi \int_{0}^{\pi} a^{3}(1+\cos \theta)^{3} \sin \theta d \theta \\
& =\frac{2 \pi a^{3}}{3}\left|\frac{\left.(1+\cos \theta)^{4}\right\rceil^{\pi}}{4}\right|_{0}^{2} \\
& =-\frac{2 \pi a^{3}}{3}\left[0-\left.\frac{\left.2^{4}\right\rceil}{4}\right|_{]}=\frac{8 \pi a^{3}}{3} .\right.
\end{aligned}
$$

Fig. 5.66

ASSIGNMENY 9

1. Fin d by double integration the volume of the solid generated by revolving the ellipse
$\begin{array}{ll}x^{2} \\ \overline{a^{2}} & =1 \\ \overline{b^{2}} & \text { about the } X \text {-axis. }\end{array}$
2 Find the volume generated by revolving a quadrant of the circle $x^{2}+y^{2}=a^{2}$, about its diameter.
2. Find the volume generated by the revolution of the curve $y^{2}(2 a-x)=x^{3}$, about its asymptote through four right angles.
4 Find the volume of the solid obtained by the revolution of the leminiscate $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
[Jammu Univ., 2002]

CHANGE OT VARIAB1E IN YRIP1E INYEGRA1

For transforming elementary area or the volume from one sets of coordinate to another, the necessary role of 'Jacobian' or 'functional determinant' comes into picture.

(a) Triple Integral Under General Transformation

Here $\iiint_{R(x, y, z)} f(x, y, z) d x d y d z=\iint f(u, v, w)|J| d u d v d w$; where $\left.\quad J=\frac{\partial(x, y, z)}{\partial(u, v, w)} \neq 0\right)$
Since in the case of three variables $u(x, y, z), v(x, y, z), w(x, y, z)$ be continuous together with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is defined by

$$
\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}
\end{array}\right|
$$

(b) Triple Integral in Cylindrical Coordinates

Here

$$
\iint_{R} f(x, y, z) d x d y d z=\int_{R^{R}} \int F \int\left(\int r, \theta, z\right) J d r d \theta d z \text {, where }|J|=r
$$

The position of a point P in ${ }_{R}^{R}$ space in cylindrical coordinates is determined by the three numbers r, θ, z where r and θ are polar co-ordinates of the projection of the point P on the $x y$-plane and z is the z coordinate of P i.e., distance of the point (P) from the $x y$ plane with the plus sign if the point (P) lies above the $x y$-plane, and minus sign if below the $x y$-plane (Fig. 5.67).

Fig. 5.67

Fig. 5.68

In this case, divide the given three dimensional region $R^{\prime}(r, \theta, z)$ into elementary volumes by coordinate surfaces $r=r_{i}, \theta=\theta_{j}, z=z_{k}$ (viz. half plane adjoining z-axis, circular cylinder axis coincides with Z-zxis, planes perpenducular to z-axis). The
curvilinear 'prism' shown in Fig. 5.68 is a volume element of which elementary base area is r $\Delta r \Delta \theta$ and height Δz, so that $\Delta v=r \Delta r \Delta \theta \Delta z$.

Here θ is the angle between OQ and the positive x-axis, r is the distance OQ and z is the distance QP. From the Fig. 5.62, it is evident that

$$
\begin{align*}
& x=r \cos \theta, y=r \sin \theta, z=z \text { and so that, } \\
& J\left(\frac{x, y, z)}{u, v, w}=\left|\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r\right. \tag{2}
\end{align*}
$$

Hence, the triple integral of the function $\mathrm{F}(r, \theta, z)$ over R^{\prime} becomes

$$
\begin{equation*}
V=\iiint_{R^{\prime}(r, \theta, z)} F(r, \theta, z) r d r d \theta d z \tag{3}
\end{equation*}
$$

(c) Triple Integral in Spherical Polar Coordinates

Here $\quad V=\iiint_{R} f(x, y, z) d x d y d z=\quad F \int(f, \theta, \phi) \mid J d r d \theta d \phi$, where $|J|=r^{2} \sin \theta$
The position of a point P in space in spherical coordinates is determined by the three variables r, θ, ϕ where r is the distance of the point (P) from the origin and so called radius vector, θ is the angle between the radius vector on the $x y$-plane and the x-axis to count from this axis in a positive sense viz. counter-clockwise.
For any point in space in spherical coordinates, we have

$$
0 \leq r \leq \infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi .
$$

Divide the region ' R ' into elementary volumes ΔV by coordinate surfaces, $r=$ constant (sphere), $\theta=$ constant (conic surfaces with vertices at the origin), $\phi=$ constant (half planes passing through the Z-axis).

To within infinitesimal of higher order, the volume element Δv may be considered a parallelopiped with edges of length $\Delta r, r \Delta \theta, r \sin \theta \Delta \phi$. Then the volume element becomes $\Delta V=r^{2} \sin \theta \Delta r \Delta \theta \Delta \phi$.

Fig. 5.69

Fig. 5.70

For calculation purpose, it is evident from the Fig. 5.69 that in triangles, $O A L$ and OPL,

$$
\begin{aligned}
& x=\mathrm{OL} \cos \phi=\mathrm{OP} \cos (90-\theta) \cdot \cos \phi=r \sin \theta \cos \phi \\
& y=\mathrm{OL} \sin \phi=\mathrm{OP} \sin \theta \cdot \sin \phi=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

Thus,

$$
J=\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=\left|\begin{array}{ccc}
\sin \theta \cos \phi & \sin ^{\theta} \theta \sin \phi \\
r \cos \theta \cos \theta & \cos \theta \\
-r \sin \theta \sin \phi & r \sin \theta \cos \phi & 0
\end{array}\right|
$$

Pıob1ems Vo1ume as a Yıt 1 1e In1egıa1 tn Cy1tnditca1 Co-oıdtna1es
Example 53: Find the volume intercepted between the paraboloid $x^{2}+y^{2}=2 a z$ and the cylinder $x^{2}+y^{2}-2 a x=0$.

Solution: Let V be req uire d volume of the cylin der $x^{2}+y^{2}-2 a x=0$ intercepted by the paraboloid $x^{2}+y^{2}=2 a z$.

Transfor ming the given system of eq u ations to polar- cylindrical co-ordinates.

$$
\text { Let } \left.\begin{array}{rl}
x & =r \cos \theta \\
y & =r \sin \theta \\
z & =z
\end{array}\right\} \text { sothat } \quad V(x, y, z)=V(r, \theta, z)
$$

By above substitution the equation of the paraboloid becomes $r^{2}=2 a z \Rightarrow z=\frac{r^{2}}{2 a} \quad$ and the cylinder $x^{2}+y^{2}=2 a x$ gives $r^{2}-2 a r \cos \theta=0 \Rightarrow r(r-2 a \cos \theta)=0$ with $r=0$ and $r=2 a \cos \theta$.

Fig. 5.71

r^{2}

Thus, it is clear from the Fig. 5.71 that z varies from 0 to $2 a$ and r as a function of θ varies from 0 to $2 a \cos \theta$ with θ as limits 0 to 2π. Geometry clearly shows the volume covered under the + ve octant only, i.e. ${ }^{1}$ th of the full volume.

$$
\begin{aligned}
\underset{(x, y, z)}{V=V_{(r, \theta, z)}^{\prime}} & =4 \int_{0}^{4} \theta=\pi / 2 \int_{r=0}^{r=2 a \cos \theta} \int_{z=0}^{z=r^{2} / 2 a} r d z d r d \theta, \text { as }|J|=r \\
& \left.=4 \int_{0}^{\pi / 2}\left(\int_{0}^{2 a \cos \theta} r[z]_{0}^{r^{2} / 2 a}\right) r d r\right) d \theta \\
& =4 \int_{0}^{\pi / 2}\left(\int_{0}^{2 a \cos \theta} \frac{r^{3}}{2 a} d r\right) d \\
& =\left.4 \frac{1}{2 a} \int_{0}^{\pi / 2} r^{4} \frac{2 a \cos \theta}{4}\right|_{0} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =4 \frac{1}{2 a} \int_{0}^{\pi / 2} \frac{2^{4} a^{4}}{4} \cos ^{4} \theta d \theta \\
& =2^{3} a^{3} \frac{(4-1)(4-3) \pi}{4 \times 2} 2 \\
& =\frac{3 \pi a^{3}}{2} .
\end{aligned}
$$

Example 54: Find the volume of the region bounded by the paraboloid $a z=x^{2}+y^{2}$ and the cylinder $x^{2}+y^{2}=b^{2}$. Also find the integral in case when $a=2$ and $b=2$.

Solution: On using the cylindrical polar co-ordinates (r, θ, z) with $x=r \cos \theta, y=r \sin \theta$, so that the equations of the cylin der and that of the paraboloid are $r=b$ and See $z=\frac{r^{2}}{a}$ respectively.

Fig. 5.72, only one-fourth of the common volume is shown.
Hence in the common region, z varies from $z=0$ to $\quad z=\frac{r^{2}}{a}$ and r and θ varies on the circle from 0 to b and 0 to ${ }_{2}$ respectively.
\therefore The desired volume

$$
\begin{aligned}
V & =4 \int_{0}^{\pi / 2} \int_{0}^{b} \int^{2 / a} r d r d \theta d z \\
& =4 \int_{0}^{\pi / 2}\left(\int_{0}^{b} r d r\left(\int_{0}^{r^{2} / a}\right)\right) \\
& =4 \int_{0}^{\pi / 2}\left(\int_{0}^{b} r\left(r^{2}\right)\right) d \theta \\
& \left.\left.=\frac{4}{a} \int_{0}^{\pi / 2}\left(r^{4}\right)^{b}\right)^{2} \mid d r\right) d \\
& =\frac{4}{4} \times\left.\frac{b^{4}}{4} \theta\right|_{0} ^{\pi / 2}=\frac{\pi b^{2}}{2 a}
\end{aligned}
$$

Fig. 5.72

As a particular case, when $a=2, b=2$, then

$$
V=\frac{\pi\left(2^{4}\right.}{2 \times 2}=4 \pi
$$

Pıob1mes on Vo1ume tn Po1aı S μ heitca1 Co-oıdtna1es
Example 55: Find the volume common to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cone $x^{2}+y^{2}=z^{2}$
OR
Find the volume cut by the cone $x^{2}+y^{2}=z^{2}$ from the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
[NIT Kurukshetra, 2010]

Solution: For the given sphere, $x^{2}+y^{2}+z^{2}=a^{2}$ and the cone $x^{2}+y^{2}=z^{2}$, the centre of the sphere is $(0,0,0)$ and the vertex of the cone is origin. Therefore, the volume common to the two bodies is symmetrical about the plane $z=0$, i.e. the required volume,

$$
V=2 \iiint d x d y d z
$$

$$
x=r \sin \theta \cos \phi \emptyset
$$

In spherical co-ordinates, we have $y=r \sin \theta \sin \phi ; J_{\rangle}=r^{2} \sin \theta$

$$
z=r \cos \theta
$$

Thus, $x^{2}+y^{2}+z^{2}=a^{2}$ becomes $r^{2}=a^{2}$ i.e., $r=a$
and $\quad x^{2}+y^{2}=z^{2}$ becomes $r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=r^{2} \cos ^{2} \theta$
i.e.,

$$
\sin ^{2} \theta=\cos ^{2} \theta \text { i.e. } \theta=\pi / 4 .
$$

Clearly, the volume shown in the figure (Fig. 5.73) is onefourth, i.e. in first quadrant only and, in the common region,
$\left.\begin{array}{l}r \text { varies from } 0 \text { to } \\ \theta \text { varies from } 0 \text { to } \\ \frac{\pi}{4}, \\ \phi \text { varies from } 0 \text { to } \\ \frac{\pi}{2}\end{array}\right\}$

Hence the required volume,

$$
\begin{aligned}
& V=2\left[4 \int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0} r^{2} \sin \theta d r d \theta d \phi\right] \\
& =8 \int_{0}^{\pi / 2} \int_{0}^{\pi / 4}\left(\iint_{0}^{a} r^{2} d r\right) \sin \theta d \theta d \phi \\
& =8 \int_{0}^{\pi / 2 \pi / 4} \int_{0}^{2}\left(r^{3}\right)^{a} \sin \sin \theta d \theta d \phi \\
& =\frac{8}{3} a^{3} \int_{0}^{\pi / 2}[-\cos \theta]_{0}^{\pi / 4} d \phi
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{4 \pi a^{3}}{3}\left(1-\frac{1^{2}}{3}\right)^{\sqrt{2}}\right)^{d \phi}
\end{aligned}
$$

Fig. 5.74

Alternately: In polar-cylindrical co-ordinates, intersection of the two curves $x^{2}+y^{2}+z^{2}=a^{2}$ and $x^{2}+y^{2}=z^{2}$ results in $z^{2}+z^{2}=a^{2}$ or $\quad z^{2}=\frac{a^{2}}{2}$.
Further, $x^{2}+y^{2}=a^{2}-z^{2}=a^{2}-\frac{a^{2}}{2}=\frac{a^{2}}{2} \Rightarrow r=\frac{a}{\sqrt{2}}$ i.e. r varies from 0 to $\frac{a}{\sqrt{2}}$
Hence, $\quad V=2 \int_{0}^{2 \pi} \int_{0}^{a / \sqrt{2}}\left(\sqrt{a^{2}-r^{2}}-r\right) r d r d \theta$

Solution: Taking $\left.\begin{array}{l}\underline{x}=u, \\ a \\ \underline{y}=v, \\ b \\ \underline{z}=w \\ c\end{array}\right\}$, so that $\begin{aligned} & x^{2}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}} \leq \frac{1}{c^{2}}\end{aligned} \quad \Rightarrow u^{2}+v^{2}+w^{2} \leq 1$

> Now transformation co-efficient,

To transform to polar spherical co-rodinate system, let

$$
\left.\begin{array}{l}
u=r \sin \theta \cos \phi \\
v=r \sin \theta \sin \phi \\
w=r \cos \theta
\end{array}\right\}
$$

Then

$$
V_{(u, v, w)}^{\prime}=\left\{(u, v, w): u^{2}+v^{2}+w^{2} \leq 1, u \geq 0, v \geq 0, w \geq 0\right\} \text { reduces to }
$$

$$
V_{(r, \theta, \phi)}^{\prime \prime}=\left\{r^{2} \leq 1 \quad \text { i.e., } \quad 0 \leq r \leq 1,0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi\right\}
$$

$$
=\iint_{V^{\prime}(u, v, w)} \int \sqrt{1-u^{2}-v^{2}-w^{2}} a b c d u d v d w
$$

$$
\begin{aligned}
& \text { Example 56: By changing to shperical polar co-ordinate system, prove that }
\end{aligned}
$$

$$
\begin{aligned}
& \text { | } 3 P \text { lies on the cone whereas } Q \text { lies on the sphere as a function of }(r, \theta) \\
& =2 \int_{0}^{a / \sqrt{2}}\left(r \sqrt{a^{2}-r^{2}}-r^{2}\right)^{\left(\int_{0}^{2 \pi} d \theta\right.} d r \\
& =4 \pi \underset{3}{\left\lceil-\frac{1}{4}\left(a^{2}-r^{2}\right)^{3 / 2}-\left.\frac{r 3}{3}\right|_{b} ^{\frac{a}{\sqrt{2}}}\left[\text { since } r\left(a^{2}-r^{2}\right)^{\frac{1}{2}}=\frac{-1}{3}\left(-3 r\left(a^{2}-r^{2}\right)^{\frac{1}{2}}\right)=\frac{-1}{3} d\left(a^{2}-r^{2}\right)^{\frac{3}{2}}\right]\right.}
\end{aligned}
$$

$$
\begin{aligned}
& =\iint_{V^{\prime \prime}(r, \theta, \phi)} a b c \sqrt{1-r^{2}}|J| d r d \theta d \phi \quad \text { where }|J|=r^{2} \sin \theta \\
\Rightarrow \quad V_{(r, \theta)}^{\prime \prime} & =a b c \int_{\phi=0}^{\phi=2 \pi}\left\{\left(\int_{0}^{\pi} \left\lvert\,\left(\left.\int_{0}^{1} \frac{2}{1-r^{2}} r d r\right|^{2} \sin d\right)^{\theta} d\right.\right.\right.
\end{aligned}
$$

$$
\text { Now put } \left.r=\sin t \text { so that } d r=\cos t d t \text { and for } \quad \begin{array}{r}
r=0, t=0, \\
r=1, t=\frac{\pi}{2}
\end{array}\right\}
$$

$$
\therefore \quad V_{(r, \theta, \phi)}^{\prime \prime}=a b c \int_{0}^{2 \pi(}\left(\int_{0}^{\pi}\left(\int_{0}^{\pi / 2} \cos t \sin t \cos t d t\right) \sin \theta d \theta\right) d \phi
$$

$$
=a b c \int_{0}^{2 \pi}\left(\int_{0}^{\pi}\left[\frac{(2-1) \cdot(2-1)}{(2+2)(4-2) 2}\right\rceil \sin _{\theta} d\right) d
$$

$$
\left.=a b c \int_{0}^{2 \pi}\left(\int_{0}^{\pi(11 \pi}\right) \sin \theta d \theta\right)^{\perp} d \phi
$$

$$
=\frac{\pi a b c}{16} \int_{0}^{2 \pi}[-\cos \theta]^{\pi} d \phi
$$

$$
=\frac{\pi a b c}{16} \int_{0}^{2 \pi} 2 d \phi=\frac{\pi a b c}{8} \int_{0}^{2 \pi} d \phi=\frac{\pi^{2} a b c}{4}
$$

Example 57: By change of variable in polar co-ordinate, prove that

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z d y d x}{\sqrt{1-x^{2}-y^{2}-z^{2}}}=\frac{\pi^{2}}{8}
$$

OR
Evaluate the integral being extended to octant of the sphere $x^{2}+y^{2}+z^{2}=1$.

OR

Evaluate above integral by changing to polar spherical co-ordinate system.
Solution: Simple Evaluation:

$$
I=\int_{0}^{1} d x \int_{0}^{\sqrt{1-x^{2}}} d y \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}
$$

Treating $\frac{1}{\sqrt{\left(1-x^{2}-y^{2}\right)-z^{2}}}$ as $\frac{1}{\sqrt{a^{2}-z^{2}}}$

$$
\left.I=\left.\int_{0}^{1} d x \int_{0}^{\sqrt{1-x^{2}}}| | \sin ^{-1} \frac{z}{a}\right|_{0} ^{\sqrt{1-x^{2}-y^{2}}}\right) d y
$$

$$
\begin{aligned}
& =\int_{0}^{1} d x \int_{0}^{\sqrt{1-x^{2}}}\left(\left|\sin ^{-1} \frac{z}{\sqrt{1-x^{2}-y^{2}}}\right|_{0}^{\sqrt{1-x^{2}-y^{2}}}\right) d y \text {, as } a=\sqrt{1-x^{2}-y^{2}} \\
& \begin{aligned}
&\left.=\int_{-0}^{1} d x \int_{0}^{\sqrt{1-x^{2}(} \frac{\pi}{1}}-0\right) d y \\
&=\int_{0}^{\left.1-x^{2}\right)} d x \\
&y)^{1}
\end{aligned} \\
& 2 \int_{0}\left(\begin{array}{ll}
& \sqrt{ } \\
0
\end{array}\right) \\
& =\frac{\pi}{2} \int_{0}^{1} \sqrt{1-x^{2}} d x \\
& =\frac{\pi}{2}\left|\frac{x \sqrt{-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x\right|_{0}^{1}, \quad \text { using } \int \sqrt{a^{2}-x^{2}} d x=\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \underline{x} a \\
& \left.=\frac{\pi}{2}\left[0+\frac{1 \pi}{22}\right]\right]=\frac{\pi^{2}}{8}
\end{aligned}
$$

By change of variable to polar spherical co-ordinates, the region of integration

$$
\begin{aligned}
& V=\left\{(x, y, z) ; x^{2}+y^{2}+z^{2} \leq 1 ; x \geq 0, z \geq 0, y \geq 0 .\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { whence } \\
& \iiint_{V}^{\sqrt{1-x^{2}-y^{2}-z^{2}}}=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} r^{r^{2} \sin \theta} \frac{d x d y d z}{\sqrt{1-r^{2}}} d r d d \\
& \left.I=\int_{0}^{\pi / 2} d \phi \int_{0}\left(\int_{0} \frac{r^{2}}{\sqrt{1-r^{2}}}\right) d r\right) d \\
& \text { Let } r=\sin t \text { so that } d r=\cos t d t \text {. Further, when } \\
& \left.\begin{array}{l}
r=0, t=0, \\
r=1, t=\frac{\pi}{2}
\end{array}\right\} \\
& \therefore \quad I=\int_{0}^{\pi / 2} d \phi \int_{0}^{\pi / 2} \sin \theta d \theta \int_{0}^{\pi / 2} \frac{\sin ^{2} t}{\cos t} \cdot \cos t d t \\
& =\int_{0}^{\pi / 2} d \phi \int_{0}^{\pi / 2} d \theta \sin \theta\left[\begin{array}{|c|c}
\left\lceil\underline{1}, ~ \frac{\pi}{0}\right\rceil ;
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{4} \int_{0}^{\pi / 2} d \phi \int_{0}^{\pi / 2} \sin \theta d \theta \\
& =\left.\frac{\pi}{4} \int_{0}^{\pi / 2} d \phi(-\cos \theta)\right|_{0} ^{\pi / 2} \\
& =\left.\frac{\pi}{4} \phi\right|_{0} ^{\pi / 2}=\frac{\pi^{2}}{8} .
\end{aligned}
$$

Example 58: Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}{ }^{z^{2}} \frac{\overline{c^{2}}}{} 1$ by changing to polar coordinates.
[PTU, 2007]
Solution: We discuss this problem under change of variables.
Take

$$
\begin{array}{llll}
\underline{x}=X, & \underline{y}=Y, & \underline{z}=Z & \text { so that } \\
a & b & c & \\
b=\frac{\partial(\mathcal{q}, y, z)}{\partial(X, Y, Z)}=a b c
\end{array}
$$

\therefore The required volume,

$$
\begin{aligned}
V & =\iiint d x d y d z=\iiint J \mid d X d Y d Z \\
& =a b c \iiint d X d Y d Z, \text { taken throughout the sphere } X^{2}+Y^{2}+Z^{2}=1 .
\end{aligned}
$$

Change this new system (X, Y, Z) to spherical polar co-ordinates (r, θ, ϕ) by taking

$$
\left.\begin{array}{rl}
X & =r \sin \theta \cos \phi, \\
Y & =r \sin \theta \sin \phi, \\
Z & =r \cos \theta
\end{array}\right\} \text { so that } \quad J^{\prime}=\frac{\partial(X, Y, Z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta,
$$

taken throughout the sphere $r^{2} \leq 1$, i.e. $0 \leq r \leq 1,0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$
On considering the symmetry

$$
\begin{aligned}
& V=a b c \cdot 8 \int_{0}^{\pi / 2}\left(\int_{\pi / 2}^{\pi / 2}\left(\begin{array}{llll}
1 \\
0 & \ell_{\pi} & r & r d r) \sin \\
0
\end{array}\right) \quad \theta d\right) d \phi \\
& \left.=8 a b c \int_{0 / 2}^{\pi / 2}\left|\int_{0}^{\pi / 2} \frac{r^{3}}{3}\right|_{0}^{1} \sin \theta d \theta \right\rvert\, d \phi \\
& =\frac{8}{3} a b c \int_{0}^{\frac{0}{\pi / 2}}[-\cos \theta]_{0}^{0 / 2} d \phi \\
& =\frac{8}{3} a b c \int_{0}^{\pi / 2} 1 \cdot d \phi \\
& =\left.\frac{8}{3} a b c \phi\right|_{0} ^{\pi / 2}=\frac{8}{3} a b c \frac{\pi}{2}=\frac{4}{3} \pi a b c
\end{aligned}
$$

Miscellaneous Problem

Example 59: Evaluate the surface integral $\quad I=\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$.
where S is the surface bounded by $z=0, z=b, x^{2}+y^{2}=a^{2}$.
OR
By transformation to a triple Integral, evaluate $\quad I=\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$, where S is the surface bounded by $z=0, z=b, x^{2}+y^{2}=a^{2}$.

Solution: On making use of Green's Theorem,

$$
\begin{gathered}
I=\int_{-a}^{a} \int_{0}^{b}\left(\sqrt{a^{2}-y^{2}}\right)^{3} d z d y-\int_{-a}^{a} \int_{0}^{b}\left(-\sqrt{a^{2}-y^{2}}\right)^{3} d z d y \\
+\int_{a}^{b} \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d z d x-\int_{-a}^{a} \int_{-a}^{a} x^{2}\left(-\sqrt{a^{2}-x^{2}}\right) d z d x \\
\int_{-a}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{\underline{a^{2}-}} \boldsymbol{y}} d x d y \\
\int_{-a}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}}
\end{gathered}
$$

Using Divergence Theorem,

$$
\begin{aligned}
I & =\iint_{V}\left(3 x^{2}+x^{2}+x^{2}\right) d x d y d z \\
& =4 \int_{0}^{a}\left[\int_{0} \sqrt{a^{2}-x^{2}}\left(\int_{0}^{b} d z\right) d y \mid 5 x^{2} d x\right. \\
& =4 \int_{0}^{a}\left[\int_{0}^{\sqrt{a^{2}-x^{2}}} b d y \mid 5 x^{2} d x\right. \\
& =20 b+_{0}^{a}{ }_{2}^{x} \sqrt{a_{2}-x_{2}} d x \\
& =\frac{5}{4} \pi a^{4} b .
\end{aligned}
$$

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be carried out by calculating the sum of the integrals evaluated over the projections of the surface S on the co- ordinate planes. Thus, which upon evaluation is seen to check with the result already obtained. It should be noted that the angles α, β, γ are mode by the exterior normals in the +ve direction of the co-ordinate axes.

ANSWERS

Asstgnme1 1

1. $\left(\frac{\pi^{2}}{4}\right)$
2. $\frac{a^{4}}{3}$
3. $\frac{1}{a b}$
4. $\frac{\pi}{4}$

Assignment 2

1. $\int_{0}^{\int}\left(\int_{0}^{x^{2}+y^{2}} d y\right) d x$
2. $\int_{0}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y d x$
3. $\int_{a}^{a \sin \alpha} \int_{0}^{y \cdot \cos \alpha} f(x, y) d x d y+\int_{a \sin \alpha 0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x d y$
4. $\int_{0}^{m a} \int_{\frac{y}{l}}^{\frac{y}{m}} f(x, y) d x d y+\int_{m a}^{l a} f(x, y) d x d y$

Assignment 3

1. $\frac{-}{3}$
Assignment 4
2. $\frac{1}{\text { sg. units }}$
3. $\frac{3}{2} \pi\left(b^{4}-a^{4}\right)$
$a^{2}(\underline{3} \pi+\underline{4})$

Asstgnmen1 5
πa^{4} units

1. $\overline{8}$
2. $\frac{2 \pi}{9} \mathrm{u}$ nits

$$
{ }^{a^{3}}(\pi+2) \text { units }
$$

2. 12
3. $\frac{\pi}{4} \mathrm{u}$ nits

Asstgnmen1 6

1. 1
2. $\underline{8}_{9} a^{3} b c\left(3+2 a b^{2}+2 a c^{2}\right)$
3. 8π
4. $\frac{8}{9} \underset{9}{\log 2-\frac{19}{9}}$

Asstgnmen1 7

1. $6 \frac{1}{\operatorname{lmn}}$
2. $a b c\left(, \frac{\pi}{4}-\frac{13}{24}\right)$

Asstgnmen1 8

1. $a b c / 6$

Asstgnmen1 9

1. $\frac{4 \pi a b^{2}}{3}$
2. $2 \pi^{2} a^{3}$
3. $\frac{3 \pi a^{3}}{2}$
${ }^{2} \pi a^{2}$
4. 3
5. $\left.\frac{\pi a^{3}}{4}\left\{\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)-\frac{1}{3}\right\}\right\}$

I B. Tech I Semester Regular Examinations, July/August-2021
 MATHEMATICS-I

(Com. to All Branches)
Time: 3 hours

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

1 a) Examine the convergence of $\sum \frac{[(n+1)!]^{2} x^{n-1}}{n}$, $(\mathrm{x}>0)$
b) Find Maclaurin's series expansion of the $\mathrm{f}(\mathrm{x}, \mathrm{y})=\sin ^{2} x$ and hence find the approximate value of $\sin ^{2} 16^{\circ}$.

Or

2. a) Prove using mean value theorem $|\sin u-\sin \mathrm{v}| \leq|u-v|$.
b) Examine the convergence of $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .(x>0)$.
3. a) Solve $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.
b) Solve $\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$

Or
4. a) Find the orthogonal trajectories of $r^{2}=a \sin 2 \theta$.
b) Solve $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$.
5. a) Solve $\left(D^{3}-D\right) y=2 x+1+4 \operatorname{Cos} x+2 e^{x}$
b) In an L-C-R circuit, the charge q on a plate of a condenser is given by

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C_{2}}=E \operatorname{Sinpt} \tag{7M}
\end{equation*}
$$

The circuit is tuned to resonance so that $\mathrm{q}^{2}=1 / \mathrm{LC}$. If initially the current \boldsymbol{I} and the charge q be zero, show that, for small values of R / L, the current in the circuit at time t is given by $(\mathrm{Et} / 2 \mathrm{~L}) \sin \mathrm{pt}$.

> Or
6. a) Solve $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ by the method of variation of parameters.
b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=\frac{1}{(1-x)^{2}}$.
7. a) If $\mathrm{u}=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}=\tan \mathrm{u}$.
b) Investigate the maxima and minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.

Or

8. a) Prove that $\mathrm{u}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \mathrm{v}=\frac{2 x y}{x^{2}+y^{2}}$ are functionally dependent and find the relation between them.
b) Expand $f(x, y)=e^{x+y}$ in the neighborhood of $(1,1)$.
9. a) Evaluate $\iint_{R} x y d x d y$ where R is the region bounded by the x -axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$.
b) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) d x d y$.

10 a) Evaluate the following integral $\int_{0}^{\pi / 2 a \sin } \int_{0}^{\left(a^{2}-r^{2}\right)} \int_{0}^{a} r d r d \theta d z$
b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by changing into polar coordinates.

2 of 2

